Adaptive and Compensatory Neural Signatures in Fibromyalgia: An Analysis of Resting-State and Stimulus-Evoked EEG Oscillations
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Demographic and Clinical Variables
2.4. Conditioned Pain Modulation (CPM)
2.5. Electroencephalography (EEG) Assessment
2.6. Preprocessing
2.7. Resting-State EEG Protocol
2.8. Resting-State Spectral Power Analysis
2.9. Motor Task Spectral Power Analysis
2.10. Event-Related Spectral Perturbation (ERSP)
2.11. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Neurophysiological Findings
3.3. Time–Frequency Power Analysis
3.4. Predictors of Resting-State EEG
3.5. Predictors of Event-Related EEG
4. Discussion
4.1. Stimulus Evoked Oscillations: Event-Related Synchronization (ERS)
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lima, D.; Pacheco-Barrios, K.; Slawka, E.; Camargo, L.; Castelo-Branco, L.; Cardenas-Rojas, A.; Neto, M.S.; Fregni, F. The role of symptoms severity, heart rate, and central sensitization for predicting sleep quality in patients with fibromyalgia. Pain Med. 2023, 24, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.P.; Santo, A.; Berssaneti, A.A.; Matsutani, L.A.; Yuan, S.L.K. Prevalence of fibromyalgia: Literature review update. Rev. Bras. Reumatol. Engl. Ed. 2017, 57, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Häuser, W.; Katz, R.L.; Mease, P.J.; Russell, A.S.; Russell, I.J.; Walitt, B. 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin. Arthritis Rheum. 2016, 46, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Theadom, A.; Cropley, M.; Smith, H.E.; Feigin, V.L.; McPherson, K. Mind and body therapy for fibromyalgia. Cochrane Database Syst. Rev. 2015, 2015, Cd001980. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Koubeissi, M.Z. Electroencephalography in Epilepsy Evaluation. Continuum 2019, 25, 431–453. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, E.S.; de Queirós, F.C.; Montoya, P.; Santos, C.L.; do Nascimento, M.A.; Ito, C.H.; Silva, M.; Nunes Santos, D.B.; Benevides, S.; Miranda, J.G.; et al. Electroencephalographic Patterns in Chronic Pain: A Systematic Review of the Literature. PLoS ONE 2016, 11, e0149085. [Google Scholar] [CrossRef] [PubMed]
- Younes, M.; Azarbarzin, A.; Reid, M.; Mazzotti, D.R.; Redline, S. Characteristics and reproducibility of novel sleep EEG biomarkers and their variation with sleep apnea and insomnia in a large community-based cohort. Sleep 2021, 44, zsab145. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, C.S.; Strüber, D.; Helfrich, R.F.; Engel, A.K. EEG oscillations: From correlation to causality. Int. J. Psychophysiol. 2016, 103, 12–21. [Google Scholar] [CrossRef]
- Başar, E. Brain oscillations in neuropsychiatric disease. Dialogues Clin. Neurosci. 2013, 15, 291–300. [Google Scholar] [CrossRef]
- Iuamoto, L.R.; Imamura, M.; Sameshima, K.; Meyer, A.; Simis, M.; Battistella, L.R.; Fregni, F. Functional Changes in Cortical Activity of Patients Submitted to Knee Osteoarthritis Treatment: An Exploratory Pilot Study. Am. J. Phys. Med. Rehabil. 2022, 101, 920–930. [Google Scholar] [CrossRef]
- Lim, M.; Kim, J.S.; Kim, D.J.; Chung, C.K. Increased Low- and High-Frequency Oscillatory Activity in the Prefrontal Cortex of Fibromyalgia Patients. Front. Hum. Neurosci. 2016, 10, 111. [Google Scholar] [CrossRef]
- Fallon, N.; Chiu, Y.; Nurmikko, T.; Stancak, A. Altered theta oscillations in resting EEG of fibromyalgia syndrome patients. Eur. J. Pain 2018, 22, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G.; Lopes da Silva, F.H. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophysiol. 1999, 110, 1842–1857. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G. Event-related synchronization (ERS): An electrophysiological correlate of cortical areas at rest. Electroencephalogr. Clin. Neurophysiol. 1992, 83, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Toro, C.; Deuschl, G.; Thatcher, R.; Sato, S.; Kufta, C.; Hallett, M. Event-related desynchronization and movement-related cortical potentials on the ECoG and EEG. Electroencephalogr. Clin. Neurophysiol. 1994, 93, 380–389. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Silva, F.L.d. EEG Event-Related Desynchronization and Event-Related Synchronization. In Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields; Schomer, D.L., Lopes da Silva, F.H., Schomer, D.L., Lopes da Silva, F.H., Eds.; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Uygur-Kucukseymen, E.; Castelo-Branco, L.; Pacheco-Barrios, K.; Luna-Cuadros, M.A.; Cardenas-Rojas, A.; Giannoni-Luza, S.; Zeng, H.; Gianlorenco, A.C.; Gnoatto-Medeiros, M.; Shaikh, E.S.; et al. Decreased neural inhibitory state in fibromyalgia pain: A cross-sectional study. Neurophysiol. Clin. 2020, 50, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Castelo-Branco, L.; Uygur Kucukseymen, E.; Duarte, D.; El-Hagrassy, M.M.; Bonin Pinto, C.; Gunduz, M.E.; Cardenas-Rojas, A.; Pacheco-Barrios, K.; Yang, Y.; Gonzalez-Mego, P.; et al. Optimised transcranial direct current stimulation (tDCS) for fibromyalgia-targeting the endogenous pain control system: A randomised, double-blind, factorial clinical trial protocol. BMJ Open 2019, 9, e032710. [Google Scholar] [CrossRef]
- Williams, D.A.; Arnold, L.M. Measures of fibromyalgia: Fibromyalgia Impact Questionnaire (FIQ), Brief Pain Inventory (BPI), Multidimensional Fatigue Inventory (MFI-20), Medical Outcomes Study (MOS) Sleep Scale, and Multiple Ability Self-Report Questionnaire (MASQ). Arthritis Care Res. 2011, 63 (Suppl. 11), S86–S97. [Google Scholar] [CrossRef]
- Williams, V.S.; Morlock, R.J.; Feltner, D. Psychometric evaluation of a visual analog scale for the assessment of anxiety. Health Qual. Life Outcomes 2010, 8, 57. [Google Scholar] [CrossRef]
- Boomershine, C.S.; Emir, B.; Wang, Y.; Zlateva, G. Simplifying Fibromyalgia Assessment: The VASFIQ Brief Symptom Scale. Ther. Adv. Musculoskelet. Dis. 2011, 3, 215–226. [Google Scholar] [CrossRef]
- Burckhardt, C.S.; Anderson, K.L. The Quality of Life Scale (QOLS): Reliability, validity, and utilization. Health Qual. Life Outcomes 2003, 1, 60. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef] [PubMed]
- Cella, D.; Riley, W.; Stone, A.; Rothrock, N.; Reeve, B.; Yount, S.; Amtmann, D.; Bode, R.; Buysse, D.; Choi, S.; et al. The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. J. Clin. Epidemiol. 2010, 63, 1179–1194. [Google Scholar] [CrossRef] [PubMed]
- Poquet, N.; Lin, C. The Brief Pain Inventory (BPI). J. Physiother. 2016, 62, 52. [Google Scholar] [CrossRef]
- Bennett, R.M.; Friend, R.; Jones, K.D.; Ward, R.; Han, B.K.; Ross, R.L. The Revised Fibromyalgia Impact Questionnaire (FIQR): Validation and psychometric properties. Arthritis Res. Ther. 2009, 11, R120. [Google Scholar] [CrossRef]
- Granot, M.; Weissman-Fogel, I.; Crispel, Y.; Pud, D.; Granovsky, Y.; Sprecher, E.; Yarnitsky, D. Determinants of endogenous analgesia magnitude in a diffuse noxious inhibitory control (DNIC) paradigm: Do conditioning stimulus painfulness, gender and personality variables matter? Pain 2008, 136, 142–149. [Google Scholar] [CrossRef]
- Nir, R.R.; Granovsky, Y.; Yarnitsky, D.; Sprecher, E.; Granot, M. A psychophysical study of endogenous analgesia: The role of the conditioning pain in the induction and magnitude of conditioned pain modulation. Eur. J. Pain 2011, 15, 491–497. [Google Scholar] [PubMed]
- Marques, L.M.; Barbosa, S.P.; Pacheco-Barrios, K.; Goncalves, F.T.; Imamura, M.; Battistella, L.R.; Simis, M.; Fregni, F. Motor event-related synchronization as an inhibitory biomarker of pain severity, sensitivity, and chronicity in patients with knee osteoarthritis. Neurophysiol. Clin. 2022, 52, 413–426. [Google Scholar] [CrossRef]
- Marques, L.M.; Castellani, A.; Barbosa, S.P.; Imamura, M.; Battistella, L.R.; Simis, M.; Fregni, F. Neuroplasticity changes in knee osteoarthritis (KOA) indexed by event-related desynchronization/synchronization during a motor inhibition task. Somatosens. Mot. Res. 2023, ahead-of-print(ahead-of-print). 1–10. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. Neuroimage 2019, 198, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Simis, M.; Uygur-Kucukseymen, E.; Pacheco-Barrios, K.; Battistella, L.R.; Fregni, F. Beta-band oscillations as a biomarker of gait recovery in spinal cord injury patients: A quantitative electroencephalography analysis. Clin. Neurophysiol. 2020, 131, 1806–1814. [Google Scholar] [CrossRef] [PubMed]
- Duann, J.R.; Chiou, J.C. A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation. PLoS ONE 2016, 11, e0162546. [Google Scholar] [CrossRef] [PubMed]
- Aoh, Y.; Hsiao, H.J.; Lu, M.K.; Macerollo, A.; Huang, H.C.; Hamada, M.; Tsai, C.H.; Chen, J.C. Event-Related Desynchronization/Synchronization in Spinocerebellar Ataxia Type 3. Front. Neurol. 2019, 10, 822. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, Y.; Shu, X.; Wang, C.; Wang, H.; Ding, L.; Jia, J. Electroencephalography Mu Rhythm Changes and Decreased Spasticity After Repetitive Peripheral Magnetic Stimulation in Patients Following Stroke. Front. Neurol. 2020, 11, 546599. [Google Scholar] [CrossRef] [PubMed]
- Osborne, J.W.; Waters, E. Four Assumptions of Multiple Regression That Researchers Should Always Test. Pract. Assess. Res. Eval. 2019, 8, 2002–2003. [Google Scholar]
- Ossipov, M.H.; Dussor, G.O.; Porreca, F. Central modulation of pain. J. Clin. Investig. 2010, 120, 3779–3787. [Google Scholar] [CrossRef] [PubMed]
- Baumgarten, T.J.; Oeltzschner, G.; Hoogenboom, N.; Wittsack, H.J.; Schnitzler, A.; Lange, J. Beta Peak Frequencies at Rest Correlate with Endogenous GABA+/Cr Concentrations in Sensorimotor Cortex Areas. PLoS ONE 2016, 11, e0156829. [Google Scholar] [CrossRef]
- Barratt, E.L.; Francis, S.T.; Morris, P.G.; Brookes, M.J. Mapping the topological organisation of beta oscillations in motor cortex using MEG. Neuroimage 2018, 181, 831–844. [Google Scholar] [CrossRef]
- Reddan, M.C.; Wager, T.D. Modeling Pain Using fMRI: From Regions to Biomarkers. Neurosci. Bull. 2018, 34, 208–215. [Google Scholar] [CrossRef]
- Teixeira, M.; Mancini, C.; Wicht, C.A.; Maestretti, G.; Kuntzer, T.; Cazzoli, D.; Mouthon, M.; Annoni, J.M.; Chabwine, J.N. Beta Electroencephalographic Oscillation Is a Potential GABAergic Biomarker of Chronic Peripheral Neuropathic Pain. Front. Neurosci. 2021, 15, 594536. [Google Scholar] [CrossRef] [PubMed]
- Simis, M.; Pacheco-Barrios, K.; Uygur-Kucukseymen, E.; Castelo-Branco, L.; Battistella, L.R.; Fregni, F. Specific Electroencephalographic Signatures for Pain and Descending Pain Inhibitory System in Spinal Cord Injury. Pain Med. 2021, 23, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Mussigmann, T.; Bardel, B.; Lefaucheur, J.P. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain. A systematic review. Neuroimage 2022, 258, 119351. [Google Scholar] [CrossRef] [PubMed]
- Leocani, L.; Comi, G. Movement-related event-related desynchronization in neuropsychiatric disorders. In Progress in Brain Research; Neuper, C., Klimesch, W., Eds.; Elsevier: Amsterdam, The Netherlands; Volume 159, pp. 351–366.
- Defebvre, L.J.; Derambure, P.; Bourriez, J.L.; Cassim, F.; Guieu, J.D.; Destée, A. Motor programming is more affected in progressive supranuclear palsy than in Parkinson’s disease: A spatiotemporal study of event-related desynchronization. Mov. Disord. 1999, 14, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Leocani, L.; Locatelli, M.; Bellodi, L.; Fornara, C.; Hénin, M.; Magnani, G.; Mennea, S.; Comi, G. Abnormal pattern of cortical activation associated with voluntary movement in obsessive-compulsive disorder: An EEG study. Am. J. Psychiatry 2001, 158, 140–142. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G. Functional brain imaging based on ERD/ERS. Vision Res. 2001, 41, 1257–1260. [Google Scholar] [CrossRef] [PubMed]
- Baliki, M.N.; Geha, P.Y.; Apkarian, A.V.; Chialvo, D.R. Beyond feeling: Chronic pain hurts the brain, disrupting the default-mode network dynamics. J. Neurosci. 2008, 28, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
- Gracely, R.H.; Petzke, F.; Wolf, J.M.; Clauw, D.J. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 2002, 46, 1333–1343. [Google Scholar] [CrossRef] [PubMed]
- Llinás, R.; Urbano, F.J.; Leznik, E.; Ramírez, R.R.; van Marle, H.J. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci. 2005, 28, 325–333. [Google Scholar] [CrossRef]
- Llinás, R.R.; Ribary, U.; Jeanmonod, D.; Kronberg, E.; Mitra, P.P. Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl. Acad. Sci. USA 1999, 96, 15222–15227. [Google Scholar] [CrossRef]
- Teixeira, P.E.P.; Pacheco-Barrios, K.; Uygur-Kucukseymen, E.; Machado, R.M.; Balbuena-Pareja, A.; Giannoni-Luza, S.; Luna-Cuadros, M.A.; Cardenas-Rojas, A.; Gonzalez-Mego, P.; Mejia-Pando, P.F.; et al. Electroencephalography Signatures for Conditioned Pain Modulation and Pain Perception in Nonspecific Chronic Low Back Pain-An Exploratory Study. Pain Med. 2022, 23, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; de Los Angeles, C.; Menon, V. Electrophysiological foundations of the human default-mode network revealed by intracranial-EEG recordings during resting-state and cognition. Neuroimage 2022, 250, 118927. [Google Scholar] [CrossRef] [PubMed]
- Simis, M.; Imamura, M.; Pacheco-Barrios, K.; Marduy, A.; de Melo, P.S.; Mendes, A.J.; Teixeira, P.E.P.; Battistella, L.; Fregni, F. EEG theta and beta bands as brain oscillations for different knee osteoarthritis phenotypes according to disease severity. Sci. Rep. 2022, 12, 1480. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG alpha oscillations: The inhibition–timing hypothesis. Brain Res. Rev. 2007, 53, 63–88. [Google Scholar] [CrossRef] [PubMed]
- Foxe, J.; Snyder, A. The Role of Alpha-Band Brain Oscillations as a Sensory Suppression Mechanism during Selective Attention. Front. Psychol. 2011, 2, 154. [Google Scholar] [CrossRef] [PubMed]
- Benwell, C.S.Y.; London, R.E.; Tagliabue, C.F.; Veniero, D.; Gross, J.; Keitel, C.; Thut, G. Frequency and power of human alpha oscillations drift systematically with time-on-task. NeuroImage 2019, 192, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ma, J.; Zhao, J.; Liu, P.; Cong, F.; Liu, T.; Li, Y.; Sun, L.; Chang, R. Decoding Analysis of Alpha Oscillation Networks on Maintaining Driver Alertness. Entropy 2020, 22, 787. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, L.; Zeng, Y.; Zhao, Q.; Hu, L. Gamma-band oscillations of pain and nociception: A systematic review and meta-analysis of human and rodent studies. Neurosci. Biobehav. Rev. 2023, 146, 105062. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.Y.; Yan, J.Z.; Lai, S.X.; Wei, Q.Q.; Sun, S.R.; Zhang, L.M.; Li, Y.F. Gamma oscillations in the mPFC: A potential predictive biomarker of depression and antidepressant effects. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024, 129, 110893. [Google Scholar] [CrossRef]
- Li, Y.; Cao, D.; Wei, L.; Tang, Y.; Wang, J. Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing. Clin. Neurophysiol. 2015, 126, 2078–2089. [Google Scholar] [CrossRef]
- Siegle, G.J.; Condray, R.; Thase, M.E.; Keshavan, M.; Steinhauer, S.R. Sustained gamma-band EEG following negative words in depression and schizophrenia. Int. J. Psychophysiol. 2010, 75, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Rickham, P.P. Human experimentation. code of ethics of the world medical association. Declaration of Helsinki. Br. Med. J. 1964, 2, 177. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Mean or % | SD |
---|---|---|
Age | 47.94 | 11.42 |
Biological sex (female, %) | 69 (88.46%) | |
Race: | ||
American Indian or Alaska Native | 1 (1.3%) | |
Asian | 2 (2.6%) | |
Black or African American | 8 (10%) | |
White | 57 (73%) | |
More than one race | 7 (8.9%) | |
Unknown or not reported | 3 (3.85%) | |
Duration of fibromyalgia (years) | 11.26 | 8.71 |
Pain level (VAS) | 5.98 | 1.83 |
VAS anxiety | 4.32 | 2.75 |
VAS depression | 3.8 | 2.9 |
VAS sleepiness | 6.12 | 2.65 |
BDI | 16.55 | 8.71 |
PSQI | 12.25 | 4.39 |
QoL | 68.87 | 14.58 |
Band | Frontal (Mean ± SD) | Central (Mean ± SD) | Parietal (Mean ± SD) |
---|---|---|---|
Delta | 14.06 (11.77) | 12.99 (11) | 12.98 (11.62) |
Theta | 11.45 (7.9) | 11.23 (8.08) | 10.94 (11.67) |
Alpha | 62.48 (23.51) | 63.21 (23.51) | 64.23 (21.56) |
Low alpha | 26.30 (11.67) | 25.49 (9.97) | 26.22 (10.96) |
High alpha | 30.42 (14.86) | 31.54 (14.78) | 32.22 (14.98) |
Beta | 10.56 (9.83) | 11.18 (10.25) | 10.46 (8.64) |
Low beta | 6.48 (5.07) | 7 (5.52) | 6.82 (5.13) |
High beta | 4 (5.27) | 4 (5.48) | 3.56 (4.11) |
Gamma | 0.46 (0.90) | 0.44 (0.81) | 0.43 (0.93) |
Low gamma | 0.32 (0.50) | 0.31 (0.46) | 0.29 (0.49) |
High Gamma | 0.14 (0.49) | 0.13 (0.40) | 0.14 (0.46) |
Band | Motor Execution (Mean ± SD) | Motor Observation (Mean ± SD) | Motor Imagery (Mean ± SD) |
---|---|---|---|
Delta | 107.8 (48.7) | 102.8 (40.8) | 105.7 (55.8) |
Theta | 106.0 (47.3) | 94.9 (33.3) | 99.0 (30.2) |
Alpha | 102.7 (23.0) | 93.6 (17.6) | 105.6 (28.4) |
Beta | 99.8 (26.4) | 88.7 (19.1) | 104.0 (27.9) |
Gamma | 100.4 (42.1) | 93.2 (30.2) | 91.0 (27.1) |
Band | Motor Execution (Mean ± SD) | Motor Observation (Mean ± SD) | Motor Imagery (Mean ± SD) |
---|---|---|---|
Delta | 111.8 (48.6) | 102.8 (32.4) | 105.4 (43.8) |
Theta | 119.3 (49.7) | 107.1 (39.7) | 106.3 (43.6) |
Alpha | 120.1 (51.1) | 122.5 (50.7) | 98.6 (14.1) |
Beta | 122.5 (35.7) | 114.9 (27.2) | 98.8 (17.8) |
Gamma | 107.2 (34.9) | 98.3 (28.6) | 95.2 (22.4) |
Variables | Unadjusted Effects Coefficient | Adjusted Effects Coefficent * | ||||||
---|---|---|---|---|---|---|---|---|
Beta coefficient | 95% CI | p-value | R2 | Beta coefficient | 95% CI | p-value | R2 | |
Alpha Central | 0.12 | 0.26 | ||||||
PROMIS fatigue | 0.029 | 0.007 to 0.052 | 0.013 | 0.024 | 0.002 to 0.047 | 0.035 | ||
PSQI | −0.016 | −0.031 to −0.001 | 0.035 | −0.010 | −0.025 to 0.005 | 0.181 | ||
Beta Frontal | 0.20 | |||||||
BPI pain | −0.123 | −0.023 to 0.002 | 0.086 | 0.04 | −0.014 | −0.0273 to −0.0003 | 0.046 | |
Beta Central | 0.24 | |||||||
PROMIS fatigue | −0.011 | −0.021 to −0.001 | 0.028 | 0.24 | −0.009 | −0.018 to −0.0002 | 0.046 | |
Beta Parietal | 0.21 | |||||||
BPI pain | −0.10 | −0.023 to 0.002 | 0.10 | 0.04 | −0.012 | −0.024 to −0.0001 | 0.048 |
Variable | Beta Coefficient * | 95% CI | p | R2 |
---|---|---|---|---|
Delta Frontal ERS | 0.17 | |||
Duration of FMS | 1.81 | 0.29 to 3.33 | 0.020 | |
Delta Central ERS | 0.50 | |||
PROMIS fatigue | 5.82 | 2.80 to 8.85 | <0.000 | |
MEP | −25.28 | −47.70 to −2.85 | 0.028 | |
Duration of FMS | 1.47 | 0.23 to 2.70 | 0.020 | |
Theta Frontal ERS | 0.17 | |||
BPI interference | −7.32 | −14.0 to −0.60 | 0.033 | |
Duration of FMS | 2.70 | 0.82 to 4.57 | 0.006 | |
Theta Central ERS | 0.17 | |||
Duration of FMS | 1.85 | 0.66 to 3.05 | 0.003 | |
Alpha Frontal ERS | 0.17 | |||
TSPS | −13.97 | −23.56 to −4.37 | 0.005 | |
PROMIS fatigue | −6.09 | −11.59 to −0.58 | 0.031 | |
Alpha Central ERS | 0.35 | |||
TSPS | −12.59 | −19.83 to −5.35 | 0.001 | |
PROMIS fatigue | −8.02 | −12.26 to −3.79 | <0.000 | |
Beta Central ERS | 0.14 | |||
PSQI | −3.01 | −5.31 to −0.72 | 0.011 | |
Duration of FMS | 1.21 | 0.10 to 2.34 | 0.033 | |
Gamma Frontal ERS | 0.14 | |||
BDI | 0.81 | 0.40 to 2.61 | 0.008 | |
Gamma Central ERS | 0.076 | |||
BDI | 0.81 | 0.01 to 1.61 | 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camargo, L.; Pacheco-Barrios, K.; Marques, L.M.; Caumo, W.; Fregni, F. Adaptive and Compensatory Neural Signatures in Fibromyalgia: An Analysis of Resting-State and Stimulus-Evoked EEG Oscillations. Biomedicines 2024, 12, 1428. https://doi.org/10.3390/biomedicines12071428
Camargo L, Pacheco-Barrios K, Marques LM, Caumo W, Fregni F. Adaptive and Compensatory Neural Signatures in Fibromyalgia: An Analysis of Resting-State and Stimulus-Evoked EEG Oscillations. Biomedicines. 2024; 12(7):1428. https://doi.org/10.3390/biomedicines12071428
Chicago/Turabian StyleCamargo, Lucas, Kevin Pacheco-Barrios, Lucas M. Marques, Wolnei Caumo, and Felipe Fregni. 2024. "Adaptive and Compensatory Neural Signatures in Fibromyalgia: An Analysis of Resting-State and Stimulus-Evoked EEG Oscillations" Biomedicines 12, no. 7: 1428. https://doi.org/10.3390/biomedicines12071428
APA StyleCamargo, L., Pacheco-Barrios, K., Marques, L. M., Caumo, W., & Fregni, F. (2024). Adaptive and Compensatory Neural Signatures in Fibromyalgia: An Analysis of Resting-State and Stimulus-Evoked EEG Oscillations. Biomedicines, 12(7), 1428. https://doi.org/10.3390/biomedicines12071428