The Association between Urine N-Glycome and Prognosis after Initial Therapy for Primary Prostate Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. PCa Patients
2.2. Urine Total N-Glycome
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Assocation of Clinical and Biochemical Parameters to Occurence of Event
3.3. EFS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dyba, T.; Randi, G.; Bray, F.; Martos, C.; Giusti, F.; Nicholson, N.; Gavin, A.; Flego, M.; Neamtiu, L.; Dimitrova, N.; et al. The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur. J. Cancer 2021, 157, 308–347. [Google Scholar] [CrossRef] [PubMed]
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef] [PubMed]
- de Rooij, M.; Israel, B.; Tummers, M.; Ahmed, H.U.; Barrett, T.; Giganti, F.; Hamm, B.; Logager, V.; Padhani, A.; Panebianco, V.; et al. ESUR/ESUI consensus statements on multi-parametric MRI for the detection of clinically significant prostate cancer: Quality requirements for image acquisition, interpretation and radiologists’ training. Eur. Radiol. 2020, 30, 5404–5416. [Google Scholar] [CrossRef] [PubMed]
- Bruinsma, S.M.; Roobol, M.J.; Carroll, P.R.; Klotz, L.; Pickles, T.; Moore, C.M.; Gnanapragasam, V.J.; Villers, A.; Rannikko, A.; Valdagni, R.; et al. Expert consensus document: Semantics in active surveillance for men with localized prostate cancer—Results of a modified Delphi consensus procedure. Nat. Rev. Urol. 2017, 14, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, G.D.; Yaxley, J.W.; Chambers, S.K.; Occhipinti, S.; Samaratunga, H.; Zajdlewicz, L.; Teloken, P.; Dunglison, N.; Williams, S.; Lavin, M.F.; et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study. Lancet Oncol. 2018, 19, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Herlemann, A.; Cowan, J.E.; Carroll, P.R.; Cooperberg, M.R. Community-based Outcomes of Open versus Robot-assisted Radical Prostatectomy. Eur. Urol. 2018, 73, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Abdollah, F.; Dalela, D.; Sood, A.; Keeley, J.; Alanee, S.; Briganti, A.; Montorsi, F.; Peabody, J.O.; Menon, M. Impact of Adjuvant Radiotherapy in Node-positive Prostate Cancer Patients: The Importance of Patient Selection. Eur. Urol. 2018, 74, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Patel, H.D.; Schwen, Z.R.; Tran, P.T.; Partin, A.W. Adjuvant radiation with androgen-deprivation therapy for men with lymph node metastases after radical prostatectomy: Identifying men who benefit. BJU Int. 2019, 123, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Groen, V.H.; Haustermans, K.; Pos, F.J.; Draulans, C.; Isebaert, S.; Monninkhof, E.M.; Smeenk, R.J.; Kunze-Busch, M.; de Boer, J.C.J.; van der Voort van Zijp, J.; et al. Patterns of Failure Following External Beam Radiotherapy With or Without an Additional Focal Boost in the Randomized Controlled FLAME Trial for Localized Prostate Cancer. Eur. Urol. 2022, 82, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Kalbasi, A.; Li, J.; Berman, A.; Swisher-McClure, S.; Smaldone, M.; Uzzo, R.G.; Small, D.S.; Mitra, N.; Bekelman, J.E. Dose-Escalated Irradiation and Overall Survival in Men With Nonmetastatic Prostate Cancer. JAMA Oncol. 2015, 1, 897–906. [Google Scholar] [CrossRef]
- Kerkmeijer, L.G.W.; Groen, V.H.; Pos, F.J.; Haustermans, K.; Monninkhof, E.M.; Smeenk, R.J.; Kunze-Busch, M.; de Boer, J.C.J.; van der Voort van Zijp, J.; van Vulpen, M.; et al. Focal Boost to the Intraprostatic Tumor in External Beam Radiotherapy for Patients With Localized Prostate Cancer: Results From the FLAME Randomized Phase III Trial. J. Clin. Oncol. 2021, 39, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, D.; Geraghty, R.; Rice, P.; Sachdeva, A.; Nambiar, A.; Johnson, M.; Gujadhur, R.; McNeill, M.; Haslam, P.; Soomro, N.; et al. Can the Use of Serial Multiparametric Magnetic Resonance Imaging During Active Surveillance of Prostate Cancer Avoid the Need for Prostate Biopsies?—A Systematic Diagnostic Test Accuracy Review. Eur. Urol. Oncol. 2021, 4, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Rajwa, P.; Pradere, B.; Quhal, F.; Mori, K.; Laukhtina, E.; Huebner, N.A.; D’Andrea, D.; Krzywon, A.; Shim, S.R.; Baltzer, P.A.; et al. Reliability of Serial Prostate Magnetic Resonance Imaging to Detect Prostate Cancer Progression During Active Surveillance: A Systematic Review and Meta-analysis. Eur. Urol. 2021, 80, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Artibani, W.; Porcaro, A.B.; De Marco, V.; Cerruto, M.A.; Siracusano, S. Management of Biochemical Recurrence after Primary Curative Treatment for Prostate Cancer: A Review. Urol. Int. 2018, 100, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Steele, E.M.; Holmes, J.A. A review of salvage treatment options for disease progression after radiation therapy for localized prostate cancer. Urol. Oncol. 2019, 37, 582–598. [Google Scholar] [CrossRef] [PubMed]
- Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer. Eur. Urol. 2021, 79, 263–282. [Google Scholar] [CrossRef] [PubMed]
- Crook, J.M.; Tang, C.; Thames, H.; Blanchard, P.; Sanders, J.; Ciezki, J.; Keyes, M.; Morris, W.J.; Merrick, G.; Catton, C.; et al. A biochemical definition of cure after brachytherapy for prostate cancer. Radiother. Oncol. 2020, 149, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Noble, D.J.; Doyle, E.; Tramonti, G.; Law, A.B.; Sundaramurthy, A.; Brush, J.P.; Keanie, J.; Wood, C.; Drewell, P.; Keough, W.; et al. Defining Biochemical Cure After Low Dose Rate Prostate Brachytherapy: External Validation of 4-year Prostate-specific Antigen Nadir as a Predictor of 10- and 15-year Disease-free Survival. Clin. Oncol. (R. Coll. Radiol.) 2022, 34, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Eggener, S.E.; Rumble, R.B.; Armstrong, A.J.; Morgan, T.M.; Crispino, T.; Cornford, P.; van der Kwast, T.; Grignon, D.J.; Rai, A.J.; Agarwal, N.; et al. Molecular Biomarkers in Localized Prostate Cancer: ASCO Guideline. J. Clin. Oncol. 2020, 38, 1474–1494. [Google Scholar] [CrossRef]
- Jairath, N.K.; Dal Pra, A.; Vince, R., Jr.; Dess, R.T.; Jackson, W.C.; Tosoian, J.J.; McBride, S.M.; Zhao, S.G.; Berlin, A.; Mahal, B.A.; et al. A Systematic Review of the Evidence for the Decipher Genomic Classifier in Prostate Cancer. Eur. Urol. 2021, 79, 374–383. [Google Scholar] [CrossRef]
- Vermassen, T.; De Bruyne, S.; Himpe, J.; Lumen, N.; Callewaert, N.; Rottey, S.; Delanghe, J. N-Linked Glycosylation and Near-Infrared Spectroscopy in the Diagnosis of Prostate Cancer. Int. J. Mol. Sci. 2019, 20, 1592. [Google Scholar] [CrossRef]
- Vermassen, T.; Van Den Broeck, A.; Lumen, N.; Callewaert, N.; Rottey, S.; Delanghe, J. Tissue N-linked glycosylation as potential prognostic biomarker for biochemical recurrence-free survival. Biomarkers 2021, 26, 275–285. [Google Scholar] [CrossRef]
- Vermassen, T.; Van Praet, C.; Lumen, N.; Decaestecker, K.; Vanderschaeghe, D.; Callewaert, N.; Villeirs, G.; Hoebeke, P.; Van Belle, S.; Rottey, S.; et al. Urinary prostate protein glycosylation profiling as a diagnostic biomarker for prostate cancer. Prostate 2015, 75, 314–322. [Google Scholar] [CrossRef]
- Vermassen, T.; Van Praet, C.; Vanderschaeghe, D.; Maenhout, T.; Lumen, N.; Callewaert, N.; Hoebeke, P.; Van Belle, S.; Rottey, S.; Delanghe, J. Capillary electrophoresis of urinary prostate glycoproteins assists in the diagnosis of prostate cancer. Electrophoresis 2014, 35, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Vermassen, T.; Callewaert, N.; Rottey, S.; Delanghe, J.R. Prostate Protein N-Glycosylation Profiling by Means of DNA Sequencer-Assisted Fluorophore-Assisted Carbohydrate Electrophoresis. In Methods in Molecular Biology—Clinical Applications of Capillary Electrophoresis; Phillips, T.M., Ed.; Humana Press: New York, NY, USA, 2019; Volume 1972, pp. 235–250. [Google Scholar] [CrossRef]
- Yamada, Y.; Taguchi, S.; Kume, H. Surgical Tolerability and Frailty in Elderly Patients Undergoing Robot-Assisted Radical Prostatectomy: A Narrative Review. Cancers 2022, 14, 5061. [Google Scholar] [CrossRef]
- Tilki, D.; Preisser, F.; Graefen, M.; Huland, H.; Pompe, R.S. External Validation of the European Association of Urology Biochemical Recurrence Risk Groups to Predict Metastasis and Mortality After Radical Prostatectomy in a European Cohort. Eur. Urol. 2019, 75, 896–900. [Google Scholar] [CrossRef]
- Gratacos-Mulleras, A.; Duran, A.; Asadi Shehni, A.; Ferrer-Batalle, M.; Ramirez, M.; Comet, J.; de Llorens, R.; Saldova, R.; Llop, E.; Peracaula, R. Characterisation of the main PSA glycoforms in aggressive prostate cancer. Sci. Rep. 2020, 10, 18974. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.; Rolny, V.; Leinenbach, A.; Karl, J.; Swiatek-de Lange, M.; Kobold, U.; Schrader, M.; Krause, H.; Mueller, M.; Vogeser, M. Investigation on core-fucosylated prostate-specific antigen as a refined biomarker for differentiation of benign prostate hyperplasia and prostate cancer of different aggressiveness. Tumour Biol. 2019, 41, 1010428319827223. [Google Scholar] [CrossRef] [PubMed]
- Bolla, M.; Neven, A.; Maingon, P.; Carrie, C.; Boladeras, A.; Andreopoulos, D.; Engelen, A.; Sundar, S.; van der Steen-Banasik, E.M.; Armstrong, J.; et al. Short Androgen Suppression and Radiation Dose Escalation in Prostate Cancer: 12-Year Results of EORTC Trial 22991 in Patients with Localized Intermediate-Risk Disease. J. Clin. Oncol. 2021, 39, 3022–3033. [Google Scholar] [CrossRef]
- Peacock, M.; Quirt, J.; James Morris, W.; So, A.; Sing, C.K.; Pickles, T.; Tyldesley, S. Population-based 10-year event-free survival after radical prostatectomy for patients with prostate cancer in British Columbia. Can. Urol. Assoc. J. 2015, 9, 409–413. [Google Scholar] [CrossRef]
- Stavrinides, V.; Giganti, F.; Trock, B.; Punwani, S.; Allen, C.; Kirkham, A.; Freeman, A.; Haider, A.; Ball, R.; McCartan, N.; et al. Five-year Outcomes of Magnetic Resonance Imaging-based Active Surveillance for Prostate Cancer: A Large Cohort Study. Eur. Urol. 2020, 78, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Van den Broeck, T.; van den Bergh, R.C.N.; Arfi, N.; Gross, T.; Moris, L.; Briers, E.; Cumberbatch, M.; De Santis, M.; Tilki, D.; Fanti, S.; et al. Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review. Eur. Urol. 2019, 75, 967–987. [Google Scholar] [CrossRef] [PubMed]
- Offermann, A.; Hohensteiner, S.; Kuempers, C.; Ribbat-Idel, J.; Schneider, F.; Becker, F.; Hupe, M.C.; Duensing, S.; Merseburger, A.S.; Kirfel, J.; et al. Prognostic Value of the New Prostate Cancer International Society of Urological Pathology Grade Groups. Front. Med. 2017, 4, 157. [Google Scholar] [CrossRef]
- Scott, E.; Munkley, J. Glycans as Biomarkers in Prostate Cancer. Int. J. Mol. Sci. 2019, 20, 1389. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, J.; Li, Q.K.; Peskoe, S.B.; Zhang, B.; Choi, C.; Platz, E.A.; Zhang, H. Overexpression of alpha (1,6) fucosyltransferase associated with aggressive prostate cancer. Glycobiology 2014, 24, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Gala, F.A.; Morrison, S.L. The role of constant region carbohydrate in the assembly and secretion of human IgD and IgA1. J. Biol. Chem. 2002, 277, 29005–29011. [Google Scholar] [CrossRef] [PubMed]
- Nagae, M.; Kizuka, Y.; Mihara, E.; Kitago, Y.; Hanashima, S.; Ito, Y.; Takagi, J.; Taniguchi, N.; Yamaguchi, Y. Structure and mechanism of cancer-associated N-acetylglucosaminyltransferase-V. Nat. Commun. 2018, 9, 3380. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, T.; Uozumi, N.; Nakano, M.; Mizuno-Horikawa, Y.; Okuyama, N.; Taguchi, T.; Gu, J.; Kondo, A.; Taniguchi, N.; Miyoshi, E. Fucosylation of N-glycans regulates the secretion of hepatic glycoproteins into bile ducts. J. Biol. Chem. 2006, 281, 29797–29806. [Google Scholar] [CrossRef]
- Fujita, K.; Hayashi, T.; Matsuzaki, K.; Nakata, W.; Masuda, M.; Kawashima, A.; Ujike, T.; Nagahara, A.; Tsuchiya, M.; Kobayashi, Y.; et al. Decreased fucosylated PSA as a urinary marker for high Gleason score prostate cancer. Oncotarget 2016, 7, 56643–56649. [Google Scholar] [CrossRef]
Parameter | ITT Cohort | AS | RP | EBRT | |
---|---|---|---|---|---|
N | 77 (100) | 11 (14) | 37 (48) | 29 (38) | |
Age initial diagnosis, years | 66 (50–79) | 62 (50–79) | 64 (52–77) | 68 (52–78) | |
iPSA, ng/mL * | 8.8 (1.0–71.0) | 7.9 (1.0–18.0) | 8.1 (1.8–36.0) | 12.9 (2.2–71.0) | |
sPSA density, ng/mL² * | 0.238 (0.033–2.075) | 0.151 (0.033–0.375) | 0.223 (0.048–1.199) | 0.272 (0.100–2.075) | |
ISUP grade § | 1 | 20 (26) | 10 (91) | 6 (16) | 4 (14) |
2 | 27 (35) | 1 (9) | 18 (49) | 8 (28) | |
3 | 16 (21) | 0 (0) | 8 (22) | 8 (28) | |
4 | 5 (6) | 0 (0) | 3 (8) | 2 (6) | |
5 | 9 (12) | 0 (0) | 2 (5) | 7 (24) | |
T § | 1a | 1 (1) | 1 (9) | 0 (0) | 0 (0) |
1b | 1 (1) | 0 (0) | 0 (0) | 1 (3) | |
1c | 9 (12) | 4 (36) | 0 (0) | 5 (17) | |
2a | 17 (22) | 4 (36) | 6 (16) | 7 (24) | |
2b | 7 (9) | 2 (18) | 3 (8) | 2 (7) | |
2c | 26(34) | 0 (0) | 18 (49) | 8 (28) | |
3a | 13 (17) | 0 (0) | 10 (27) | 3 (10) | |
3b | 2 (3) | 0 (0) | 0 (0) | 2 (7) | |
4 | 1 (1) | 0 (0) | 0 (0) | 1 (3) | |
N § | 0 | 74 (96) | 11 (100) | 37 (100) | 26 (90) |
1 | 3 (4) | 0 (0) | 0 (0) | 3 (10) | |
D’Amico Risk Classification for PCa | Low | 8 (10) | 5 (45) | 1 (3) | 2 (7) |
Intermediate | 23 (30) | 6 (55) | 7 (19) | 10 (34) | |
High | 46 (60) | 0 (0) | 29 (78) | 17 (59) | |
Therapy | AS | 11 (14) | 11 (100) | 0 (0) | 0 (0) |
RP | 7 (9) | 0 (0) | 7 (19) | 0 (0) | |
RP + PLND | 30 (39) | 0 (0) | 30 (81) | 0 (0) | |
EBRT | 5 (6) | 0 (0) | 0 (0) | 5 (17) | |
EBRT + ADT | 5 (6) | 0 (0) | 0 (0) | 5 (17) | |
EBRT +PLND + ADT | 19 (25) | 0 (0) | 0 (0) | 19 (66) | |
R | Positive | - (-) | - (-) | 10 (27) | - (-) |
Negative | - (-) | - (-) | 27 (73) | - (-) | |
Duration follow-up, years | 9.4 (9.1–10.1) | 10.9 (4.7–11.4) | 9.2 (6.3–9.6) | 9.9 (9.0–10.3) | |
PD | No | 51 (66) | 8 (73) | 25 (68) | 18 (62) |
BCR | 10 (13) | 0 (0) | 8 (22) | 2 (7) | |
Increased ISUP grade | 3 (4) | 3 (27) | 0 (0) | 0 (0) | |
Increased T stage | 1 (1) | 0 (0) | 0 (0) | 1 (3) | |
M+ disease | 2 (3) | 0 (0) | 1 (3) | 1 (3) | |
Deceased | 10 (13) | 0 (0) | 3 (8) | 7 (24) |
Parameter | Any Event | p Value | ||
---|---|---|---|---|
No (n = 51) | Yes (n = 26) | |||
ISUP grade | 1 | 16 (80) | 4 (20) | 0.0006 |
2 | 18 (67) | 9 (33) | ||
3 | 14 (88) | 2 (13) | ||
4–5 | 3 (21) | 11 (79) | ||
T | 1 | 10 (91) | 1 (9) | 0.0195 |
2 | 35 (70) | 15 (30) | ||
3 | 6 (40) | 9 (60) | ||
4 | 0 (0) | 1 (100) | ||
N | 0 | 50 (98) | 1 (2) | 0.2621 |
1 | 24 (92) | 2 (8) | ||
D’Amico Risk Classification for PCa | Low | 7 (14) | 1 (4) | 0.1833 |
Intermediate | 17 (33) | 6 (23) | ||
High | 27 (53) | 19 (73) |
Parameter | ITT Cohort (n = 77) | AS Cohort (n = 11) | RP Cohort (n = 36) | EBRT Cohort (n = 29) |
---|---|---|---|---|
iPSA | >13.6 ng/mL | >12.0 ng/mL | >8.4 ng/mL | >15.8 ng/mL |
2AFc/MA | >42.9% | >33.1% | >40.7% | >37.9% |
Fc/MA | >71.1% | >66.7% | >64.9% | >49.0% |
2AFc/2T | >66.9% | >66.9% | >52.7% | >68.0% |
Parameter | Mean EFS (Years) | HR (95% CI) | p Value | ||
---|---|---|---|---|---|
| iPSA | ≤13.6 ng/mL | 9.2 | 1 | 0.0067 |
>13.6 ng/mL | 6.1 | 3.35 (1.40–8.01) | |||
T stage | 1 | 10.6 | 1 | 0.0008 | |
2 | 8.7 | 3.83 (1.36–10.7) | |||
3–4 | 4.3 | 12.3 (3.12–46.8) | |||
ISUP grade | 1 | 9.4 | 1 | 0.0005 | |
2 | 8.4 | 1.58 (0.59–4.19) | |||
3 | 9.6 | 0.62 (0.20–1.88) | |||
4–5 | 4.5 | 4.97 (1.42–17.4) | |||
D’Amico Risk Classification for PCa | Low–intermediate | 9.4 | 1 | 0.0874 | |
High | 7.3 | 1.97 (0.91–4.29) | |||
2AFc/MA | ≤42.9% | 7.4 | 1 | 0.0039 | |
>42.9% | 10.9 | 0.29 (0.12–0.67) | |||
Fc/MA | ≤71.1% | 7.8 | 1 | 0.0356 | |
>71.1% | 10.9 | 0.36 (0.14–0.93) | |||
2AFc/2T | ≤66.9% | 7.6 | 1 | 0.0144 | |
>66.9% | 10.8 | 0.33 (0.13–0.80) | |||
| iPSA | ≤12.0 ng/mL | 10.2 | 1 | 0.0335 |
>12.0 ng/mL | 3.5 | 23.4 (1.28–426) | |||
T stage | 1 | 9.4 | 1 | 0.5740 | |
2 | 8.2 | 1.92 (0.20–18.7) | |||
ISUP grade | 1 | 8.5 | 0.5258 | ||
2 | 10.9 | ||||
D’Amico Risk Classification for PCa | Low | 9.4 | 1 | 0.5492 | |
Intermediate | 7.6 | 2.00 (0.21–19.5) | |||
2AFc/MA | ≤33.1% | 10.2 | 1 | 0.0123 | |
>33.1% | 3.4 | 0.02 (0.00–0.41) | |||
Fc/MA | ≤66.7% | 7.3 | 1 | 0.3578 | |
>66.7% | 10.3 | 0.33 (0.03–3.47) | |||
2AFc/2T | ≤66.9% | 11.4 | 0.0979 | ||
>66.9% | 6.8 | ||||
| iPSA | ≤8.4 ng/mL | 9.1 | 1 | 0.0783 |
>8.4 ng/mL | 6.4 | 2.81 (0.89–8.88) | |||
T stage | 2 | 8.7 | 1 | 0.0359 | |
3 | 4.1 | 4.87 (1.11–21.4) | |||
ISUP grade | 1 | 9.0 | 1 | 0.6445 | |
2 | 8.1 | 1.73 (0.33–9.12) | |||
3 | 8.1 | 1.50 (0.22–10.4) | |||
4–5 | 5.4 | 3.37 (0.40–28.4) | |||
D’Amico Risk Classification for PCa | Low–intermediate | 8.3 | 1 | 0.6066 | |
High | 7.7 | 1.43 (0.37–5.51) | |||
Positive surgical margins | No | 8.0 | 1 | 0.6991 | |
Yes | 7.3 | 1.32 (0.32–5.40) | |||
2AFc/MA | ≤40.7% | 10.3 | 1 | 0.0260 | |
>40.7% | 6.5 | 0.27 (0.08–0.85) | |||
Fc/MA | ≤64.9% | 9.4 | 1 | 0.1045 | |
>64.9% | 6.7 | 0.39 (0.12–1.22) | |||
2AFc/2T | ≤52.7% | 8.8 | 1 | 0.0097 | |
>52.7% | 3.8 | 0.12 (0.02–0.60) | |||
| iPSA | ≤15.8 ng/mL | 9.5 | 1 | 0.0311 |
>15.8 ng/mL | 6.0 | 4.03 (1.14–14.3) | |||
T stage | 1 | 11.3 | 0.0132 | ||
2 | 8.3 | ||||
3–4 | 4.5 | ||||
ISUP grade | 1 | 11.3 | 0.0001 | ||
2 | 8.1 | ||||
3 | 10.9 | ||||
4–5 | 3.8 | ||||
D’Amico Risk Classification for PCa | Low–intermediate | 10.1 | 1 | 0.0010 | |
High | 5.1 | 9.34 (2.48–35.2) | |||
2AFc/MA | ≤37.9% | 9.9 | 1 | 0.1168 | |
>37.9% | 7.1 | 0.38 (0.11–1.27) | |||
Fc/MA | ≤49.0% | 9.0 | 1 | 0.0589 | |
>49.0% | 5.3 | 0.21 (0.04–1.06) | |||
2AFc/2T | ≤68.0% | 9.9 | 0.1000 | ||
>68.0% | 7.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vermassen, T.; Lumen, N.; Van Praet, C.; Callewaert, N.; Delanghe, J.; Rottey, S. The Association between Urine N-Glycome and Prognosis after Initial Therapy for Primary Prostate Cancer. Biomedicines 2024, 12, 1039. https://doi.org/10.3390/biomedicines12051039
Vermassen T, Lumen N, Van Praet C, Callewaert N, Delanghe J, Rottey S. The Association between Urine N-Glycome and Prognosis after Initial Therapy for Primary Prostate Cancer. Biomedicines. 2024; 12(5):1039. https://doi.org/10.3390/biomedicines12051039
Chicago/Turabian StyleVermassen, Tijl, Nicolaas Lumen, Charles Van Praet, Nico Callewaert, Joris Delanghe, and Sylvie Rottey. 2024. "The Association between Urine N-Glycome and Prognosis after Initial Therapy for Primary Prostate Cancer" Biomedicines 12, no. 5: 1039. https://doi.org/10.3390/biomedicines12051039
APA StyleVermassen, T., Lumen, N., Van Praet, C., Callewaert, N., Delanghe, J., & Rottey, S. (2024). The Association between Urine N-Glycome and Prognosis after Initial Therapy for Primary Prostate Cancer. Biomedicines, 12(5), 1039. https://doi.org/10.3390/biomedicines12051039