Relationship between Non-Invasive Brain Stimulation and Autonomic Nervous System
Abstract
1. Introduction
2. Stress and HRV
3. Psychological Stress and Autonomic Regulation
4. HRV Reactivity and Psychological Stressors
5. Brain–Heart Communication
6. Non-Invasive Brain Stimulation and HRV
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schmaußer, M.; Hoffmann, S.; Raab, M.; Laborde, S. The Effects of Noninvasive Brain Stimulation on Heart Rate and Heart Rate Variability: A Systematic Review and Meta-Analysis. J. Neurosci. Res. 2022, 100, 1664–1694. [Google Scholar] [CrossRef] [PubMed]
- Baeken, C.; van Beek, V.; Vanderhasselt, M.-A.; Duprat, R.; Klooster, D. Cortical Thickness in the Right Anterior Cingulate Cortex Relates to Clinical Response to Left Prefrontal Accelerated Intermittent Theta Burst Stimulation: An Exploratory Study. Neuromodul. Technol. Neural Interface 2021, 24, 938–949. [Google Scholar] [CrossRef] [PubMed]
- Beda, A.; Simpson, D.M.; Carvalho, N.C.; Carvalho, A.R.S. Low-frequency Heart Rate Variability Is Related to the Breath-to-breath Variability in the Respiratory Pattern. Psychophysiology 2014, 51, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Bär, K.-J.; Herbsleb, M.; Schumann, A.; de la Cruz, F.; Gabriel, H.W.; Wagner, G. Hippocampal-Brainstem Connectivity Associated with Vagal Modulation after an Intense Exercise Intervention in Healthy Men. Front. Neurosci. 2016, 10, 145. [Google Scholar] [CrossRef]
- Berger, C.; Domes, G.; Balschat, J.; Thome, J.; Höppner, J. Effects of Prefrontal RTMS on Autonomic Reactions to Affective Pictures. J. Neural Transm. 2017, 124, 139–152. [Google Scholar] [CrossRef]
- Carnevale, L.; Maffei, A.; Landolfi, A.; Grillea, G.; Carnevale, D.; Lembo, G. Brain Functional Magnetic Resonance Imaging Highlights Altered Connections and Functional Networks in Patients With Hypertension. Hypertension 2020, 76, 1480–1490. [Google Scholar] [CrossRef] [PubMed]
- Chouchou, F.; Mauguière, F.; Vallayer, O.; Catenoix, H.; Isnard, J.; Montavont, A.; Jung, J.; Pichot, V.; Rheims, S.; Mazzola, L. How the Insula Speaks to the Heart: Cardiac Responses to Insular Stimulation in Humans. Hum. Brain Mapp. 2019, 40, 2611–2622. [Google Scholar] [CrossRef]
- Chang, C.; Metzger, C.D.; Glover, G.H.; Duyn, J.H.; Heinze, H.-J.; Walter, M. Association between Heart Rate Variability and Fluctuations in Resting-State Functional Connectivity. Neuroimage 2013, 68, 93–104. [Google Scholar] [CrossRef]
- Dayan, E.; Censor, N.; Buch, E.R.; Sandrini, M.; Cohen, L.G. Noninvasive Brain Stimulation: From Physiology to Network Dynamics and Back. Nat. Neurosci. 2013, 16, 838–844. [Google Scholar] [CrossRef]
- Storniolo, J.L.; Chaulan, M.; Esposti, R.; Cavallari, P. A Single Session of Whole-Body Cryotherapy Boosts Maximal Cycling Performance and Enhances Vagal Drive at Rest. Exp. Brain Res. 2023, 241, 383–393. [Google Scholar] [CrossRef]
- Dericioglu, N.; Demirci, M.; Cataltepe, O.; Akalan, N.; Saygi, S. Heart Rate Variability Remains Reduced and Sympathetic Tone Elevated after Temporal Lobe Epilepsy Surgery. Seizure 2013, 22, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Nardone, R.; Sebastianelli, L.; Versace, V.; Brigo, F.; Golaszewski, S.; Pucks-Faes, E.; Saltuari, L.; Trinka, E. Effects of Repetitive Transcranial Magnetic Stimulation in Subjects with Sleep Disorders. Sleep. Med. 2020, 71, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 238557. [Google Scholar] [CrossRef] [PubMed]
- Moscatelli, F.; Messina, G.; Valenzano, A.; Triggiani, A.I.; Sessa, F.; Carotenuto, M.; Tartaglia, N.; Ambrosi, A.; Cibelli, G.; Monda, V. Effects of twelve weeks’ aerobic training on motor cortex excitability. J. Sports Med. Phys. Fit. 2020, 60, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Reisert, M.; Weiller, C.; Hosp, J.A. Displaying the Autonomic Processing Network in Humans—A Global Tractography Approach. Neuroimage 2021, 231, 117852. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Åhs, F.; Fredrikson, M.; Sollers, J.J.; Wager, T.D. A Meta-Analysis of Heart Rate Variability and Neuroimaging Studies: Implications for Heart Rate Variability as a Marker of Stress and Health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Beissner, F.; Meissner, K.; Bar, K.-J.; Napadow, V. The Autonomic Brain: An Activation Likelihood Estimation Meta-Analysis for Central Processing of Autonomic Function. J. Neurosci. 2013, 33, 10503–10511. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H.D.; Eccles, J.; Garfinkel, S.N. Interaction between Cognition, Emotion, and the Autonomic Nervous System. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 59–77. [Google Scholar]
- Sclocco, R.; Beissner, F.; Desbordes, G.; Polimeni, J.R.; Wald, L.L.; Kettner, N.W.; Kim, J.; Garcia, R.G.; Renvall, V.; Bianchi, A.M.; et al. Neuroimaging Brainstem Circuitry Supporting Cardiovagal Response to Pain: A Combined Heart Rate Variability/Ultrahigh-Field (7 T) Functional Magnetic Resonance Imaging Study. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150189. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Lane, R.D. The Role of Vagal Function in the Risk for Cardiovascular Disease and Mortality. Biol. Psychol. 2007, 74, 224–242. [Google Scholar] [CrossRef]
- Thayer, J.F.; Hansen, A.L.; Saus-Rose, E.; Johnsen, B.H. Heart Rate Variability, Prefrontal Neural Function, and Cognitive Performance: The Neurovisceral Integration Perspective on Self-Regulation, Adaptation, and Health. Ann. Behav. Med. 2009, 37, 141–153. [Google Scholar] [CrossRef]
- Beynel, L.; Powers, J.P.; Appelbaum, L.G. Effects of Repetitive Transcranial Magnetic Stimulation on Resting-State Connectivity: A Systematic Review. Neuroimage 2020, 211, 116596. [Google Scholar] [CrossRef]
- Ribatti, D. Hans Selye and His Studies on the Role of Mast Cells in Calciphylaxis and Calcergy. Inflamm. Res. 2019, 68, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Muthumuni, D.; Kosowan, L.; Katz, A.; Wong, S.; Richardson, J.D.; Queenan, J.; Zafari, H.; Singer, A.; Williamson, T.; Zulkernine, F.; et al. Characterizing Posttraumatic Stress Disorder in Primary Care Using Electronic Medical Records: A Retrospective Cohort Study. In Proceedings of the Behavioral, Psychosocial, and Mental Illness; American Academy of Family Physicians: Leawood, KS, USA, 2022; p. 2815. [Google Scholar]
- Moscatelli, F.; Messina, A.; Valenzano, A.; Monda, V.; Salerno, M.; Sessa, F.; Torre, E.L.; Tafuri, D.; Scarinci, A.; Perrella, M.; et al. Transcranial magnetic stimulation as a tool to investigate motor cortex excitability in sport. Brain Sci. 2021, 11, 432. [Google Scholar] [CrossRef]
- Tiwari, R.; Kumar, R.; Malik, S.; Raj, T.; Kumar, P. Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Curr. Cardiol. Rev. 2021, 17, e160721189770. [Google Scholar] [CrossRef] [PubMed]
- Rajendra Acharya, U.; Paul Joseph, K.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart Rate Variability: A Review. Med. Biol. Eng. Comput. 2006, 44, 1031–1051. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.H.; Silverman, M.N.; Sternberg, E.M. Evaluation of Stress Systems by Applying Noninvasive Methodologies: Measurements of Neuroimmune Biomarkers in the Sweat, Heart Rate Variability and Salivary Cortisol. Neuroimmunomodulation 2010, 17, 205–208. [Google Scholar] [CrossRef]
- Rotenberg, S.; McGrath, J.J. Inter-Relation between Autonomic and HPA Axis Activity in Children and Adolescents. Biol. Psychol. 2016, 117, 16–25. [Google Scholar] [CrossRef]
- Porges, S.W. Cardiac Vagal Tone: A Physiological Index of Stress. Neurosci. Biobehav. Rev. 1995, 19, 225–233. [Google Scholar] [CrossRef]
- Swiergiel, A.H.; Li, Y.; Wei, Z.Y.; Dunn, A.J. Effects of Chlordiazepoxide on Footshock- and Corticotropin-Releasing Factor-Induced Increases in Cortical and Hypothalamic Norepinephrine Secretion in Rats. Neurochem. Int. 2008, 52, 1220–1225. [Google Scholar] [CrossRef]
- Moscatelli, F.; Monda, A.; Messina, A.; Monda, M.; Monda, V.; Villano, I.; De Maria, A.; Nicola, M.; Marsala, G.; de Stefano, M.I.; et al. Evaluation of Orexin-A Salivary Levels and Its Correlation with Attention After Non-Invasive Brain Stimulation in Female Volleyball Players. Sports Med. Open 2024, 10, 32. [Google Scholar] [CrossRef]
- Kim, H.G.; Cheon, E.J.; Bai, D.S.; Lee, Y.H.; Koo, B.H. Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investig. 2018, 15, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Dimitriev, D.A.; Saperova, E.V. Heart rate variability and blood pressure during mental stress. Ross. Fiziol. Zhurnal Im. Sechenova 2015, 101, 98–107. [Google Scholar]
- Moscatelli, F.; Toto, G.A.; Valenzano, A.; Cibelli, G.; Monda, V.; Limone, P.; Mancini, N.; Messina, A.; Marsala, G.; Messina, G.; et al. High Frequencies (HF) Repetitive Transcranial Magnetic Stimulation (RTMS) Increase Motor Coordination Performances in Volleyball Players. BMC Neurosci. 2023, 24, 30. [Google Scholar] [CrossRef] [PubMed]
- Moscatelli, F.; Monda, V.; Limone, P.; Marsala, G.; Mancini, N.; Monda, M.; Messina, A.; De Maria, A.; Scarinci, A.; Monda, A.; et al. Acute Non Invasive Brain Stimulation Improves Performances in Volleyball Players. Physiol. Behav. 2023, 271, 114356. [Google Scholar] [CrossRef] [PubMed]
- Shivkumar, K.; Ardell, J.L. Cardiac Autonomic Control in Health and Disease. J. Physiol. 2016, 594, 3851–3852. [Google Scholar] [CrossRef] [PubMed]
- Francavilla, V.C.; Genovesi, F.; Asmundo, A.; Di Nunno, N.R.; Ambrosi, A.; Tartaglia, N.; Tafuri, D.; Monda, V.; Monda, M.; Messina, A.; et al. Fascia and movement: The primary link in the prevention of accidents in soccer. Revision and models of intervention [Fascia e movimento: L’anello principale nella prevenzione degli infortuni nel calcio. Revisione emodelli di intervento]. Med. Sport 2020, 73, 291–301. [Google Scholar] [CrossRef]
- Sloan, R.P.; Shapiro, P.A.; Bagiella, E.; Boni, S.M.; Paik, M.; Bigger, J.T.; Steinman, R.C.; Gorman, J.M. Effect of Mental Stress throughout the Day on Cardiac Autonomic Control. Biol. Psychol. 1994, 37, 89–99. [Google Scholar] [CrossRef]
- Mantantzis, K.; Schlaghecken, F.; Maylor, E.A. Heart Rate Variability Predicts Older Adults’ Avoidance of Negativity. J. Gerontol. Ser. B 2020, 75, 1679–1688. [Google Scholar] [CrossRef] [PubMed]
- Sakaki, M.; Yoo, H.J.; Nga, L.; Lee, T.-H.; Thayer, J.F.; Mather, M. Heart Rate Variability Is Associated with Amygdala Functional Connectivity with MPFC across Younger and Older Adults. Neuroimage 2016, 139, 44–52. [Google Scholar] [CrossRef]
- Van Bockstaele, E.; Valentino, R. Opposing Regulation of the Locus Coeruleus by Corticotropin-Releasing Factor and Opioids. Psychopharmacology 2001, 158, 331–342. [Google Scholar] [CrossRef]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J 2021, 42, 373–498. [Google Scholar] [CrossRef] [PubMed]
- Ditto, B.; France, C. Carotid Baroreflex Sensitivity at Rest and during Psychological Stress in Offspring of Hypertensives and Non-Twin Sibling Pairs. Psychosom. Med. 1990, 52, 610–620. [Google Scholar] [CrossRef] [PubMed]
- Berntson, G.G.; Cacioppo, J.T.; Binkley, P.F.; Uchino, B.N.; Quigley, K.S.; Fieldstone, A. Autonomic Cardiac Control. III. Psychological Stress and Cardiac Response in Autonomic Space as Revealed by Pharmacological Blockades. Psychophysiology 1994, 31, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Santarnecchi, E.; Feurra, M.; Barneschi, F.; Acampa, M.; Bianco, G.; Cioncoloni, D.; Rossi, A.; Rossi, S. Time Course of Corticospinal Excitability and Autonomic Function Interplay during and Following Monopolar TDCS. Front. Psychiatry 2014, 5, 86. [Google Scholar] [CrossRef]
- Buharin, V.E.; Butler, A.J.; Shinohara, M. Motor Cortical Disinhibition with Baroreceptor Unloading Induced by Orthostatic Stress. J. Neurophysiol. 2014, 111, 2656–2664. [Google Scholar] [CrossRef]
Variable | Description | |
---|---|---|
SSD | ms | Standard deviation of all NN intervals |
SDANN | ms | Standard deviation of the averages of NN intervals in all 5 min segments of the entire recording |
RMSSD | ms | The square root of the mean of the sum of the squares of differences between adjacent NN intervals |
SDNN index | ms | Mean of the standard deviations of all NN intervals for all 5 min segments of the entire recording |
SDSD | ms | Standard deviation of differences between adjacent NN intervals |
pNN50 | % | NN50 count divided by the total number of all NN intervals |
Variable | Description | |
---|---|---|
VLF | ms2 | Power in a VLF range |
LF | ms2 | Power in a LF range |
LF norm | ms2 | LF power in normalized units of LF/(total power-VLF) × 100 |
HF | ms2 | Power in a HF range |
HF norm | nu | HF power in normalized units of HF/(total power-VLF) × 100 |
LF/HF | Ratio of LF (ms2)/HF (ms2) | |
Total Power | Variance of all NN intervals |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messina, G.; Monda, A.; Messina, A.; Di Maio, G.; Monda, V.; Limone, P.; Dipace, A.; Monda, M.; Polito, R.; Moscatelli, F. Relationship between Non-Invasive Brain Stimulation and Autonomic Nervous System. Biomedicines 2024, 12, 972. https://doi.org/10.3390/biomedicines12050972
Messina G, Monda A, Messina A, Di Maio G, Monda V, Limone P, Dipace A, Monda M, Polito R, Moscatelli F. Relationship between Non-Invasive Brain Stimulation and Autonomic Nervous System. Biomedicines. 2024; 12(5):972. https://doi.org/10.3390/biomedicines12050972
Chicago/Turabian StyleMessina, Giovanni, Antonietta Monda, Antonietta Messina, Girolamo Di Maio, Vincenzo Monda, Pierpaolo Limone, Anna Dipace, Marcellino Monda, Rita Polito, and Fiorenzo Moscatelli. 2024. "Relationship between Non-Invasive Brain Stimulation and Autonomic Nervous System" Biomedicines 12, no. 5: 972. https://doi.org/10.3390/biomedicines12050972
APA StyleMessina, G., Monda, A., Messina, A., Di Maio, G., Monda, V., Limone, P., Dipace, A., Monda, M., Polito, R., & Moscatelli, F. (2024). Relationship between Non-Invasive Brain Stimulation and Autonomic Nervous System. Biomedicines, 12(5), 972. https://doi.org/10.3390/biomedicines12050972