The Pathway-Selective Dependence of Nitric Oxide for Long-Term Potentiation in the Anterior Cingulate Cortex of Adult Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Drugs
2.3. Brain Slices Preparation
2.4. MED64 Recording
2.5. Whole-Cell Patch-Clamp Recording
2.6. Statistical Analysis
3. Results
3.1. Low-Frequency Stimulation Induces Synaptic Potentiation in the ACC
3.2. The LFS-Induced Synaptic Potentiation in the ACC Is Induced through the Corpus Callosum
3.3. The Synaptic Potentiation of ACC-ACC Is Dependent on the NMDA Receptor
3.4. Nitric Oxide Is Critical for the Synaptic Potentiation of the ACC-ACC Connection
3.5. NO Participates in the Synaptic Potentiation between ACC and ACC via the sGC Signaling Pathway
3.6. NO Is Not Required for homo-LTP within the ACC
4. Discussion
4.1. LFS-Induced Synaptic Potentiation
4.2. ACC-ACC Potentiation vs. Pre-LTP in the ACC
4.3. NO Is Required for the LFS-Induced ACC-ACC Potentiation but Not for the TBS-Induced homo-LTP in the ACC
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bliss, T.V.; Collingridge, G.L.; Kaang, B.K.; Zhuo, M. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat. Rev. Neurosci. 2016, 17, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Bliss, T.V.; Collingridge, G.L. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 1993, 361, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Maren, S. Synaptic mechanisms of associative memory in the amygdala. Neuron 2005, 47, 783–786. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, M. Cortical excitation and chronic pain. Trends Neurosci. 2008, 31, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Koga, K.; Descalzi, G.; Chen, T.; Ko, H.G.; Lu, J.; Li, S.; Son, J.; Kim, T.; Kwak, C.; Huganir, R.L.; et al. Coexistence of two forms of LTP in ACC provides a synaptic mechanism for the interactions between anxiety and chronic pain. Neuron 2015, 85, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.H.; Errington, M.L.; Lynch, M.A.; Bliss, T.V. Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 1989, 341, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Schuman, E.M.; Madison, D.V. A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 1991, 254, 1503–1506. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.H.; Li, Y.G.; Nayak, A.; Errington, M.L.; Murphy, K.P.; Bliss, T.V. The suppression of long-term potentiation in rat hippocampus by inhibitors of nitric oxide synthase is temperature and age dependent. Neuron 1993, 11, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, M.; Small, S.A.; Kandel, E.R.; Hawkins, R.D. Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science 1993, 260, 1946–1950. [Google Scholar] [CrossRef]
- Zhuo, M.; Hu, Y.; Schultz, C.; Kandel, E.R.; Hawkins, R.D. Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation. Nature 1994, 368, 635–639. [Google Scholar] [CrossRef]
- Boulton, C.L.; Southam, E.; Garthwaite, J. Nitric oxide-dependent long-term potentiation is blocked by a specific inhibitor of soluble guanylyl cyclase. Neuroscience 1995, 69, 699–703. [Google Scholar] [CrossRef] [PubMed]
- Garthwaite, J. Concepts of neural nitric oxide-mediated transmission. Eur. J. Neurosci. 2008, 27, 2783–2802. [Google Scholar] [CrossRef] [PubMed]
- Vogt, B.A. Pain and emotion interactions in subregions of the cingulate gyrus. Nat. Rev. Neurosci. 2005, 6, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Xue, M.; Wu, F.; Fan, K.; Chen, Q.Y.; Xu, F.; Li, X.H.; Bi, G.Q.; Lu, J.S.; Zhuo, M. Whole-brain mapping of efferent projections of the anterior cingulate cortex in adult male mice. Mol. Pain. 2022, 18, 17448069221094529. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Shi, W.; Chen, Q.Y.; Hao, S.; Miao, H.H.; Miao, Z.; Xu, F.; Bi, G.Q.; Zhuo, M. Activation of the glutamatergic cingulate cortical-cortical connection facilitates pain in adult mice. Commun. Biol. 2023, 6, 1247. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Bian, X.L.; Cai, C.Y.; Chen, C.; Zhou, Y.; Lin, Y.H.; Tao, Y.; Wu, H.Y.; Chang, L.; Luo, C.X.; et al. Uncoupling nNOS-PSD-95 in the ACC can inhibit contextual fear generalization. Biochem. Biophys. Res. Commun. 2019, 513, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.F.; Qi, X.R.; Zhao, J.; Balesar, R.; Bao, A.M.; Swaab, D.F. Decreased NOS1 expression in the anterior cingulate cortex in depression. Cereb. Cortex 2013, 23, 2956–2964. [Google Scholar] [CrossRef]
- Peng, Z.C.; Pietra, C.; Sbarbati, A.; Ziviani, L.; Yan, X.B.; Osculati, F.; Bentivoglio, M. Induction of NADPH-diaphorase activity in the rat forebrain after middle cerebral artery occlusion. Exp. Neurol. 1996, 138, 105–120. [Google Scholar] [CrossRef]
- Li, X.Y.; Ko, H.G.; Chen, T.; Descalzi, G.; Koga, K.; Wang, H.; Kim, S.S.; Shang, Y.; Kwak, C.; Park, S.W.; et al. Alleviating neuropathic pain hypersensitivity by inhibiting PKMzeta in the anterior cingulate cortex. Science 2010, 330, 1400–1404. [Google Scholar] [CrossRef]
- Liu, M.G.; Kang, S.J.; Shi, T.Y.; Koga, K.; Zhang, M.M.; Collingridge, G.L.; Kaang, B.K.; Zhuo, M. Long-term potentiation of synaptic transmission in the adult mouse insular cortex: Multielectrode array recordings. J. Neurophysiol. 2013, 110, 505–521. [Google Scholar] [CrossRef]
- Staley, K.J.; Mody, I. Integrity of perforant path fibers and the frequency of action potential independent excitatory and inhibitory synaptic events in dentate gyrus granule cells. Synapse 1991, 9, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, M. Long-term potentiation in the anterior cingulate cortex and chronic pain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130146. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Lu, J.S.; Song, Q.; Liu, M.G.; Koga, K.; Descalzi, G.; Li, Y.Q.; Zhuo, M. Pharmacological rescue of cortical synaptic and network potentiation in a mouse model for fragile X syndrome. Neuropsychopharmacology 2014, 39, 1955–1967. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Zheng, H.W.; Li, X.H.; Huganir, R.L.; Kuner, T.; Zhuo, M.; Chen, T. Selective Phosphorylation of AMPA Receptor Contributes to the Network of Long-Term Potentiation in the Anterior Cingulate Cortex. J. Neurosci. 2017, 37, 8534–8548. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Y.; Kandel, E.R. Low-frequency stimulation induces a pathway-specific late phase of LTP in the amygdala that is mediated by PKA and dependent on protein synthesis. Learn. Mem. 2007, 14, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Lante, F.; de Jesus Ferreira, M.C.; Guiramand, J.; Recasens, M.; Vignes, M. Low-frequency stimulation induces a new form of LTP, metabotropic glutamate (mGlu5) receptor- and PKA-dependent, in the CA1 area of the rat hippocampus. Hippocampus 2006, 16, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Bi, G.Q.; Rubin, J. Timing in synaptic plasticity: From detection to integration. Trends Neurosci. 2005, 28, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Malenka, R.C.; Bear, M.F. LTP and LTD: An embarrassment of riches. Neuron 2004, 44, 5–21. [Google Scholar] [CrossRef]
- Dan, Y.; Poo, M.M. Spike timing-dependent plasticity of neural circuits. Neuron 2004, 44, 23–30. [Google Scholar] [CrossRef]
- Popescu, A.T.; Saghyan, A.A.; Pare, D. NMDA-dependent facilitation of corticostriatal plasticity by the amygdala. Proc. Natl. Acad. Sci. USA 2007, 104, 341–346. [Google Scholar] [CrossRef]
- Liauw, J.; Wu, L.J.; Zhuo, M. Calcium-stimulated adenylyl cyclases required for long-term potentiation in the anterior cingulate cortex. J. Neurophysiol. 2005, 94, 878–882. [Google Scholar] [CrossRef] [PubMed]
- Bannerman, D.M.; Butcher, S.P.; Morris, R.G. Intracerebroventricular injection of a nitric oxide synthase inhibitor does not affect long-term slope potentiation in vivo. Neuropharmacology 1994, 33, 1387–1397. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, A.; Saito, H.; Abe, K. Involvement of nitric oxide in long-term potentiation in the dentate gyrus in vivo. Brain Res. 1993, 605, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Iga, Y.; Yoshioka, M.; Togashi, H.; Saito, H. Inhibitory action of N omega-nitro-L-arginine methyl ester on in vivo long-term potentiation in the rat dentate gyrus. Eur. J. Pharmacol. 1993, 238, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Bon, C.; Bohme, G.A.; Doble, A.; Stutzmann, J.M.; Blanchard, J.C. A Role for Nitric Oxide in Long-term Potentiation. Eur. J. Neurosci. 1992, 4, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Noriega-Prieto, J.A.; Maglio, L.E.; Ibanez-Santana, S.; Fernandez de Sevilla, D. Endocannabinoid and Nitric Oxide-Dependent IGF-I-Mediated Synaptic Plasticity at Mice Barrel Cortex. Cells 2022, 11, 1641. [Google Scholar] [CrossRef] [PubMed]
- Haul, S.; Godecke, A.; Schrader, J.; Haas, H.L.; Luhmann, H.J. Impairment of neocortical long-term potentiation in mice deficient of endothelial nitric oxide synthase. J. Neurophysiol. 1999, 81, 494–497. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, S.; Sims, R.E.; Hartell, N.A. Nitric oxide is required for the induction and heterosynaptic spread of long-term potentiation in rat cerebellar slices. J. Physiol. 2001, 535 Pt 3, 825–839. [Google Scholar] [CrossRef]
- Andjus, P.R.; Stevic-Marinkovic, Z.; Cherubini, E. Immunoglobulins from motoneurone disease patients enhance glutamate release from rat hippocampal neurones in culture. J. Physiol. 1997, 504 Pt 1, 103–112. [Google Scholar] [CrossRef]
- Hu, S.W.; Zhang, Q.; Xia, S.H.; Zhao, W.N.; Li, Q.Z.; Yang, J.X.; An, S.; Ding, H.L.; Zhang, H.; Cao, J.L. Contralateral Projection of Anterior Cingulate Cortex Contributes to Mirror-Image Pain. J. Neurosci. 2021, 41, 9988–10003. [Google Scholar] [CrossRef]
- Wei, F.; Xia, X.M.; Tang, J.; Ao, H.; Ko, S.; Liauw, J.; Qiu, C.S.; Zhuo, M. Calmodulin regulates synaptic plasticity in the anterior cingulate cortex and behavioral responses: A microelectroporation study in adult rodents. J. Neurosci. 2003, 23, 8402–8409. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.-Y.; Wan, J.; Ma, Y.; Zhuo, M. The Pathway-Selective Dependence of Nitric Oxide for Long-Term Potentiation in the Anterior Cingulate Cortex of Adult Mice. Biomedicines 2024, 12, 1072. https://doi.org/10.3390/biomedicines12051072
Chen Q-Y, Wan J, Ma Y, Zhuo M. The Pathway-Selective Dependence of Nitric Oxide for Long-Term Potentiation in the Anterior Cingulate Cortex of Adult Mice. Biomedicines. 2024; 12(5):1072. https://doi.org/10.3390/biomedicines12051072
Chicago/Turabian StyleChen, Qi-Yu, Jinjin Wan, Yujie Ma, and Min Zhuo. 2024. "The Pathway-Selective Dependence of Nitric Oxide for Long-Term Potentiation in the Anterior Cingulate Cortex of Adult Mice" Biomedicines 12, no. 5: 1072. https://doi.org/10.3390/biomedicines12051072
APA StyleChen, Q.-Y., Wan, J., Ma, Y., & Zhuo, M. (2024). The Pathway-Selective Dependence of Nitric Oxide for Long-Term Potentiation in the Anterior Cingulate Cortex of Adult Mice. Biomedicines, 12(5), 1072. https://doi.org/10.3390/biomedicines12051072