The Effect of Denosumab on Rotator Cuff Repair in Women Aged 60 and over with Osteoporosis: A Prospective Observational Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Surgical Approach and Denosumab Administration
2.3. Outcome Measurement and Data Collection
2.4. Statistical Analysis
3. Results
3.1. Patients
3.2. Re-Tear Rates and Clinical Outcomes
4. Discussion
5. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dang, A.; Davies, M. Rotator Cuff Disease: Treatment Options and Considerations. Sports Med. Arthrosc. Rev. 2018, 26, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Hein, J.; Reilly, J.M.; Chae, J.; Maerz, T.; Anderson, K. Retear rates after arthroscopic single-row, double-row, and suture bridge rotator cuff repair at a minimum of 1 year of imaging follow-up: A systematic review. Arthrosc. J. Arthrosc. Relat. Surg. 2015, 31, 2274–2281. [Google Scholar] [CrossRef] [PubMed]
- Duquin, T.R.; Buyea, C.; Bisson, L.J. Which method of rotator cuff repair leads to the highest rate of structural healing? A systematic review. Am. J. Sports Med. 2010, 38, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.W.; Oh, J.H.; Gong, H.S.; Kim, J.Y.; Kim, S.H. Factors affecting rotator cuff healing after arthroscopic repair: Osteoporosis as one of the independent risk factors. Am. J. Sports Med. 2011, 39, 2099–2107. [Google Scholar] [CrossRef] [PubMed]
- Mall, N.A.; Tanaka, M.J.; Choi, L.S.; Paletta, G.A., Jr. Factors affecting rotator cuff healing. J. Bone Jt. Surg. Am. 2014, 96, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.P.; Huang, S.W.; Lee, C.H.; Chen, H.C.; Charoenpong, P.; Lin, H.W. Osteoporosis increases the risk of rotator cuff tears: A population-based cohort study. J. Bone Miner. Metab. 2022, 40, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, C.; Braunstein, V.; Milz, S.; Sprecher, C.M.; Fischer, F.; Tami, A.; Ahrens, P.; Imhoff, A.B.; Hinterwimmer, S. Assessment of bone quality within the tuberosities of the osteoporotic humeral head: Relevance for anchor positioning in rotator cuff repair. Am. J. Sports Med. 2010, 38, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.M.; Shim, I.K.; Shin, M.J.; Choi, J.H.; Lee, Y.N.; Jeon, I.H.; Kim, H.; Park, D.; Kholinne, E.; Koh, K.H. A Combination Treatment of Raloxifene and Vitamin D Enhances Bone-to-Tendon Healing of the Rotator Cuff in a Rat Model. Am. J. Sports Med. 2020, 48, 2161–2169. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, W.; Zhang, L.; Zhou, C.; Cong, R. The role of vitamin D on rotator cuff tear with osteoporosis. Front. Endocrinol. 2022, 13, 1017835. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ryu, K.J.; Kim, B.H.; Lee, Y.; Dan, J.; Kim, J.H. Low Serum Vitamin D Is Not Correlated With the Severity of a Rotator Cuff Tear or Retear After Arthroscopic Repair. Am. J. Sports Med. 2015, 43, 1743–1750. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Kanazawa, T.; Gotoh, M.; Tanesue, R.; Nakamura, H.; Ohzono, H.; Okawa, T.; Shiba, N. Effects of Estrogen-Deficient State on Rotator Cuff Healing. Am. J. Sports Med. 2019, 47, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Su, W.; Chen, J.; Ye, Z.; Wu, C.; Jiang, J.; Yan, X.; Cai, J.; Zhao, J. The Effect of Antiosteoporosis Therapy with Risedronate on Rotator Cuff Healing in an Osteoporotic Rat Model. Am. J. Sports Med. 2021, 49, 2074–2084. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, Y.; Zhang, X.; Han, K.; Ye, Z.; Wu, C.; Jiang, J.; Yan, X.; Su, W.; Zhao, J. The Biomechanical and Histological Processes of Rerouting Biceps to Treat Chronic Irreparable Rotator Cuff Tears in a Rabbit Model. Am. J. Sports Med. 2022, 50, 347–361. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ye, Z.; Chen, C.; Zhang, X.; Han, K.; Wu, X.; Li, Z.; Jiang, J.; Yan, X.; Cai, J.; et al. Abaloparatide Improves Rotator Cuff Healing via Anabolic Effects on Bone Remodeling in a Chronic Rotator Cuff Tear Model of Rat with Osteoporosis: A Comparison with Denosumab. Am. J. Sports Med. 2022, 50, 1550–1563. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Yoon, J.Y.; Lee, Y.B. The Use of Intravenous Zoledronate May Reduce Retear Rate after Rotator Cuff Repair in Older Female Patients with Osteoporosis: A First In-Human Prospective Study. J. Clin. Med. 2022, 11, 836. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hanley, D.A.; Adachi, J.D.; Bell, A.; Brown, V. Denosumab: Mechanism of action and clinical outcomes. Int. J. Clin. Pract. 2012, 66, 1139–1146. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Camacho, P.M.; Petak, S.M.; Binkley, N.; Diab, D.L.; Eldeiry, L.S.; Farooki, A.; Harris, S.T.; Hurley, D.L.; Kelly, J.; Lewiecki, E.M. American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis-2020 Update. Endocr. Pract. 2020, 26 (Suppl. 1), 1–46. [Google Scholar] [CrossRef] [PubMed]
- Shoback, D.; Rosen, C.J.; Black, D.M.; Cheung, A.M.; Murad, M.H.; Eastell, R. Pharmacological management of osteoporosis in postmenopausal women: An endocrine society guideline update. J. Clin. Endocrinol. Metab. 2020, 105, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Sugaya, H.; Maeda, K.; Matsuki, K.; Moriishi, J. Repair integrity and functional outcome after arthroscopic double-row rotator cuff repair. A prospective outcome study. J. Bone Jt. Surg. Am. 2007, 89, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.S.; Yi, J.W.; Lee, B.G.; Rhee, Y.G. Retear patterns after arthroscopic rotator cuff repair: Single-row versus suture bridge technique. Am. J. Sports Med. 2010, 38, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Goutallier, D.; Postel, J.M.; Bernageau, J.; Lavau, L.; Voisin, M.C. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin. Orthop. Relat. Res. 1994, 304, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Goutallier, D.; Postel, J.M.; Gleyze, P.; Leguilloux, P.; Van Driessche, S. Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J. Shoulder Elb. Surg. 2003, 12, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Conboy, V.B.; Morris, R.W.; Kiss, J.; Carr, A.J. An evaluation of the Constant-Murley shoulder assessment. J. Bone Jt. Surg. Br. 1996, 78, 229–232. [Google Scholar] [CrossRef] [PubMed]
- King, G.J.; Richards, R.R.; Zuckerman, J.D.; Blasier, R.; Dillman, C.; Friedman, R.J.; Gartsman, G.M.; Iannotti, J.P.; Murnahan, J.P.; Mow, V.C.; et al. A standardized method for assessment of elbow function. Research Committee, American Shoulder and Elbow Surgeons. J. Shoulder Elb. Surg. 1999, 8, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Romeo, A.A.; Mazzocca, A.; Hang, D.W.; Shott, S.; Bach, B.R., Jr. Shoulder scoring scales for the evaluation of rotator cuff repair. Clin. Orthop. Relat. Res. 2004, 427, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Tashjian, R.Z.; Deloach, J.; Green, A.; Porucznik, C.A.; Powell, A.P. Minimal clinically important differences in ASES and simple shoulder test scores after nonoperative treatment of rotator cuff disease. J. Bone Jt. Surg. Am. 2010, 92, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Le, B.T.; Wu, X.L.; Lam, P.H.; Murrell, G.A. Factors predicting rotator cuff retears: An analysis of 1000 consecutive rotator cuff repairs. Am. J. Sports Med. 2014, 42, 1134–1142. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Jeong, J.Y.; Park, C.D.; Kang, S.G.; Yoo, J.C. Evaluation of the Risk Factors for a Rotator Cuff Retear After Repair Surgery. Am. J. Sports Med. 2017, 45, 1755–1761. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Luo, M.; Pan, J.; Liang, G.; Feng, W.; Zeng, L.; Yang, W.; Liu, J. Risk factors affecting rotator cuff retear after arthroscopic repair: A meta-analysis and systematic review. J. Shoulder Elb. Surg. 2021, 30, 2660–2670. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.; Wilson, J.; Dalal, S.; Parker, R.; Norburn, P.; Roy, B. Rotator cuff repair in patients over 70 years of age: Early outcomes and risk factors associated with re-tear. Bone Jt. J. 2013, 95, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.M.; Jeon, I.-H.; Yang, H.-S.; Shin, M.J.; Park, J.H.; Kholinne, E.; Kim, H.; Park, D.; Koh, K.H. Poor prognostic factors in patients with rotator cuff retear. Orthop. J. Sports Med. 2021, 9, 2325967121992154. [Google Scholar] [CrossRef] [PubMed]
- Tingart, M.J.; Apreleva, M.; Zurakowski, D.; Warner, J.J. Pullout strength of suture anchors used in rotator cuff repair. JBJS 2003, 85, 2190–2198. [Google Scholar] [CrossRef]
- Lee, S.; Hwang, J.T.; Lee, S.S.; Lee, J.H.; Kim, T.Y. Greater Tuberosity Bone Mineral Density and Rotator Cuff Tear Size Are Independent Factors Associated with Cutting-Through in Arthroscopic Suture-Bridge Rotator Cuff Repair. Arthroscopy 2021, 37, 2077–2086. [Google Scholar] [CrossRef] [PubMed]
- Udagawa, N.; Takahashi, N.; Akatsu, T.; Tanaka, H.; Sasaki, T.; Nishihara, T.; Koga, T.; Martin, T.J.; Suda, T. Origin of osteoclasts: Mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc. Natl. Acad. Sci. USA 1990, 87, 7260–7264. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.-Y.; Yoshida, H.; Sarosi, I.; Tan, H.-L.; Timms, E.; Capparelli, C.; Morony, S.; Oliveira-dos-Santos, A.J.; Van, G.; Itie, A. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999, 397, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Suda, T.; Takahashi, N.; Udagawa, N.; Jimi, E.; Gillespie, M.T.; Martin, T.J. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 1999, 20, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Bekker, P.J.; Holloway, D.L.; Rasmussen, A.S.; Murphy, R.; Martin, S.W.; Leese, P.T.; Holmes, G.B.; Dunstan, C.R.; DePaoli, A.M. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J. Bone Miner. Res. 2005, 20, 2274–2282. [Google Scholar] [CrossRef]
- Cummings, S.R.; San Martin, J.; McClung, M.R.; Siris, E.S.; Eastell, R.; Reid, I.R.; Delmas, P.; Zoog, H.B.; Austin, M.; Wang, A.; et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 2009, 361, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.H.; Kim, D.H.; Jeong, H.J.; Park, J.H.; Rhee, S.M. Effect of Recombinant Human Parathyroid Hormone on Rotator Cuff Healing After Arthroscopic Repair. Arthroscopy 2019, 35, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Cancienne, J.M.; Brockmeier, S.F.; Kew, M.E.; Deasey, M.J.; Werner, B.C. The association of osteoporosis and bisphosphonate use with revision shoulder surgery after rotator cuff repair. Arthrosc. J. Arthrosc. Relat. Surg. 2019, 35, 2314–2320. [Google Scholar] [CrossRef]
- Chen, X.; Giambini, H.; Ben-Abraham, E.; An, K.N.; Nassr, A.; Zhao, C. Effect of Bone Mineral Density on Rotator Cuff Tear: An Osteoporotic Rabbit Model. PLoS ONE 2015, 10, e0139384. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rhee, S.-M.; Park, J.H.; Jeong, H.J.; Kim, Y.K.; Lee, K.; Oh, J.H. Serum vitamin D level correlations with tissue vitamin D level and muscle performance before and after rotator cuff repair. Am. J. Sports Med. 2023, 51, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.S.; Rhee, Y.G. The factors affecting the clinical outcome and integrity of arthroscopically repaired rotator cuff tears of the shoulder. Clin. Orthop. Surg. 2009, 1, 96. [Google Scholar] [CrossRef] [PubMed]
- Diebold, G.; Lam, P.; Walton, J.; Murrell, G.A. Relationship between age and rotator cuff retear: A study of 1,600 consecutive rotator cuff repairs. JBJS 2017, 99, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
Group 1 | Group 2 | p-Value | |
---|---|---|---|
No. of patients | 34 | 68 | |
Age, mean ± SD, years | 68.35 ± 7.27 | 65.37 ± 8.35 | 0.07 |
Sex, male/female, n | 0/34 | 0/68 | |
Onset, mean ± SD, mo. | 9.57 ± 21.27 | 11.62 ± 15.67 | 0.582 |
Bone mineral density (T-score), mean ± SD | −2.83 ± 0.75 | −0.97 ± 1.20 | <0.001 |
Preoperative fatty degeneration, mean ± SD | |||
Supraspinatus | 1.94 ± 1.34 | 1.59 ± 1.39 | 0.226 |
Infraspinatus | 0.88 ± 0.80 | 0.69 ± 0.99 | 0.334 |
Subscapularis | 1.01 ± 1.25 | 0.88 ± 1.08 | 0.271 |
Global Fatty Degeneration Index | 1.27 ± 1.01 | 1.05 ± 0.96 | 0.193 |
Tear size, mean ± SD, mm | 28.13 ± 9.69 | 26.30 ± 10.95 | 0.426 |
Smoking history, yes/no, n | 34/0 | 67/1 | 0.667 |
Trauma history, yes/no, n | 14/20 | 23/45 | 0.467 |
Regular exercise, yes/no, n | 27/7 | 58/10 | 0.452 |
Group 1 | Group 2 | p-Value | |
---|---|---|---|
Clinical outcomes | |||
SST | |||
Preoperative | 4.29 ± 2.57 | 5 ± 2.74 | 0.191 |
Postoperative at 6 months | 6.67 ± 2.71 | 7.26 ± 2.27 | 0.298 |
p-Value | 0.003 | <0.001 | |
UCLA | |||
Preoperative | 16.75 ± 7.57 | 16.3 ± 5.84 | 0.947 |
Postoperative at 6 months | 24.17 ± 6.34 | 24.74 ± 7.28 | 0.724 |
p-Value | <0.001 | <0.001 | |
ASES | |||
Preoperative | 51.23 ± 17.02 | 52.75 ± 17.44 | 0.488 |
Postoperative at 6 months | 73.22 ± 18.33 | 73.31 ± 15.05 | 0.948 |
p-Value | <0.001 | <0.001 | |
CSS | |||
Preoperative | 40.17 ± 12.11 | 41.68 ± 16.10 | 0.33 |
Postoperative at 6 months | 60.35 ± 17.13 | 63.25 ± 15.20 | 0.473 |
p-Value | <0.001 | <0.001 | |
ROM | |||
Forward flexion | |||
Preoperative | 132.31 ± 54.74 | 140.41 ± 53.97 | 0.232 |
Postoperative at 6 months | 176.54 ± 5.61 | 174.69 ± 16.47 | 0.601 |
p-Value | <0.001 | <0.001 | |
Internal rotation | |||
Preoperative | 4.32 ± 4.75 | 3.83 ± 4.43 | 0.437 |
Postoperative at 6 months | 9.32 ± 5.99 | 7.76 ± 6.16 | 0.28 |
p-Value | 0.003 | <0.001 | |
Radiologic outcomes | |||
Retear, % (n/N, 95%CI) | 6/34, 16.7% | 8/68 11.7% | 0.469 |
Retear pattern, n, types I/II | 2/4 | 4/4 | 0.571 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-T.; Lee, S.; Lee, H.-W.; Kim, S.-H.; Lee, Y.-B. The Effect of Denosumab on Rotator Cuff Repair in Women Aged 60 and over with Osteoporosis: A Prospective Observational Study. Biomedicines 2024, 12, 1069. https://doi.org/10.3390/biomedicines12051069
Kim K-T, Lee S, Lee H-W, Kim S-H, Lee Y-B. The Effect of Denosumab on Rotator Cuff Repair in Women Aged 60 and over with Osteoporosis: A Prospective Observational Study. Biomedicines. 2024; 12(5):1069. https://doi.org/10.3390/biomedicines12051069
Chicago/Turabian StyleKim, Ki-Tae, Sanghyeon Lee, Ho-Won Lee, Shi-Hyun Kim, and Yong-Beom Lee. 2024. "The Effect of Denosumab on Rotator Cuff Repair in Women Aged 60 and over with Osteoporosis: A Prospective Observational Study" Biomedicines 12, no. 5: 1069. https://doi.org/10.3390/biomedicines12051069
APA StyleKim, K.-T., Lee, S., Lee, H.-W., Kim, S.-H., & Lee, Y.-B. (2024). The Effect of Denosumab on Rotator Cuff Repair in Women Aged 60 and over with Osteoporosis: A Prospective Observational Study. Biomedicines, 12(5), 1069. https://doi.org/10.3390/biomedicines12051069