Antimicrobial Efficacy of Chemomechanical Carie Removal Agents—A Systematic Integrative Review
Abstract
:1. Introduction
2. Methods
2.1. Bibliographic Research Method
2.2. Data Extraction
2.3. Data Processing
3. Results and Discussion
3.1. Bibliographic Research
3.2. Chemomechanical Carie Removal Systems (CCRA)
3.3. Antibacterial Effect of CCRA
3.4. Clinical Implications
3.5. Methodological Bias and Limitations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization (WHO). Global Oral Health Status Report: Towards Universal Health Coverage for Oral Health by 2030; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Mathur, V.P.; Dhillon, J.K. Dental Caries: A Disease Which Needs Attention. Indian J. Pediatr. 2018, 85, 202–206. [Google Scholar] [CrossRef]
- Catunda, R.Q.; Altabtbaei, K.; Flores-Mir, C.; Febbraio, M. Pre-Treatment Oral Microbiome Analysis and Salivary Stephan Curve Kinetics in White Spot Lesion Development in Orthodontic Patients Wearing Fixed Appliances. A Pilot Study. BMC Oral Health 2023, 23, 239. [Google Scholar] [CrossRef] [PubMed]
- Elfeel, N.M.; Aboelmaaty, M.M.; Mostafa, M.H.; El-Sayed, S.R. Evaluation of the Efficacy of Minimal Invasive Methods Versus Conventional Methods for Caries Removal in Primary Molars. Cureus 2023, 15, e50803. [Google Scholar] [CrossRef]
- Maashi, M.S.; Elkhodary, H.M.; Alamoudi, N.M.; Bamashmous, N.O. Chemomechanical Caries Removal Methods: A Literature Review. Saudi Dent. J. 2023, 35, 233–243. [Google Scholar] [CrossRef]
- Cardoso, M.; Coelho, A.; Lima, R.; Amaro, I.; Paula, A.; Marto, C.M.; Sousa, J.; Spagnuolo, G.; Ferreira, M.M.; Carrilho, E. Efficacy and Patient’s Acceptance of Alternative Methods for Caries Removal—A Systematic Review. J. Clin. Med. 2020, 9, 3407. [Google Scholar] [CrossRef]
- Black, G.V.; Black, A.D. A Work on Operative Dentistry; Medico Dental Publishing Company: Chicago, IL, USA, 1924; Volume 1. [Google Scholar]
- Ganesh, M.; Parikh, D. Chemomechanical Caries Removal (CMCR) Agents: Review and Clinical Application in Primary Teeth. J. Dent. Oral Hyg. 2011, 3, 34–45. [Google Scholar]
- Mahdi, M.; Ismail, M.; Haidar, A.; Al Haidar, M.J. Evaluation of the Efficacy of Caries Removal Using Papain Gel (Brix 3000) and Smart Preparation Bur (in Vivo Comparative Study). J. Pharm. Sci. Res. 2019, 11, 444–449. [Google Scholar]
- Kronman, J.H.; Goldman, M.; Habib, C.M.; Mengel, L. Electron Microscopic Evaluation of Altered Collagen Structure Induced by N-Monochloroglycine (GK-101). J. Dent. Res. 1977, 56, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Habib, C.M.; Kronman, J.H.; Goldman, M.; Cushner, S. Effects of GK-101 (NMG) and Sodium Hypochlorite on Salivary Amylase Activity. J. Dent. Res. 1977, 56, 665–669. [Google Scholar] [CrossRef]
- Schutzrank, S.G.; Galaini, J.; Kronman, J.H.; Goldman, M.; Clark, R.E. A Comparative in Vitro Study of GK-101 and GK-101E in Caries Removal. J. Dent. Res. 1978, 57, 861–864. [Google Scholar] [CrossRef]
- Puri, A.; Gaurav, K.; Kaur, J.; Sethi, D.; Jindal, L.; Jain, S. Chemomechanical Caries Removal: An Overview. IDA Ludhiana’s J.-Le Dent. 2020, 4, 27–38. [Google Scholar] [CrossRef]
- Inamdar, M.; Chole, D.; Bakle, S.; Gandhi, N.; Hatte, N.; Rao, M. Comparative Evaluation of BRIX3000, CARIE CARE, and SMART BURS in Caries Excavation: An in Vivo Study. J. Conserv. Dent. 2020, 23, 163–168. [Google Scholar] [CrossRef]
- Yazici, A.R.; Atílla, P.; Özgünaltay, G.; Müftüoglu, S. In Vitro Comparison of the Efficacy of CarisolvTM and Conventional Rotary Instrument in Caries Removal. J. Oral Rehabil. 2003, 30, 1177–1182. [Google Scholar] [CrossRef]
- Hamama, H.H.; Yiu, C.K.; Burrow, M.F. Viability of Intratubular Bacteria after Chemomechanical Caries Removal. J. Endod. 2014, 40, 1972–1976. [Google Scholar] [CrossRef]
- Reddy, M.V.; Sai Shankar, A.; Pentakota, V.; Kolli, H.; Ganta, H.; Katari, P. Efficacy of Antimicrobial Property of Two Commercially Available Chemomechanical Caries Removal Agents (Carisolv and Papacarie): An Ex Vivo Study. J. Int. Soc. Prev. Community Dent. 2015, 5, 183–189. [Google Scholar] [CrossRef]
- Divya, G.; Prasad, M.G.; Vasa, A.A.K.; Vasanthi, D.; Ramanarayanar, B.; Mynampati, P. Evaluation of the Efficacy of Caries Removal Using Polymer Bur, Stainless Steel Bur, Carisolv, Papacarie—An Invitro Comparative Study. J. Clin. Diagn. Res. 2015, 9, ZC42–ZC46. [Google Scholar] [CrossRef]
- Gulzar, S.; Arora, R.; Shah, A.H.; Bhardwaj, B.; Abusalim, G.; Khalil, H.S.; Wyne, A.H. Antibacterial Activity of Two Chemomechanical Caries Removal Gels on Carious Dentin of Primary Teeth: An in Vitro Study. J. Contemp. Dent. Pract. 2016, 17, 1027–1032. [Google Scholar] [CrossRef]
- Asal, M.A.; Abdellatif, A.M.; Hammouda, H.E. Clinical and Microbiological Assessment of Carisolv and Polymer Bur for Selective Caries Removal in Primary Molars. Int. J. Clin. Pediatr. Dent. 2021, 14, 357–363. [Google Scholar] [CrossRef]
- Choudhary, K.; Gouraha, A.; Sharma, M.; Sharma, P.; Tiwari, M.; Chouksey, A. Clinical and Microbiological Evaluation of the Chemomechanical Caries Removal Agents in Primary Molars. Cureus 2022, 14, e31422. [Google Scholar] [CrossRef]
- Jawa, D.; Singh, S.; Somani, R.; Jaidka, S.; Sirkar, K.; Jaidka, R. Comparative Evaluation of the Efficacy of Chemomechanical Caries Removal Agent (Papacarie) and Conventional Method of Caries Removal: An in Vitro Study. J. Indian Soc. Pedod. Prev. Dent. 2010, 28, 73–77. [Google Scholar] [CrossRef]
- Motta, L.J.; Bussadori, S.K.; Campanelli, A.P.; Da Silva, A.L.; Alfaya, T.A.; De Godoy, C.H.L.; De Navarro, M.F.L. Efficacy of Papacarie® in Reduction of Residual Bacteria in Deciduous Teeth: A Randomized, Controlled Clinical Trial. Clinics 2014, 69, 319–322. [Google Scholar] [CrossRef]
- Goyal, P.A.; Kumari, R.; Kannan, V.P.; Madhu, S. Efficacy and Tolerance of Papain Gel with Conventional Drilling Method: A Clinico-Microbiological Study. J. Clin. Pediatr. Dent. 2015, 39, 109–112. [Google Scholar] [CrossRef]
- Basting, R.T.; Gonçalves, F.R.; França, F.M.G.; do Amaral, F.L.B.; Flório, F.M. Antimicrobial Potential of Papain Chemomechanical Agent Antimicrobial Potential of Papain Chemomechanical Agent on Streptococcus mutans and Lactobacillus casei Followed by the Use of Self-Etching Adhesive Systems. Pediatr. Dent. 2016, 40, 62–68. [Google Scholar]
- AlHumaid, J. Efficacy and Efficiency of Papacarie versus Conventional Method in Caries Removal in Primary Teeth: An SEM Study. Saudi J. Med. Med. Sci. 2020, 8, 41–45. [Google Scholar] [CrossRef]
- Ferreira, L.d.A.Q.; Anestino, T.A.; Branco, N.T.T.; Diniz, L.A.; Diniz, M.G.; de Magalhães, C.S.; da Cunha Peixoto, R.T.R.; Moreira, A.N.; Dias, D.R.; Madeira, M.F.M.; et al. Adjunctive Therapies for in Vitro Carious Lesions: Antimicrobial Activity, Activation of Dentin Metalloproteinases and Effects on Dental Pulp Cells. Photodiagn. Photodyn. Ther. 2022, 40, 103168. [Google Scholar] [CrossRef]
- Subramaniam, P.; Gilhotra, K. Antimicrobial Efficacy of an Indigenously Prepared Caries Removing Gel. Contemp. Clin. Dent. 2011, 2, 13–16. [Google Scholar] [CrossRef]
- Aswathi, K.; Rani, S.; Athimuthu, A.; Prasanna, P.; Patil, P.; Deepali, K. Comparison of Efficacy of Caries Removal Using Polymer Bur and Chemomechanical Caries Removal Agent: A Clinical and Microbiological Assessment—An in Vivo Study. J. Indian Soc. Pedod. Prev. Dent. 2017, 35, 6–13. [Google Scholar] [CrossRef]
- Dogra, M.; Gupta, M.P.; Sheikh, T.; Nirmala, H.; Bhardwaj, A.; Juntavee, A. Stop Drill, Make a Change: An in Vivo Study. Int. J. Clin. Pediatr. Dent. 2021, 14, 258–262. [Google Scholar] [CrossRef]
- Kandil, S.A.; Abu Hamila, N.A.M.; Ezzat, M.M.; Metwally, N.M. Evaluation of Caries Removal Using Papain versus Conventional Bur in Primary Teeth. Tanta Dent. J. 2023, 20, 130–136. [Google Scholar] [CrossRef]
- Boutsioukis, C.; Arias-Moliz, M.T. Present Status and Future Directions—Irrigants and Irrigation Methods. Int. Endod. J. 2022, 55, 588–612. [Google Scholar] [CrossRef]
- dos Anjos, M.M.; da Silva, A.A.; de Pascoli, I.C.; Mikcha, J.M.G.; Machinski, M.; Peralta, R.M.; de Abreu Filho, B.A. Antibacterial Activity of Papain and Bromelain on Alicyclobacillus spp. Int. J. Food Microbiol. 2016, 216, 121–126. [Google Scholar] [CrossRef]
- Lager, A.; Thornqvist, E.; Ericson, D. Cultivatable Bacteria in Dentine after Caries Excavation Using Rose-Bur or Carisolv. Caries Res. 2003, 37, 206–211. [Google Scholar] [CrossRef]
- Azrak, B.; Callaway, A.; Grundheber, A.; Stender, E.; Willershausen, B. Comparison of the Efficacy of Chemomechanical Caries Removal (CarisolvTM) with That of Conventional Excavation in Reducing the Cariogenic Flora. Int. J. Paediatr. Dent. 2004, 14, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Isik, E.E.; Ölmez, A.; Akca, G.; Sultan, N. A Microbiological Assessment of Polymer and Conventional Carbide Burs in Caries Removal. Pediatr. Dent. 2019, 32, 316–323. [Google Scholar]
- Kidd, E.A.M.; Joyston-Bechal, S.; Beighton, C. Microbiological Validation of Assessment of Caries Activity during Cavity Preparation. Caries Res. 1993, 27, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Bolla, V.L.; Jyothi, M.; Mettu, S.R.; Kumar, M.G.M.; Rao, K.N.; Reddy, M.S.; Koppolu, P. Effectiveness of Three Mouth Rinsing Agents against Mutans Streptococcus and Lactobacillus Species—A Comparative Study. Ann. Afr. Med. 2023, 22, 365–372. [Google Scholar] [CrossRef]
- Casimiro de Andrade, D.J.; Guedes-Pinto, A.C. Textos Escolhidos de Odontopediatria, 1st ed.; Universidade do Porto, Ed.; Universidade do Porto: Porto, Portugal, 2017. [Google Scholar]
- Silva, Z.S.; Huang, Y.Y.; De Freitas, L.F.; França, C.M.; Botta, S.B.; Ana, P.A.; Mesquita-Ferrari, R.A.; Santos Fernandes, K.P.; Deana, A.; Lima Leal, C.R.; et al. Papain Gel Containing Methylene Blue for Simultaneous Caries Removal and Antimicrobial Photoinactivation against Streptococcus mutans Biofilms. Sci. Rep. 2016, 6, 33270. [Google Scholar] [CrossRef]
- Martins, L.F.B.; de Sena, L.R.; de Paula, D.M.; Feitosa, V.P.; Horliana, A.C.R.T.; Fernandes, K.P.S.; Mesquita-Ferrari, R.A.; Motta, L.J.; Gonçalves, M.L.L.; Bussadori, S.K. Investigation on the Effect of Antimicrobial Photodynamic Therapy as an Adjunct for Management of Deep Caries Lesions—Study Protocol for a Randomized, Parallel Groups, Controlled Clinical Trial. Trials 2023, 24, 165. [Google Scholar] [CrossRef]
Element | Description |
---|---|
Population | Cariogenic bacteria |
Intervention | Chemomechanical removal of decayed dentin |
Comparison | Compare the different CCRAs |
Outcome | Antimicrobial efficacy |
Database | Advanced Search |
---|---|
PubMed | (“microbiology” [MESHTerms] OR microbial culture OR “bacteria” [MeSH Terms] OR microbiological assessment) AND (“anti-infective agents” [MeSH Terms]) AND ((Chemomechanical) AND (carie removal)) OR (chemomechanical caries removal agent) |
Science Direct | (microbiology OR microbial culture OR bacteria OR microbiological assessment) AND (anti-infective agents) AND ((Chemomechanical) AND (carie removal)) OR (chemomechanical caries removal agent) |
Web of Science | (microbiology OR microbial culture OR bacteria OR microbiological assessment) AND (anti-infective agents) AND ((Chemomechanical) AND (carie removal)) OR (chemomechanical caries removal agent) |
Name | Creation | Manufacturer | Active Agent | Excipient | Paper |
---|---|---|---|---|---|
Cariesolv ™ | 1998 | Maditeam, Sweden | NaOCl 0.5%, + Amino Acid (glutamic acid, leucine, lysine) | Carboxymethylcelulose, sodium chloride, sodium hydroxide | [15,16,17,18,19,20,21] |
Papacarie® | 2003 | PulpDent, Brasil | Papain | Chloramine, Toluidine blue | [16,17,18,22,23,24,25,26,27] |
PapEdent® | 2008 | SubramaniamP. and Gilhotra K., India | Papain, D-α-tocopherol acetate | Distilled Water, glycerine, amylopectin, carbopol, propyl-p-hydroxybenzoate, coloring agent (green apple) | [28] |
Carie-Care™ | 2011 | Uni-biotech Pharmaceuticals PrivateLimited, India | Papaine, therapeutic Essential Oils | Coloring Gel (Blue), Sterile water, Chloramine & Sodium Chloride, Permitted Color (Blue), Sodium Methyl Paraben & Sodium Propyl Paraben. | [14,19,29] |
Apacaries gel® | 2012 | Apa Juntavee, Thailand | Papain, Polyphenols (Mangosteen extracts) | n/a | [30] |
Brix3000® | 2016 | Brix SRL, Argentina | Bioencapsulation of Papain (3000 U/mg) | Propylene Glycol, Citric Pectin, Triethanolamine, Sorbitan Monolaurate, Disodium Phosphate, Monopotasic Phosphate, Toluidine Blue, Distilled Water | [9,14,31] |
Chemomechanical Methods | Mechanical Methods | Papers | ||||||
---|---|---|---|---|---|---|---|---|
Ac | Bx | CC | Cs | Pc | PE | Pb | CDM | |
35.71 | 92.86 | [15] | ||||||
73.3 | 93.3 | [22] | ||||||
92.36 | [28] | |||||||
86.17 | 44.35 | [23] | ||||||
7.8 | 31.9 | [16] | ||||||
88.47 | 88.29 | [24] | ||||||
92.02 | 92.25 | [17] | ||||||
56.7 | 76.7 | 3.3 | 90 | [18] | ||||
75.97 | 76.87 | [19] | ||||||
99.9 | 99.9 | [29] | ||||||
76.7 | 83.30 | [26] | ||||||
98.63 | 95.40 | [9] | ||||||
54.73 | 50.40 | 46.66 | [14] | |||||
61.86 | 75.93 | [30] | ||||||
97.59 | 95.04 | 98.14 | [20] | |||||
33.3 | [27] | |||||||
97.58 | 95.03 | 98.13 | [21] |
Chemomechanical Methods | Mechanical Method | Paper | |||
---|---|---|---|---|---|
Bx | Cs | CC | Pc | CDM | |
90.26 | 88.54 | [19] | |||
80.83 | [25] | ||||
87.46 | 86.40 | [31] |
Chemomechanical Methods | Mechanical Method | Paper | ||||
---|---|---|---|---|---|---|
Bx | CC | Cs | Pc | PE | CDM | |
94.10 | [28] | |||||
83.36 | 81.05 | [24] | ||||
86.93 | 87.36 | [17] | ||||
83.2 | 83.2 | [19] | ||||
67.5 | [25] | |||||
85.84 | 85.28 | [31] |
Ac-CDM | Bx-CDM | Cs-CDM | Pc-CDM | Bx-Pb | Cs-Pb | CC-Pb | Pc-Pb | Paper |
---|---|---|---|---|---|---|---|---|
−57.15 | [15] | |||||||
−20.00 | [22] | |||||||
41.82 | [23] | |||||||
0.17 | [24] | |||||||
−33.3 | −13.3 | 53.4 | 73.4 | [18] | ||||
−0.002 | [29] | |||||||
3.23 | [9] | |||||||
−6.6 | [26] | |||||||
8.07 | 3.74 | [14] | ||||||
−14.07 | [30] | |||||||
−0.55 | 2.55 | [20] | ||||||
−0.55 | 2.55 | [21] | ||||||
1.06 | [31] |
Type of Study | Methods Tested | Sample/Specimen | Chemomechanical Methods | Mechanical Methods | Paper | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | Type | Origin | Caries Lesions | Preparation | Time of Application (s) | Repetitions | Total Time (s) | Total Time (s) | |||
Ex vivo | Cs/CDM | 14 | M | H | Dentine caries | Separated in half | Cs: 30’ | + | 272’ | CDM: 116’ | [15] |
Pc/CDM | 20 | M | H | Dentine caries | Separated in half | Pc: 30’ | + | 328’ | CDM: 125’ | [22] | |
Cs/Pc/CHX | 30 | PM | H | - | Section 2 mm dentin discs contaminated with SM | Cs, Pc, C: 300’ | - | 300’ | - | [16] | |
Pc/Cs/Pb/CDM | 60 | m | H | Moderated stages of caries lesion | Separated in half | Pc, Cs: 30’ | + | Pc: 359.60′/Cs: 461.60′ | CDM: 151′/Pb: 345′ | [18] | |
Cs/CC | 40 | m | H | Dentine caries | Separated in half | ? | ? | ? | ? | [19] | |
Pc/C | 20 | M | H | - | Contaminated with SM and L. casei | Pc: 30’ | 3x | ? | - | [25] | |
Pc/CDM | 30 | m | H | Occlusal dentine caries | Separated in half | Pc: 30’-40’ | + | 351.56’ | CDM: 158.41’ | [26] | |
Pc/CHX/PBS | 60 | I | B | - | Contaminated with SM and L. casei | Pc: 30’/CHX: 120’/PBS: 60’ | ? | ? | - | [27] | |
In vivo | PE | 20 | m | H | Occlusal dentine caries | - | PE: 40’ | + | ? | - | [28] |
Pc/CDM | 40 | m | H | Occlusal dentine caries | - | Pc: 30’-40’ | + | ? | ? | [23] | |
Pc/CDM | 50 | m | H | Occlusal dentine caries and cervical lesion | - | Pc: 30’-40’ | + | 461’ | CDM: 459’ | [24] | |
Pc/Cs | 40 | m | H | Large occlusal cavities | - | Pc: 60’/Cs: 30’ | + | ? | - | [17] | |
CC/Pb | 50 | m | H | Occlusal dentine active caries | - | CC: 30-60’ | + | ? | ? | [29] | |
Bx/Pb | 60 | M | H | Occlusal dentine caries | - | Bx: 120′ | + | 2287′ | Pb:1 433′ | [9] | |
Bx/CC/Pb | 45 | M | H | Dentine caries | - | Bx, CC: 180’ | + | Bx: 819.6′/CC: ? | Pb: 1236′ | [14] | |
Ac/CDM | 40 | M | H | Occlusal dentine caries | - | Ac: 30’-40’ | + | 278.4′ | CDM: 91.2′ | [30] | |
Cs/Pb/CDM | 60 | m | H | Occlusal dentine caries | - | Cs: 30’ | + | 455.45′ | CDM: 113.25′/Pb: 129.20′ | [20] | |
Cs/Pb/CDM | 20 | m | H | Occlusal dentine caries | - | Cs: 30’ | ? | 129.21′ | CDM: 113.26′/Pb: 455.46′ | [21] | |
Bx/CDM | 60 | m | H | Occlusal dentine caries | - | Bx: 120′ | + | 1823′ | CDM: 1200′ | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janvier, A.; Maziere, M.; Rodrigues, C.F.; Lobo, A.P.; Rompante, P. Antimicrobial Efficacy of Chemomechanical Carie Removal Agents—A Systematic Integrative Review. Biomedicines 2024, 12, 1735. https://doi.org/10.3390/biomedicines12081735
Janvier A, Maziere M, Rodrigues CF, Lobo AP, Rompante P. Antimicrobial Efficacy of Chemomechanical Carie Removal Agents—A Systematic Integrative Review. Biomedicines. 2024; 12(8):1735. https://doi.org/10.3390/biomedicines12081735
Chicago/Turabian StyleJanvier, Adélaïde, Marie Maziere, Célia F. Rodrigues, Ana Paula Lobo, and Paulo Rompante. 2024. "Antimicrobial Efficacy of Chemomechanical Carie Removal Agents—A Systematic Integrative Review" Biomedicines 12, no. 8: 1735. https://doi.org/10.3390/biomedicines12081735