Expression of hsa-miRNA-15b, -99b, -181a and Their Relationship to Angiogenesis in Renal Cell Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Sample Collection
2.2. RNA Extraction and Quality Determination
2.3. TaqMan® miRNA Quantitative Real-Time PCR and Statistical Analysis
2.4. In Silico miRNA Analysis for Target and Pathway Prediction
2.5. Tissue Lysate Preparation for Protein Array Analysis
2.6. Reverse Transcription PCR (RT-PCR)
2.7. Quantitative Real-Time PCR (qRT-PCR)
2.8. Statistical Analysis
2.8.1. Statistical Analysis of the Expression of hsa-miRNAs in Tumorous and Adjacent Healthy Kidney Cancer Tissues
2.8.2. Statistical Analysis of the Correlation of the miRNAs Expression Level with Pathological Grades of the Patients
3. Results
3.1. Clinicopathological Characteristics of the Patients
3.2. Angiogenesis-Related miRNAs Expression
3.3. Correlation of Patients’ miRNAs and Tumor Stages
3.4. Correlation of Patients’ miRNAs and Lymph Node
3.5. In Silico miRNA Target Database Analysis
3.6. Evaluation of the Angiogenesis Array
3.7. Results of Real-Time qRT-PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, L.; Zhou, H.; Zhao, H.; Zhou, Y.; Xu, R.; Xu, X.; Zheng, L.; Xue, Z.; Xia, W.; Zhang, B.; et al. MicroRNA-99a induces G1-phase cell cycle arrest and suppresses tumorigenicity in renal cell carcinoma. BMC Cancer 2012, 12, 546. [Google Scholar] [CrossRef] [PubMed]
- Guillaume, Z.; Auvray, M.; Vano, Y.; Oudard, S.; Helley, D.; Mauge, L. Renal Carcinoma and Angiogenesis: Therapeutic Target and Biomarkers of Response in Current Therapies. Cancers 2022, 14, 6167. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Li, H.; Chen, L.; Ma, X.; Gao, Y.; Li, X.; Zhang, Y.; Fan, Y.; Zhang, X. MicroRNAs as prognostic molecular signatures in renal cell carcinoma: A systematic review and meta-analysis. Oncotarget 2015, 6, 32545–32560. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-C.; Li, J.-P.; Wang, Z.-M.; Fu, D.-L.; Li, Z.-L.; Zhang, D.; Gan, W.-M.; Chong, T. Identification of angiogenesis-related miRNAs in a population of patients with renal clear cell carcinoma. Oncol. Rep. 2014, 32, 2061–2069. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.P.; Tsuchida, C.; Zheng, Y.; Himmelfarb, J.; Akilesh, S. A 3D Human Renal Cell Carcinoma-on-a-Chip for the Study of Tumor Angiogenesis. Neoplasia 2018, 20, 610–620. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zou, X.; Zou, J.; Zhang, G. A Review of Recent Research on the Role of MicroRNAs in Renal Cancer. Med. Sci. Monit. 2021, 27, e930639. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.d.C.; Ivanovic, R.F.; Leite, K.R.M.; Viana, N.I.; Pimenta, R.C.A.; Junior, J.P.; Guimarães, V.R.; Morais, D.R.; Abe, D.K.; Nesrallah, A.J.; et al. Expression of micro-RNAs and genes related to angiogenesis in ccRCC and associations with tumor characteristics. BMC Urol. 2017, 17, 113. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, W.; Lei, F.; Li, X. The regulatory role of microRNAs in angiogenesis-related diseases. J. Cell. Mol. Med. 2018, 22, 4568–4587. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.-Y.; She, X.-M.; Qin, Y.; Chu, Z.-B.; Chen, L.; Ai, L.-S.; Zhang, L.; Hu, Y. miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF. Carcinogenesis 2013, 34, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Aveta, A.; Cilio, S.; Contieri, R.; Spena, G.; Napolitano, L.; Manfredi, C.; Franco, A.; Crocerossa, F.; Cerrato, C.; Ferro, M.; et al. Urinary MicroRNAs as Biomarkers of Urological Cancers: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 10846. [Google Scholar] [CrossRef] [PubMed]
- Zaravinos, A.; Lambrou, G.I.; Mourmouras, N.; Katafygiotis, P.; Papagregoriou, G.; Giannikou, K.; Delakas, D.; Deltas, C. New miRNA profiles accurately distinguish renal cell carcinomas and upper tract urothelial carcinomas from the normal kidney. PLoS ONE 2014, 9, e91646. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, C.; Bardoli, A.D.; Afshar, M.; Pirrie, S.; Miscoria, M.; Wheeley, I.; Porfiri, E. A Study of Angiogenesis Markers in Patients with Renal Cell Carcinoma Undergoing Therapy with Sunitinib. Anticancer Res. 2017, 37, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Redova, M.; Poprach, A.; Besse, A.; Iliev, R.; Nekvindova, J.; Lakomy, R.; Radova, L.; Svoboda, M.; Dolezel, J.; Vyzula, R.; et al. MiR-210 expression in tumor tissue and in vitro effects of its silencing in renal cell carcinoma. Tumor Biol. 2013, 34, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Salinas-Vera, Y.M.; Marchat, L.A.; GAllardo-Rincon, D.; Ruiz-Garcia, E.; Astudillo-De La Vega, H.A.-D.; La Vega, H.A.-D.; Echavarría-Zepeda, R.; López-Camarillo, C. AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review). Int. J. Mol. Med. 2019, 43, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Wang, X.; Li, J.; You, C.; Lu, P.; Feng, H.; Kong, Y.; Zhang, H.; Liu, Y.; Jiao, R.; et al. MicroRNA-181a promotes angiogenesis in colorectal cancer by targeting SRCIN1 to promote the SRC/VEGF signaling pathway. Cell Death Dis. 2018, 9, 438. [Google Scholar] [CrossRef] [PubMed]
- Aspriţoiu, V.M.; Stoica, I.; Bleotu, C.; Diaconu, C.C. Epigenetic Regulation of Angiogenesis in Development and Tumors Progression: Potential Implications for Cancer Treatment. Front. Cell Dev. Biol. 2021, 9, 9962. [Google Scholar] [CrossRef] [PubMed]
- Paner, G.P.; Stadler, W.M.; Hansel, D.E.; Montironi, R.; Lin, D.W.; Amin, M.B. Updates in the Eighth Edition of the Tumor-Node-Metastasis Staging Classification for Urologic Cancers. Eur. Urol. 2018, 73, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Patil, K.; Joseph, S.; Shah, J.; Mukherjee, S. An integrated in silico analysis highlighted angiogenesis regulating miRNA-mRNA network in PCOS pathophysiology. J. Assist. Reprod. Genet. 2022, 39, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Goradel, N.H.; Mohammadi, N.; Haghi-Aminjan, H.; Farhood, B.; Negahdari, B.; Sahebkar, A. Regulation of tumor angiogenesis by microRNAs: State of the art. J. Cell. Physiol. 2018, 234, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- Joosten, S.C.; Smits, K.M.; Aarts, M.J.; Melotte, V.; Koch, A.; Tjan-Heijnen, V.C.; van Engeland, M. Epigenetics in renal cell cancer: Mechanisms and clinical applications. Nat. Rev. Urol. 2018, 15, 430–451. [Google Scholar] [CrossRef]
- Kumar, S.; Saikia, J.; Sharawat, S.K.; Malik, P.S.; Kumar, S.; Mohan, A. Analysis of miR-375-3p, miR-197-3p, and miR-15a-5p Expression and Their Clinical Relevance as Biomarkers in Lung Cancer. Technol. Cancer Res. Treat. 2022, 21, 15330338221080981. [Google Scholar] [CrossRef] [PubMed]
- Kao, S.C.; Cheng, Y.Y.; Williams, M.; Kirschner, M.B.; Madore, J.; Lum, T.; Sarun, K.H.; Linton, A.; McCaughan, B.; Klebe, S.; et al. Tumor Suppressor microRNAs Contribute to the Regulation of PD-L1 Expression in Malignant Pleural Mesothelioma. J. Thorac. Oncol. 2017, 12, 1421–1433. [Google Scholar] [CrossRef] [PubMed]
- Palamarchuk, A.; Tsyba, L.; Tomasello, L.; Pekarsky, Y.; Croce, C.M. PDCD1 (PD-1) is a direct target of miR-15a-5p and miR-16-5p. Signal Transduct. Target. Ther. 2022, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Hu, M.; Li, P.; Ma, J.; Xie, L.; Teng, F.; Zhu, Y.; Fan, B.; Mu, D.; Yu, J. Relationship between expression of PD-L1 and tumor angiogenesis, proliferation, and invasion in glioma. Oncotarget 2017, 8, 49702–49712. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Zhao, L.; Hu, J.; Quan, J.; Chen, P.; Xu, J.; Ni, L. microRNA-181a-5p functions as an oncogene in renal cell carcinoma. Mol. Med. Rep. 2018, 17, 8510–8517. [Google Scholar] [PubMed]
- Li, Y.; Kuscu, C.; Banach, A.; Zhang, Q.; Pulkoski-Gross, A.; Kim, D.; Cao, J. miR-181a-5p Inhibits Cancer Cell Migration and Angiogenesis via Downregulation of Matrix Metalloproteinase-14. Cancer Res. 2015, 75, 2674–2685. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.-G.; Chen, T.-F.; Huang, C.; Wang, H.; An, L.; Cheng, Z.; Zhang, G.-J. MiR-15a expression analysis in non-small cell lung cancer A549 cells under local hypoxia microenvironment. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 2069–2074. [Google Scholar] [PubMed]
- Cheng, H.S.; Zhuang, R.; Pérez-Cremades, D.; Chen, J.; Jamaiyar, A.; Wu, W.; Sausen, G.; Tzani, A.; Plutzky, J.; Henao-Mejia, J.; et al. A miRNA/CXCR4 signaling axis impairs monopoiesis and angiogenesis in diabetic critical limb ischemia. J. Clin. Investig. 2023, 8, e163360. [Google Scholar] [CrossRef] [PubMed]
- Ceci, C.; Atzori, M.G.; Lacal, P.M.; Graziani, G. Role of VEGFs/VEGFR-1 Signaling and Its Inhibition in Modulating Tumor Invasion: Experimental Evidence in Different Metastatic Cancer Models. Int. J. Mol. Sci. 2020, 21, 1388. [Google Scholar] [CrossRef]
- Neal, C.S.; Michael, M.Z.; Rawlings, L.H.; Van der Hoek, M.B.; Gleadle, J.M. The VHL-dependent regulation of microRNAs in renal cancer. BMC Med. 2010, 8, 64. [Google Scholar] [CrossRef] [PubMed]
- Duch, P.; Díaz-Valdivia, N.; Ikemori, R.; Gabasa, M.; Radisky, E.S.; Arshakyan, M.; Gea-Sorlí, S.; Mateu-Bosch, A.; Bragado, P.; Carrasco, J.L.; et al. Aberrant TIMP-1 overexpression in tumor-associated fibroblasts drives tumor progression through CD63 in lung adenocarcinoma. Matrix Biol. 2022, 111, 207–225. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zong, S.; Zeng, H.; Ruan, X.; Yao, L.; Han, S.; Hou, F. MicroRNAs and angiogenesis: A new era for the management of colorectal cancer. Cancer Cell Int. 2021, 21, 221. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Klasson, T.D.; Brandt, M.M.; van de Hoek, G.; Logister, I.; Cheng, C.; Giles, R.H. Control of Angiogenesis via a VHL/miR-212/132 Axis. Cells 2020, 9, 1017. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Li, J.; Zhang, C.; Hu, T.; Li, S.; He, S.; Yan, H.; Tan, Y.; Lei, M.; Wen, M.; et al. The role of hypoxia-inducible factors in tumor angiogenesis and cell metabolism. Genes Dis. 2017, 4, 19–24. [Google Scholar] [CrossRef]
- Ramani, P.; Headford, A.; Sowa-Avugrah, E.; Hunt, L.P. Angiogenin expression in human kidneys and Wilms tumours: Relationship with hypoxia and angiogenic factors. Int. J. Exp. Pathol. 2013, 94, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Hillen, F.; Griffioen, A.W. Tumour vascularization: Sprouting angiogenesis and beyond. Cancer Metastasis Rev. 2007, 26, 489–502. [Google Scholar] [CrossRef] [PubMed]
- Rundhaug, J.E. Matrix metalloproteinases and angiogenesis. J. Cell. Mol. Med. 2005, 9, 267–285. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front. Oncol. 2019, 9, 1370. [Google Scholar] [CrossRef] [PubMed]
Number | Gender | Age | Histology | Grade | TNM | Type of Surgery |
---|---|---|---|---|---|---|
1. | female | 65 | cc. Renocellulare | 1 | pT1b | Laparoscopic Radical Nephrectomy |
2. | male | 56 | cc. Renocellulare | 1 | pT1b | Open Radical Nephrectomy |
3. | male | 73 | cc. Renocellulare | 2 | pT1a | Laparoscopic Renal Resection |
4. | female | 59 | cc. Renocellulare | 2 | pT1a | Laparoscopic Renal Resection |
5. | female | 76 | cc. Renocellulare | 2 | pT1a | Laparoscopic Radical Nephrectomy |
6. | male | 66 | cc. Papillare | 2 | pT1a pNx | Laparoscopic Renal Resection |
7. | female | 62 | cc. Renocellulare | 2 | pT1a | Laparoscopic Radical Nephrectomy |
8. | male | 53 | cc. Papillare | 2 | pT1a pNx | Laparoscopic Renal Resection |
9. | female | 74 | cc. Renocellulare | 2 | pT1a | Open Radical Nephrectomy |
10. | male | 46 | Chromofob cc. | 2 | pT1b | Laparoscopic Nephrectomy |
11. | female | 64 | cc. Renocellulare | 1 | pT3a | Laparoscopic Radical Nephrectomy |
12. | male | 78 | cc. Renocellulare | 3 | pT1b | Laparoscopic Nephrectomy |
13. | female | 65 | cc. Renocellulare | 2 | pT1a | Laparoscopic Renal Resection |
14. | female | 65 | cc. Renocellulare | 1 | pT1b | Open Radical Nephrectomy |
15. | female | 48 | cc. Renocellulare | 3 | pT3a pN1 | Laparoscopic Radical Nephrectomy |
16. | female | 68 | cc. Renocellulare | 2 | pT1a | Laparoscopic Renal Resection |
17. | female | 71 | cc. Renocellulare | 3 | pT1b | Laparoscopic Nephrectomy |
18. | male | 51 | cc. Renocellulare | 2 | pT1a | Open Radical Nephrectomy |
19. | male | 53 | cc. Renocellulare | 2 | pT1b | Laparoscopic Radical Nephrectomy |
20. | male | 64 | Chromofob cc. | 2 | pT1b | Open Renal Resection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Király, J.; Szabó, E.; Fodor, P.; Vass, A.; Choudhury, M.; Gesztelyi, R.; Szász, C.; Flaskó, T.; Dobos, N.; Zsebik, B.; et al. Expression of hsa-miRNA-15b, -99b, -181a and Their Relationship to Angiogenesis in Renal Cell Carcinoma. Biomedicines 2024, 12, 1441. https://doi.org/10.3390/biomedicines12071441
Király J, Szabó E, Fodor P, Vass A, Choudhury M, Gesztelyi R, Szász C, Flaskó T, Dobos N, Zsebik B, et al. Expression of hsa-miRNA-15b, -99b, -181a and Their Relationship to Angiogenesis in Renal Cell Carcinoma. Biomedicines. 2024; 12(7):1441. https://doi.org/10.3390/biomedicines12071441
Chicago/Turabian StyleKirály, József, Erzsébet Szabó, Petra Fodor, Anna Vass, Mahua Choudhury, Rudolf Gesztelyi, Csaba Szász, Tibor Flaskó, Nikoletta Dobos, Barbara Zsebik, and et al. 2024. "Expression of hsa-miRNA-15b, -99b, -181a and Their Relationship to Angiogenesis in Renal Cell Carcinoma" Biomedicines 12, no. 7: 1441. https://doi.org/10.3390/biomedicines12071441
APA StyleKirály, J., Szabó, E., Fodor, P., Vass, A., Choudhury, M., Gesztelyi, R., Szász, C., Flaskó, T., Dobos, N., Zsebik, B., Steli, Á. J., Halmos, G., & Szabó, Z. (2024). Expression of hsa-miRNA-15b, -99b, -181a and Their Relationship to Angiogenesis in Renal Cell Carcinoma. Biomedicines, 12(7), 1441. https://doi.org/10.3390/biomedicines12071441