Time- and Region-Specific Selection of Reference Genes in the Rat Brain in the Lithium–Pilocarpine Model of Acquired Temporal Lobe Epilepsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and the Lithium–Pilocarpine Model of Temporal Lobe Epilepsy
2.2. Reverse Transcription Followed by Quantitative PCR (RT-qPCR)
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Amygdala | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Delta CT | BestKeeper | NormFinder | GeNorm | Comprehensive Ranking | ||||||
Rank | Gene | Average of STDV | Gene | Std Dev | Gene | Stability Value | Gene | Stability Value | Gene | Geomean of Ranking Values |
1 | Pgk1 | 0.32 | Ppia | 0.19 | Pgk1 | 0.089 | Hprt1 | Ywhaz | 0.215 | Pgk1 | 1.73 |
2 | Ywhaz | 0.35 | Rpl13a | 0.21 | Ywhaz | 0.203 | Ywhaz | 2.11 | ||
3 | Hprt1 | 0.35 | Pgk1 | 0.24 | Hprt1 | 0.216 | Pgk1 | 0.228 | Hprt1 | 2.45 |
4 | Ppia | 0.36 | Hprt1 | 0.31 | Ppia | 0.228 | Ppia | 0.268 | Ppia | 2.83 |
5 | Rpl13a | 0.42 | Ywhaz | 0.33 | Rpl13a | 0.328 | Rpl13a | 0.31 | Rpl13a | 3.98 |
6 | Gapdh | 0.56 | Gapdh | 0.44 | Gapdh | 0.512 | Gapdh | 0.392 | Gapdh | 6 |
Medial Prefrontal Cortex | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Delta CT | BestKeeper | NormFinder | GeNorm | Comprehensive Ranking | ||||||
Rank | Gene | Average of STDV | Gene | Std Dev | Gene | Stability Value | Gene | Stability Value | Gene | Geomean of Ranking Values |
1 | Pgk1 | 0.36 | Rpl13a | 0.23 | Pgk1 | 0.122 | Hprt1 | Ywhaz | 0.175 | Pgk1 | 1.57 |
2 | Ywhaz | 0.37 | Pgk1 | 0.24 | Ywhaz | 0.165 | Ywhaz | 2 | ||
3 | Hprt1 | 0.39 | Ppia | 0.25 | Hprt1 | 0.237 | Pgk1 | 0.193 | Hprt1 | 2.59 |
4 | Ppia | 0.43 | Ywhaz | 0.32 | Ppia | 0.289 | Ppia | 0.299 | Rpl13a | 3.34 |
5 | Rpl13a | 0.49 | Hprt1 | 0.37 | Rpl13a | 0.411 | Rpl13a | 0.351 | Ppia | 3.72 |
6 | Gapdh | 0.63 | Gapdh | 0.52 | Gapdh | 0.58 | Gapdh | 0.445 | Gapdh | 6 |
Striatum | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Delta CT | BestKeeper | NormFinder | GeNorm | Comprehensive Ranking | ||||||
Rank | Gene | Average of STDV | Gene | Std Dev | Gene | Stability Value | Gene | Stability Value | Gene | Geomean of Ranking Values |
1 | Ywhaz | 0.33 | Rpl13a | 0.27 | Pgk1 | 0.154 | Hprt1 | Ywhaz | 0.164 | Ywhaz | 1.68 |
2 | Pgk1 | 0.34 | Pgk1 | 0.29 | Ywhaz | 0.164 | Pgk1 | 1.86 | ||
3 | Hprt1 | 0.35 | Ppia | 0.36 | Hprt1 | 0.231 | Pgk1 | 0.232 | Hprt1 | 2.59 |
4 | Rpl13a | 0.39 | Ywhaz | 0.4 | Rpl13a | 0.289 | Ppia | 0.312 | Rpl13 | 2.99 |
5 | Ppia | 0.4 | Hprt1 | 0.44 | Ppia | 0.315 | Rpl13a | 0.327 | Ppia | 4.16 |
6 | Gapdh | 0.5 | Gapdh | 0.48 | Gapdh | 0.446 | Gapdh | 0.385 | Gapdh | 6 |
Temporal Cortex | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Delta CT | BestKeeper | NormFinder | GeNorm | Comprehensive Ranking | ||||||
Rank | Gene | Average of STDV | Gene | Std Dev | Gene | Stability Value | Gene | Stability Value | Gene | Geomean of Ranking Values |
1 | Ywhaz | 1.36 | Pgk1 | 0.45 | Ywhaz | 0.661 | Hprt1 | Ywhaz | 0.239 | Ywhaz | 1.32 |
2 | Pgk1 | 1.39 | Hprt1 | 0.5 | Hprt1 | 0.74 | Hprt1 | 1.86 | ||
3 | Hprt1 | 1.41 | Ywhaz | 0.53 | Pgk1 | 0.776 | Pgk1 | 0.318 | Pgk1 | 2.06 |
4 | Gapdh | 1.73 | Ppia | 0.67 | Gapdh | 1.284 | Gapdh | 0.636 | Gapdh | 4.23 |
5 | Ppia | 2.29 | Gapdh | 0.72 | Ppia | 1.783 | Ppia | 1.332 | Ppia | 4.73 |
6 | Rpl13a | 2.86 | Rpl13a | 1 | Rpl13a | 2.674 | Rpl13a | 1.841 | Rpl13a | 6 |
Dorsal Hippocampus | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Delta CT | BestKeeper | NormFinder | GeNorm | Comprehensive Ranking | ||||||
Rank | Gene | Average of STDV | Gene | Std Dev | Gene | Stability Value | Gene | Stability Value | Gene | Geomean of Ranking Values |
1 | Pgk1 | 0.26 | Ppia | 0.2 | Pgk1 | 0.115 | Hprt1 | Ywhaz | 0.134 | Pgk1 | 1.57 |
2 | Ywhaz | 0.27 | Pgk1 | 0.2 | Ppia | 0.153 | Ppia | 2.21 | ||
3 | Ppia | 0.28 | Gapdh | 0.21 | Ywhaz | 0.18 | Pgk1 | 0.168 | Ywhaz | 2.34 |
4 | Hprt1 | 0.29 | Rpl13a | 0.25 | Gapdh | 0.22 | Ppia | 0.218 | Hprt1 | 3.31 |
5 | Gapdh | 0.32 | Ywhaz | 0.29 | Hprt1 | 0.225 | Gapdh | 0.252 | Gapdh | 4.16 |
6 | Rpl13a | 0.41 | Hprt1 | 0.3 | Rpl13a | 0.373 | Rpl13a | 0.305 | Rpl13a | 5.42 |
Ventral Hippocampus | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Delta CT | BestKeeper | NormFinder | GeNorm | Comprehensive Ranking | ||||||
Rank | Gene | Average of STDV | Gene | Std Dev | Gene | Stability Value | Gene | Stability Value | Gene | Geomean of Ranking Values |
1 | Pgk1 | 0.41 | Ppia | 0.32 | Pgk1 | 0.089 | Hprt1 | Ywhaz | 0.203 | Pgk1 | 1.73 |
2 | Ywhaz | 0.46 | Rpl13 | 0.33 | Gapdh | 0.297 | Ywhaz | 2.51 | ||
3 | Hprt1 | 0.48 | Gapdh | 0.34 | Ppia | 0.303 | Pgk1 | 0.302 | Ppia | 2.94 |
4 | Gapdh | 0.48 | Pgk1 | 0.34 | Ywhaz | 0.333 | Gapdh | 0.356 | Hprt1 | 3.08 |
5 | Ppia | 0.49 | Ywhaz | 0.49 | Hprt1 | 0.352 | Ppia | 0.399 | Gapdh | 3.36 |
6 | Rpl13a | 0.71 | Hprt1 | 0.5 | Rpl13 | 0.66 | Rpl13a | 0.504 | Rpl13a | 4.56 |
References
- Banerjee, P.N.; Filippi, D.; Allen Hauser, W. The descriptive epidemiology of epilepsy—A review. Epilepsy Res. 2009, 85, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Laxer, K.D.; Trinka, E.; Hirsch, L.J.; Cendes, F.; Langfitt, J.; Delanty, N.; Resnick, T.; Benbadis, S.R. The consequences of refractory epilepsy and its treatment. Epilepsy Behav. 2014, 37, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W. Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs. Neurochem. Res. 2017, 42, 1873–1888. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, M.; Biagini, G.; de Curtis, M.; Gnatkovsky, V.; Pitsch, J.; Wang, S.; Avoli, M. The pilocarpine model of mesial temporal lobe epilepsy: Over one decade later, with more rodent species and new investigative approaches. Neurosci. Biobehav. Rev. 2021, 130, 274–291. [Google Scholar] [CrossRef] [PubMed]
- Kandratavicius, L.; Alves Balista, P.; Lopes-Aguiar, C.; Ruggiero, R.N.; Umeoka, E.H.; Garcia-Cairasco, N.; Bueno-Junior, L.S.; Leite, J.P. Animal models of epilepsy: Use and limitations. Neuropsychiatr. Dis. Treat. 2014, 10, 1693–1705. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Chapman, J.R.; Waldenström, J. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies. PLoS ONE 2015, 10, e0141853. [Google Scholar] [CrossRef]
- Schwarz, A.P.; Dyomina, A.V.; Zakharova, M.V.; Kovalenko, A.A.; Gryaznova, M.O.; Ischenko, A.M.; Zaitsev, A.V. The Reference Gene Validation in the Brain of Rats during Antioxidant and Anti-Inflammatory Treatment in the Lithium-Pilocarpine Model of Temporal Epilepsy. J. Evol. Biochem. Physiol. 2022, 58, 930–940. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.; Ren, J.; Wang, P.; Zhang, J.; Wei, Z.; Tian, Y. Validation of reference genes for quantitative real-time PCR in valproic acid rat models of autism. Mol. Biol. Rep. 2016, 43, 837–847. [Google Scholar] [CrossRef]
- Sadangi, C.; Rosenow, F.; Norwood, B.A. Validation of reference genes for quantitative gene expression analysis in experimental epilepsy. J. Neurosci. Res. 2017, 95, 2357–2366. [Google Scholar] [CrossRef]
- Schwarz, A.P.; Malygina, D.A.; Kovalenko, A.A.; Trofimov, A.N.; Zaitsev, A.V. Multiplex qPCR assay for assessment of reference gene expression stability in rat tissues/samples. Mol. Cell. Probes 2020, 53, 101611. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, A.P.; Nikitina, V.A.; Krytskaya, D.U.; Shcherbakova, K.P.; Trofimov, A.N. Reference gene expression stability within the rat brain under mild intermittent ketosis induced by supplementation with medium-chain triglycerides. PLoS ONE 2023, 18, e0273224. [Google Scholar] [CrossRef]
- Canto, A.M.; Godoi, A.B.; Matos, A.H.B.; Geraldis, J.C.; Rogerio, F.; Alvim, M.K.M.; Yasuda, C.L.; Ghizoni, E.; Tedeschi, H.; Veiga, D.F.T.; et al. Benchmarking the proteomic profile of animal models of mesial temporal epilepsy. Ann. Clin. Transl. Neurol. 2022, 9, 454–467. [Google Scholar] [CrossRef] [PubMed]
- Pires, G.; Leitner, D.; Drummond, E.; Kanshin, E.; Nayak, S.; Askenazi, M.; Faustin, A.; Friedman, D.; Debure, L.; Ueberheide, B.; et al. Proteomic differences in the hippocampus and cortex of epilepsy brain tissue. Brain Commun. 2021, 3, fcab021. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, L.; Rizvanov, A.A.; Salafutdinov, I.I.; Dabirmanesh, B.; Sayyah, M.; Fathollahi, Y.; Khajeh, K. Hippocampal asymmetry: Differences in the left and right hippocampus proteome in the rat model of temporal lobe epilepsy. J. Proteomics 2017, 154, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Kovalenko, A.A.; Zakharova, M.V.; Schwarz, A.P.; Dyomina, A.V.; Zubareva, O.E.; Zaitsev, A.V. Changes in Metabotropic Glutamate Receptor Gene Expression in Rat Brain in a Lithium-Pilocarpine Model of Temporal Lobe Epilepsy. Int. J. Mol. Sci. 2022, 23, 2752. [Google Scholar] [CrossRef] [PubMed]
- Racine, R.J. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 1972, 32, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Dyomina, A.V.; Zubareva, O.E.; Smolensky, I.V.; Vasilev, D.S.; Zakharova, M.V.; Kovalenko, A.A.; Schwarz, A.P.; Ischenko, A.M.; Zaitsev, A.V. Anakinra Reduces Epileptogenesis, Provides Neuroprotection, and Attenuates Behavioral Impairments in Rats in the Lithium-Pilocarpine Model of Epilepsy. Pharmaceuticals 2020, 13, 340. [Google Scholar] [CrossRef]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Xie, F.; Wang, J.; Zhang, B. RefFinder: A web-based tool for comprehensively analyzing and identifying reference genes. Funct. Integr. Genomics 2023, 23, 125. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, RESEARCH0034. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Rektor, I.; Kuba, R.; Brázdil, M.; Chrastina, J. Do the basal ganglia inhibit seizure activity in temporal lobe epilepsy? Epilepsy Behav. 2012, 25, 56–59. [Google Scholar] [CrossRef]
- Gao, Y.; Hong, Y.; Huang, L.; Zheng, S.; Zhang, H.; Wang, S.; Yao, Y.; Zhao, Y.; Zhu, L.; Xu, Q.; et al. β2-microglobulin functions as an endogenous NMDAR antagonist to impair synaptic function. Cell 2023, 186, 1026–1038.e20. [Google Scholar] [CrossRef]
- Schwarz, A.P.; Kovalenko, A.A.; Malygina, D.A.; Postnikova, T.Y.; Zubareva, O.E.; Zaitsev, A.V. Reference Gene Validation in the Brain Regions of Young Rats after Pentylenetetrazole-Induced Seizures. Biomedicines 2020, 8, 239. [Google Scholar] [CrossRef]
- Stassen, Q.E.M.; Riemers, F.M.; Reijmerink, H.; Leegwater, P.A.J.; Penning, L.C. Reference genes for reverse transcription quantitative PCR in canine brain tissue. BMC Res. Notes 2015, 8, 761. [Google Scholar] [CrossRef]
- Gan, Y.; Ye, F.; He, X.X. The role of YWHAZ in cancer: A maze of opportunities and challenges. J. Cancer 2020, 11, 2252–2264. [Google Scholar] [CrossRef]
- Aroniadou-Anderjaska, V.; Fritsch, B.; Qashu, F.; Braga, M.F.M. Pathology and pathophysiology of the amygdala in epileptogenesis and epilepsy. Epilepsy Res. 2008, 78, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Fanselow, M.S.; Dong, H.-W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 2010, 65, 7–19. [Google Scholar] [CrossRef] [PubMed]
Gene | B2m | Sdha | Actb | Gapdh | Rpl13a | Ppia | Hprt1 | |
---|---|---|---|---|---|---|---|---|
Brain Region | ||||||||
Temporal Cortex | ↑ 3 d | ↑ 3 d | ↑ 3 d | * | ||||
↑ 7 d | ||||||||
Ventral Hippocampus | ↑ 3 d | ↑ 3 d | ↑ 3 d | ↑ 3 d | * | ↓ 3 d | ||
↑ 7 d | ↓ 7 d | ↑ 7 d | ||||||
Dorsal Hippocampus | ↑ 3 d | ↑ 3 d | ↑ 3 d | ↑ 3 d | * | ↓ 3 d | ||
↑ 7 d | ↑ 7 d | ↑ 7 d | ↑ 7 d | |||||
Striatum | ↑ 3 d | ↑ 3 d | * | |||||
Amygdala | ↑ 3 d | ↑ 3 d | ↑ 3 d | * | ||||
↑ 7 d | ↑ 7 d | ↑ 7 d | ||||||
↑ 60 d | ||||||||
Medial Prefrontal Cortex | ↑ 3 d | ↑ 3 d | ↑ 3 d | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwarz, A.P.; Zakharova, M.V.; Kovalenko, A.A.; Dyomina, A.V.; Zubareva, O.E.; Zaitsev, A.V. Time- and Region-Specific Selection of Reference Genes in the Rat Brain in the Lithium–Pilocarpine Model of Acquired Temporal Lobe Epilepsy. Biomedicines 2024, 12, 1100. https://doi.org/10.3390/biomedicines12051100
Schwarz AP, Zakharova MV, Kovalenko AA, Dyomina AV, Zubareva OE, Zaitsev AV. Time- and Region-Specific Selection of Reference Genes in the Rat Brain in the Lithium–Pilocarpine Model of Acquired Temporal Lobe Epilepsy. Biomedicines. 2024; 12(5):1100. https://doi.org/10.3390/biomedicines12051100
Chicago/Turabian StyleSchwarz, Alexander P., Maria V. Zakharova, Anna A. Kovalenko, Alexandra V. Dyomina, Olga E. Zubareva, and Aleksey V. Zaitsev. 2024. "Time- and Region-Specific Selection of Reference Genes in the Rat Brain in the Lithium–Pilocarpine Model of Acquired Temporal Lobe Epilepsy" Biomedicines 12, no. 5: 1100. https://doi.org/10.3390/biomedicines12051100
APA StyleSchwarz, A. P., Zakharova, M. V., Kovalenko, A. A., Dyomina, A. V., Zubareva, O. E., & Zaitsev, A. V. (2024). Time- and Region-Specific Selection of Reference Genes in the Rat Brain in the Lithium–Pilocarpine Model of Acquired Temporal Lobe Epilepsy. Biomedicines, 12(5), 1100. https://doi.org/10.3390/biomedicines12051100