Naturally Occurring Norsteroids and Their Design and Pharmaceutical Application
Abstract
:1. Introduction
2. A-Norsteroids and Triterpenoids Derived from Marine Sources
3. A-Norsteroids and Triterpenoids Derived from Terrestrial Sources
4. B-Norsteroids Derived from Marine Sources
5. B-Norsteroids and Triterpenoids Derived from Terrestrial Sources
6. C-Norsteroids Derived from Marine and Freshwater Sources
7. C-Norsteroids Derived from Fungi and Fungal Endophytes
8. C-Norsteroids Derived from Plant Species
9. D-Norsteroids
10. Modified D Ring in Steroids
11. Synthesis of Norsteroids
12. Conclusions
Funding
Conflicts of Interest
References
- Dembitsky, V.M. In silico prediction of steroids and triterpenoids as potential regulators of lipid metabolism. Mar. Drugs 2021, 19, 650. [Google Scholar] [CrossRef] [PubMed]
- Dembitsky, V.M. Antitumor and hepatoprotective activity of natural and synthetic neo steroids. Prog. Lipid Res. 2020, 79, 101048. [Google Scholar] [CrossRef] [PubMed]
- Dembitsky, V.M. Biological activity and structural diversity of steroids containing aromatic rings, phosphate groups, or halogen atoms. Molecules 2023, 28, 5549. [Google Scholar] [CrossRef]
- Dembitsky, V.M. Fascinating furanosteroids and their pharmacological profile. Molecules 2023, 28, 5669. [Google Scholar] [CrossRef] [PubMed]
- Dembitsky, V.M. Bioactive steroids bearing oxirane ring. Biomedicines 2023, 11, 2237. [Google Scholar] [CrossRef]
- Pounina, T.A.; Gloriozova, T.A.; Savidov, N.; Dembitsky, V.M. Sulfated and sulfur-containing steroids and their pharmacological profile. Mar. Drugs 2021, 19, 240. [Google Scholar] [CrossRef] [PubMed]
- Ermolenko, E.V.; Imbs, A.B.; Gloriozova, T.A.; Poroikov, V.V.; Sikorskaya, T.V.; Dembitsky, V.M. Chemical diversity of soft coral steroids and their pharmacological activities. Mar. Drugs 2020, 18, 613. [Google Scholar] [CrossRef]
- Ramos-Martín, F.; D’Amelio, N. Biomembrane lipids: When physics and chemistry join to shape biological activity. Biochimie 2022, 203, 118–138. [Google Scholar] [CrossRef] [PubMed]
- Summons, R.E.; Welander, P.V.; Gold, D.A. Lipid biomarkers: Molecular tools for illuminating the history of microbial life. Nat. Rev. Microbiol. 2022, 20, 174–185. [Google Scholar] [CrossRef]
- Volkman, J.K. Lipids of geochemical interest in microalgae. In Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid Microbiology; Wilkes, H., Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Savidov, N.; Gloriozova, T.A.; Poroikov, V.V.; Dembitsky, V.M. Highly oxygenated isoprenoid lipids derived from fungi and fungal endophytes: Origin and biological activities. Steroids 2018, 140, 114–124. [Google Scholar] [CrossRef]
- Luo, G.; Yang, H.; Algeo, T.J.; Hallmann, C.; Xie, S. Lipid biomarkers for the reconstruction of deep-time environmental conditions. Earth-Sci. Rev. 2019, 189, 99–124. [Google Scholar] [CrossRef]
- Marker, R.E.; Kamm, O.; Fleming, G.H.; Popkin, A.H.; Wittle, E.L. Sterols. X. Cholesterol derivatives. J. Am. Chem. Soc. 1937, 59, 619–621. [Google Scholar] [CrossRef]
- Min, L.; Zhong, L.P.; Li, C.C. Total Synthesis of abeo-steroids via cycloaddition strategy. Acc. Chem. Res. 2023, 56, 2378–2390. [Google Scholar] [CrossRef] [PubMed]
- Duecker, F.L.; Reuß, F.; Heretsch, P. Rearranged ergostane-type natural products: Chemistry, biology, and medicinal aspects. Org. Biomol. Chem. 2019, 17, 1624–1633. [Google Scholar] [CrossRef] [PubMed]
- Moss, G.P. Nomenclature of steroids (Recommendations 1989). Pure Appl. Chem. 1989, 61, 1783–1822. [Google Scholar] [CrossRef]
- O’Keefe, S.F. Nomenclature and Classification of Lipids, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2002; p. 40. ISBN 9780429221378. [Google Scholar]
- Hanson, J.R. Steroids: Partial synthesis in medicinal chemistry. Nat. Prod. Rep. 2010, 27, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Sica, D.; Musumeci, D. Secosteroids of marine origin. Steroids 2004, 69, 743–756. [Google Scholar] [CrossRef] [PubMed]
- Morrow, D.F.; Gallo, D. Steroids and biologically related compounds. Ann. Rep. Med. Chem. 1972, 7, 182–193. [Google Scholar]
- Qian, P.Y.; Xu, Y.; Fusetani, N. Natural products as antifouling compounds: Recent progress and future perspectives. Biofouling 2009, 26, 223–234. [Google Scholar] [CrossRef]
- Gmurek, M.; Olak-Kucharczyk, M.; Ledakowicz, S. Photochemical decomposition of endocrine disrupting compounds—A review. Chem. Engineer. J. 2017, 310, 437–456. [Google Scholar] [CrossRef]
- Norman, A.W.; Ross, F.P. Vitamin D seco-steroids: Unique molecules with both hormone and possible membranophilic properties. Life Sci. 1979, 24, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.A. A chemical framework for the preservation of fossil vertebrate cells and soft tissues. Earth-Sci. Rev. 2023, 240, 104367. [Google Scholar] [CrossRef]
- Briggs, D.E.G.; Summons, R.E. Ancient biomolecules: Their origins, fossilization, and role in revealing the history of life. BioEssays 2014, 36, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Brocks, J.J.; Pearson, A. Building the biomarker tree of life. Rev. Mineral. Geochem. 2005, 59, 233–258. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Savidov, N.; Poroikov, V.V. Naturally occurring aromatic steroids and their biological activities. Appl. Microbiol. Biotechnol. 2018, 102, 4663–4674. [Google Scholar] [CrossRef] [PubMed]
- Volkman, J.K. A review of sterol markers for marine and terrigenous organic matter. Org. Geochem. 1986, 9, 83–99. [Google Scholar] [CrossRef]
- Dembitsky, V.M. Oxidation, epoxidation and sulfoxidation reactions catalysed by haloperoxidases. Tetrahedron 2003, 59, 4701–4720. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Rezanka, T.; Srebnik, M. Lipid compounds of freshwater sponges: Family Spongillidae, class Demospongiae. Chem. Phys. Lipids 2003, 123, 117–155. [Google Scholar] [CrossRef] [PubMed]
- Webster, N.S.; Taylor, M.W. Marine sponges and their microbial symbionts: Love and other relationships. Environ. Microbiol. 2012, 14, 335–346. [Google Scholar] [CrossRef]
- Hentschel, U.; Piel, J.; Degnan, S. Genomic insights into the marine sponge microbiome. Nat. Rev. Microbiol. 2012, 10, 641–654. [Google Scholar] [CrossRef]
- Mishra, C.; Sree, A. Composition of the lipophilic extract from the sponge Axinella carteri collected from the Bay of Bengal of the Orissa coast. Chem. Nat. Compd. 2008, 44, 282–286. [Google Scholar] [CrossRef]
- Anuradha, V.; Byju, K.; Emilda, R. In silico biological activity of steroids from the marine sponge Axinella carteri. Med. Chem. Res. 2013, 22, 1142–1146. [Google Scholar] [CrossRef]
- Santalova, E.A.; Makarieva, T.N.; Gorshkova, I.A.; Dmitrenok, A.S.; Krasokhin, V.B.; Stonik, V.A. Sterols from six marine sponges. Biochem. Syst. Ecol. 2004, 32, 153–167. [Google Scholar] [CrossRef]
- Ivanchina, N.V.; Kalinin, V.I. Triterpene and steroid glycosides from marine sponges (Porifera, Demospongiae): Structures, taxonomical distribution, biological activities. Molecules 2023, 28, 2503. [Google Scholar] [CrossRef]
- Barnathan, G.; Velosaotsy, N.; Al-Lihaibi, S.; Njinkoue, J.M.; Kornprobst, J.M.; Vacelet, J.; Boury-Eenault, N. Unusual sterol composition and classification of three marine sponge families. BMIB-Boll. Musei Ist. Biol. 2004, 68, 201–208. [Google Scholar]
- Minale, L.; Sodano, G. Marine sterols: Unique 3β-hydroxymethyl-A-nor-5α-steranes from the sponge Axinella verrucosa. J. Chem. Soc. Perkin Trans. 1 1974, 20, 2380–2384. [Google Scholar] [CrossRef]
- Eggersdorfer, M.L.; Kokke, W.C.M.C.; Crandell, C.W.; Hochlowski, J.E.; Djerassi, C. Sterols in marine invertebrates. 32. Isolation of 3.beta.-(hydroxymethyl)-A-nor-5.alpha.-cholest-15-ene, the first naturally occurring sterol with a 15-16 double bond. J. Org. Chem. 1982, 47, 5304–5309. [Google Scholar] [CrossRef]
- Bohlin, L.; Sjoestrand, U.; Sodano, G.; Djerassi, C. Sterols in marine invertebrates. 33. Structure of five new 3.beta.-(hydroxymethyl)-a-nor steranes: Indirect evidence for transformation of dietary precursors in sponges. J. Org. Chem. 1982, 47, 5309–5314. [Google Scholar] [CrossRef]
- Sheikh, Y.M.; Djerassi, C. Steroids from sponges. Tetrahedron 1974, 30, 4095–4103. [Google Scholar] [CrossRef]
- Aiello, A.; Fattorusso, E.; Menna, M. Steroids from sponges: Recent reports. Steroids 1999, 64, 687–714. [Google Scholar] [CrossRef]
- Kitagawa, I.; Kobayashi, M.; Kitanaka, K.; Kido, M.; Kyogoku, Y. Marine natural products. XII. On the chemical constituents of the Okinawan marine sponge Hymeniacidon aldis. Chem. Pharm. Bull. 1983, 31, 2321–2328. [Google Scholar] [CrossRef]
- De Nanteuil, G.; Ahond, A.; Poupat, C.; Potier, P.; Pusset, M.; Pusset, J.; Laboute, P. Invertebres marins du lagon neo-caledonien-VI: Isolement et identification de onze sterols de type hydroxymethyl-3β nor-a cholestane du spongiaire, Pseudaxinyssa cantharella. Tetrahedron 1985, 41, 6035–6039. [Google Scholar] [CrossRef]
- Bohlin, L.; Sjöstrand, U.; Djerassi, C.; Sullivan, B.W. Minor and trace sterols in marine invertebrates. Part 20. 3ξ-Hydroxymethyl-A-nor-patinosterol and 3ξ-hydroxymethyl-A-nor-dinosterol. Two new sterols with modified nucleus and side-chain from the sponge Teichaxinella morchella. J. Chem. Soc. Perkin Trans. 1 1981, 21, 1023–1028. [Google Scholar] [CrossRef]
- Elenkov, I.; Popov, S.; Andreev, S. Sterol composition of the Black Sea sponges Hymeniacidon sanguinea (Grant) and Halichondria panicea (Pallas). Z. Naturforsch. C 1999, 54, 972–976. [Google Scholar] [CrossRef]
- Masuno, M.N.; Pawlik, J.K.; Molinski, T.F. Phorbasterones A-D, cytotoxic Nor-ring A steroids from the sponge Phorbas amaranthus. J. Nat. Prod. 2004, 67, 731–733. [Google Scholar] [CrossRef]
- Tischler, M.; Ayer, S.W.; Andersen, R.J.; Mitchell, J.F.; Clardy, J. Anthosterones A and B, ring A contracted steroids from the sponge Anthoracuata graceae. Can. J. Chem. 1988, 66, 1173. [Google Scholar] [CrossRef]
- Rahelivao, M.P.; Gruner, M.; Andriamanantoanina, H.; Andriamihaja, B.; Bauer, I.; Knölker, H.J. Red algae (Rhodophyta) from the coast of Madagascar: Preliminary bioactivity studies and isolation of natural products. Mar. Drugs 2015, 13, 4197–4216. [Google Scholar] [CrossRef]
- Ramalingam, V.; Rajaram, R. 2-Ethoxycarbonyl-2-β-hydroxy-a-nor-cholest-5-ene-4one: Extraction, structural characterization, antimicrobial, antioxidant, anticancer and acute toxicity studies. Steroids 2018, 140, 11–23. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, M.; Yu, M.; Wang, J.; Zhu, H.; Chen, C.; Zhang, Y. Four new ergostane-type steroids from Lasiodiplodia pseudotheobromae. Tetrahedron Lett. 2020, 61, 151737. [Google Scholar] [CrossRef]
- Li, G.; Deng, Z.; Guan, H.; van Ofwegen, L.; Proksch, P.; Lin, W. Steroids from the soft coral Dendronephthya sp. Steroids 2005, 70, 13–18. [Google Scholar] [CrossRef]
- Fan, W.; Wang, X.; Cai, H.; Sun, L.; Yang, L.; Nie, S. Chemical analysis of the South China Sea spine body sponge Acanthella cavernosa. J. Pharm. Pract. 2016, 34, 138–141. [Google Scholar]
- Ragini, K.; Piggott, A.M.; Karuso, P. Crellasterones A and B: A-Norsterol derivatives from the New Caledonian sponge Crella incrustans. Mar. Drugs 2017, 15, 177. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, G.; Serrar, M.; Hadid, Z. Steroid Derivatives and Use Thereof as Medicaments. Patent WO2005014614A1, 17 February 2005. [Google Scholar]
- Chen, B.; Gu, Y.C.; de Voogd, N.J.; Wang, C.Y.; Guo, Y.W. Xidaosterols A and B, two new steroids with unusual α-keto-enol functionality from the South China Sea sponge Neopetrosia chaliniformis. Nat. Prod. Res. 2022, 36, 1941–1947. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.F.; Yi, Y.H.; Yao, X.S.; Xu, Q.; Zhang, S.; Lin, H. A novel steroid for Sargassum carpophyllum. Zhongguo Haiyang Yaowu 2003, 22, 28–30. [Google Scholar]
- Pomponi, S.A.; Wright, A.E.; Diaz, M.C.; van Soest, R.W.M. A Systematic Revision of the Central Atlantic Halichondrida (Demospongiae, Porifera). Part II. Patterns of Distribution of Secondary Metabolites. In Fossil and Recent Sponges; Reitner, J., Keupp, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Kanazawa, A.; Teshima, S.I.; Hyodo, S.I. Sterols of the sponges (porifera, class demospongiae). Comp. Biochem. Phys. 1979, 62, 521–525. [Google Scholar] [CrossRef]
- Sahidin, I.; Sabandar, C.W.; Hamsidi, R.; Malaka, M.H.; Sadarun, B.; Aslan, L.O. A-Nor steroids from the marine sponge, Clathria species. Malays. J. Anal. Sci. 2018, 22, 375–382. [Google Scholar]
- Malik, S.; Djerassi, C. Minor and trace sterols in marine invertebrates. 61. Isolation and structure elucidation of new A-nor sterols from the marine sponge Phakellia aruensis. Steroids 1989, 53, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M.; Nakao, Y.; Nakao, Y.; Matsunaga, S.; Matsunaga, S.; Fusetani, N. Isolation and structure elucidation of two phosphorylated sterol sulfates, MT1-MMP inhibitors from a marine sponge Cribrochalina sp. Revision of the structures of haplosamates A and B. Tetrahedron 2001, 57, 3885–3890. [Google Scholar] [CrossRef]
- Teshima, S.; Kanazawa, A.; Yamada, I. Occurrence of 3β-hydroxymethyl-A-nor sterols in the sponge. Nippon Suisan Gakkaishi 1984, 50, 702–712. [Google Scholar] [CrossRef]
- Gallimore, W.A.; Cabral, C.; Kelly, M.; Scheuer, P.J. A novel D-ring unsaturated A-nor sterol from the Indonesian sponge, Axinella carteri Dendy. Nat. Prod. Res. 2008, 22, 1339. [Google Scholar] [CrossRef]
- Yu, S.; Deng, Z.; Proksch, P.; Lin, W. Oculatol, oculatolide, and A-nor sterols from the sponge Haliclona oculata. J. Nat. Prod. 2006, 69, 1330. [Google Scholar] [CrossRef]
- Aknin, M.; Gaydou, E.M.; Boury-Esnault, N.; Costantino, V.; Mangoni, A. Nor-sterols in Axinella proliferans, sponge from the Indian Ocean. Comp. Biochem. Physiol. 1996, 113, 845–848. [Google Scholar] [CrossRef]
- Gross, H.; Wright, A.D.; Reinscheid, U.; Konig, G.M. Three new spongian diterpenes from the Fijian marine sponge Spongia sp. Nat. Prod. Commun. 2009, 4, 315. [Google Scholar] [CrossRef] [PubMed]
- Sheu, J.H.; Chao, C.H.; Wang, G.H.; Hung, K.C.; Duh, C.Y.; Chiang, M.Y.; Wu, Y.C.; Wu, C.C. The first A-nor-hippuristanol and two novel 4,5-secosuberosanoids from the Gorgonian Isis hippuris. Tetrahedron Lett. 2004, 45, 6413–6416. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chang, Y.C.; Chen, Y.H.; Zheng, L.G.; Huang, P.C.; Huynh, T.H.; Peng, B.R.; Chen, Y.Y. Natural Products from Octocorals of the Genus Dendronephthya (Family Nephtheidae). Molecules 2020, 25, 5957. [Google Scholar] [CrossRef] [PubMed]
- Crabbé, P. Some aspects of steroid research based on natural products from plant origin. Bull. Soc. Chim. Belg. 1979, 88, 345–358. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Antitumor profile of carbon-bridged steroids (CBS) and triterpenoids. Mar. Drugs 2021, 19, 324. [Google Scholar] [CrossRef] [PubMed]
- Machida, K.; Kikuchi, M. Viburnols: Six novel triterpenoids from Viburnum dilatatum. Tetrahedron Lett. 1997, 38, 571–574. [Google Scholar] [CrossRef]
- Wang, X.Y.; Shi, H.-M.; Li, X.-B. Chemical constituents of plants from the genus Viburnum. Chem. Biodiver. 2010, 7, 567–593. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, L.; Xue, J.; Wang, K.; Hua, H.; Yuan, T. Norcolocynthenins A and B, two cucurbitane 3-nor-Triterpenoids from Citrullus colocynthis and their cytotoxicity. Bioorg. Chem. 2020, 101, 104045. [Google Scholar] [CrossRef]
- He, X.F.; Wang, X.N.; Yin, S.; Dong, L.; Yu, J.M. Ring A modified novel triterpenoids from Dysoxylum hainanense. Eur. J. Org. Chem. 2009, 2009, 4818–4824. [Google Scholar] [CrossRef]
- Lv, H.W.; Wang, Q.L.; Li, S.W.; Zhu, M.D.; Zhou, Z.B. Cucurbitane-type triterpenoids from the fruits of Citrullus colocynthis. Fitoterapia 2023, 165, 105405. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, M.; Kaur, N.; Sharma, C.; Kaur, G.; Kaur, R.; Batra, K.; Rani, J. Citrullus colocynthis an important plant in Indian traditional system of medicine. Pharmacog. Rev. 2020, 14, 22–27. [Google Scholar] [CrossRef]
- Mónico, A.; Ramalhete, C.; André, V.; Spengler, G.; Mulhovo, S.; Duarte, M.T.; Ferreira, M.J.U. Cucurbalsaminones A–C, rearranged triterpenoids with a 5/6/3/6/5-fused pentacyclic carbon skeleton from Momordica balsamina, as multidrug resistance reversers. J. Nat. Prod. 2019, 82, 2138–2143. [Google Scholar] [CrossRef] [PubMed]
- Llanos, G.G.; Araujo, L.M.; Jiménez, I.A.; Moujir, L.M.; Bazzochi, I.L. Withaferin A-related steroids from Withania aristata exhibit potent antiproliferative activity by inducing apoptosis in human tumor cells. Eur. J. Med. Chem. 2012, 54, 499–511. [Google Scholar] [CrossRef]
- Maher, S.; Rasool, S.; Mehmood, R.; Perveen, S.; Tareen, R.B. Trichosides A and B, new withanolide glucosides from Tricholepis eburnean. Nat. Prod. Res. 2018, 32, 1–6. [Google Scholar] [CrossRef]
- Ren, W.J.; Io, C.C.; Jiang, R.; Ng, K.F.; Liu, J.Z.; Bai, L.P.; Zhang, W. Di- and triterpenoids from the rhizomes of Isodon amethystoides and their anti-inflammatory activities. J. Nat. Prod. 2023, 86, 1230–1239. [Google Scholar] [CrossRef]
- Liu, H.H.; Tsai, T.H.; Chang, T.T.; Chou, C.J.; Lin, L.C. Lanostane-triterpenoids from the fungus Phellinus gilvus. Phytochemistry 2009, 70, 558–563. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Liu, L.-Y.; Dong, Z.-J.; Li, Z.-H.; Liu, J.-K. Six novel steroids from culture of basidiomycete Polyporus ellisii. Nat. Prod. Bioprospect. 2012, 2, 240–244. [Google Scholar] [CrossRef]
- van Graas, G.; de Lange, F.; de Leeuw, J. A-nor-steranes, a novel class of sedimentary hydrocarbons. Nature 1982, 296, 59–61. [Google Scholar] [CrossRef]
- Ren, Y.H.; Liu, Q.F.; Chen, L.; He, S.J.; Zuo, J.P.; Fan, Y.Y.; Yue, J.M. Urceoloids A and B, two C19 steroids with a rearranged spirocyclic carbon skeleton from Urceola quintaretii. Org. Lett. 2019, 21, 1904–1907. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.J.; Zeng, G.Z.; Han, J.; He, W.J.; Zhang, Y.M.; Tan, N.H. Zizimauritic acids A-C, three novel nortriterpenes from Ziziphus mauritiana. Bioorg. Med. Chem. Lett. 2012, 22, 6377–6380. [Google Scholar] [CrossRef] [PubMed]
- Roitman, J.N.; Jurd, L. Triterpenoid and phenolic constituents of Colubrina granulosa. Phytochemistry 1978, 17, 491–494. [Google Scholar] [CrossRef]
- Lee, M.; Sang, B.S.; Min, C.-G.; Kim, K.-S.; Kho, Y.H.; Kho, Y.H. Cytotoxic triterpenoids from the fruits of Zizyphus jujuba. Planta Med. 2003, 69, 51–54. [Google Scholar]
- Mayo, P.D.; Starratt, A.N. Terpenoids. II. Ceanothenic acid: A C29 A-Norlupane derivative. Can. J. Chem. 1962, 40, 1632–1641. [Google Scholar] [CrossRef]
- Kang, K.; Jung, W.; Won, K.; Jinwoong, K.; Sang, H. Cytotoxic ceanothane- and lupane-type triterpenoids from the roots of Ziziphus jujuba. J. Nat. Prod. 2016, 79, 2364–2375. [Google Scholar] [CrossRef]
- Eade, R.A.; Ellis, J.; Harper, P.; Simes, J.J.H. Jingullic acid, a triterpene of the lupane series containing a C-28 → 19-lactone group. J. Chem. Soc. D 1969, 4, 579–580. [Google Scholar] [CrossRef]
- Suksamrarn, S.; Panomwan, P.; Soykam, K.; Thanomsin, D.; Saovaluk, R.; Apichart, S. Ceanothane-and lupane-type triterpenes with antiplasmodial and antimycobacterial activities from Ziziphus cambodiana. Chem. Pharm. Bull. 2006, 54, 535–537. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Vishwakarma, R.A.; Varma, N.; Tandon, J.S. Coleonolic acid, a rearranged ursane triterpenoid from Coleus forskohlii. Tetrahedron Lett. 1990, 31, 3467–3470. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.N.; Feng, Z.M.; Yuan, X.; Zhang, X.; Jiang, J.S.; Zhang, P.C. The triterpenoids and sesquiterpenoids from the plant of Agrimonia pilosa. Fitoterapia 2022, 157, 105104. [Google Scholar] [CrossRef]
- Tagousop, C.N.; Ngnokam, D.; Harakat, D.; Nazabadioko, L.V. Melantheraside A–E, five original triterpenes with natural chloride or oxime group from the aerial parts of Melanthera elliptica O. Hoffm. Phytochem. Lett. 2018, 26, 38–43. [Google Scholar] [CrossRef]
- Hill, R.A.; Connolly, J.D. Triterpenoids. Nat. Prod. Rep. 2018, 35, 1294–1329. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.W.; Ouyang, M.A.; Chen, Q.J.; Wu, Z.J. Five new taraxerene-type triterpenes from the branch barks of Davidia involucrata. Molecules 2014, 19, 17619–17631. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Tong, L.; Feng, Y.; Wu, J.; Zhao, X.; Ruan, H. Ursane-type nortriterpenes with a five-membered A-ring from Rubus innominatus. Phytochemistry 2015, 116, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Beladjila, K.A.; Cotugno, R.; Berrehala, D.; Kabouche, Z.; De Tommasi, N.; Braca, A.; De Leo, M. Cytotoxic triterpenes from Salvia buchananii roots. Nat. Prod. Res. 2018, 32, 2025–2030. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Z.-Q.; Zhou, X.-D.; Yao, Q.-Y.; Chen, Z.-L.; Chu, L.-L.; Yu, H.-H. New terpenoids from Potentilla freyniana Bornm. and their cytotoxic activities. Molecules 2022, 27, 3665. [Google Scholar] [CrossRef]
- Hitotsuyanagi, Y.; Ozeki, A.; Choo, C.Y.; Chan, K.L.; Itokawa, H.; Takeya, K. Malabanones A and B, novel nortriterpenoids from Ailanthus malabarica DC. Tetrahedron 2001, 57, 7477–7480. [Google Scholar] [CrossRef]
- Zeng, Q.; Guan, B.; Qin, J.J.; Wang, C.H.; Cheng, X.R.; Ren, J. 2,3-Seco- and 3,4-seco-tirucallane triterpenoid derivatives from the stems of Aphanamixis grandifolia Blume. Phytochemistry 2012, 80, 148–155. [Google Scholar] [CrossRef]
- Liu, H.B.; Zhang, H.; Li, P.; Gao, Z.B.; Yue, J.M. Chukrasones A and B: Potential Kv1.2 potassium channel blockers with new skeletons from Chukrasia tabularis. Org. Lett. 2012, 14, 4438–4441. [Google Scholar] [CrossRef]
- Pointinger, S.; Promdang, S.; Vajrodaya, S.; Pannell, C.M.; Hofer, O.; Mereiter, K.; Greger, H. Silvaglins and related 2, 3-secodammarane derivatives–unusual types of triterpenes from Aglaia silvestris. Phytochemistry 2008, 69, 2696. [Google Scholar] [CrossRef]
- Machida, K.; Kikuchi, M. Studies on the constituents of Viburnum species. XVII. New dammarane-type triterpenoids from Viburnum dilatatum THUNB. Chem. Pharm. Bull. 1997, 45, 1589. [Google Scholar] [CrossRef]
- Machida, K.; Kikuchi, M. Viburnols: Novel triterpenoids with a rearranged dammarane skeleton from Viburnum dilatatum. Tetrahedron Lett. 1996, 37, 4157. [Google Scholar] [CrossRef]
- Chen, H.; Tian, T.; Miao, H.; Zhao, Y.Y. Traditional uses, fermentation, phytochemistry and pharmacology of Phellinus linteus: A review. Fitoterapia 2016, 113, 6–26. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Li, X.C.; Smillie, T.J.; Khan, I.A. Rearranged cycloartanol glycosides from Sutherlandia frutescens. Planta Med. 2010, 76, P47. [Google Scholar] [CrossRef] [PubMed]
- An, F.; Wang, X.; Yang, M.; Luon, J.; Kong, L. Bioactive A-ring rearranged limonoids from the root barks of Walsura robusta. Acta Pharm. Sin. B 2019, 9, 545–556. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Cai, X.H.; Feng, T.; Li, Y.; Li, X.N.; Luo, X.D. Triterpene and sterol derivatives from the roots of Breynia fruticose. J. Nat. Prod. 2011, 74, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Grishko, V.V.; Tolmacheva, I.A.; Pereslavtseva, A.V. Triterpenoids with a five-membered a-ring: Distribution in nature, transformations, synthesis, and biological activity. Chem. Nat. Compd. 2015, 51, 1–21. [Google Scholar] [CrossRef]
- Guo, S.; Tang, Y.P.; Duan, J.A.; Su, S.L.; Ding, A.W. Two new terpenoids from fruits of Ziziphus jujuba. Chin. Chem. Lett. 2009, 20, 197–200. [Google Scholar] [CrossRef]
- Li, X.-C.; Cai, L.; Wu, C.D. Antimicrobial compounds from Ceanothus americanus against oral pathogens. Phytochemistry 1997, 46, 97. [Google Scholar] [CrossRef]
- Lee, S.-S.; Lin, C.J.; Liu, K.C. Two triterpenes from Paliurus ramosissimus. J. Nat. Prod. 1992, 55, 602. [Google Scholar] [CrossRef]
- Leal, I.C.R.; dos Santos, K.R.N.; Junior, I.I.; Antunes, O.A.C.; Porzel, A.; Wessjohann, L.; Kuster, R.M. Ceanothane and lupane type triterpenes from Zizyphus joazeiro—An anti-Staphylococcal evaluation. Planta Med. 2010, 76, 47. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, Y.; Hayashida, A.; Tsurushima, K.; Nagai, R.; Yoshitomi, M.; Daiguji, N.; Sakashita, N.; Takeya, M.; Tsukamoto, S.; Ikeda, T. Triterpenoids isolated from Zizyphus jujuba inhibit foam cell formation in macrophages. J. Agric. Food Chem. 2011, 59, 4544. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Chen, W.C.; Chen, C.H. New jujubogenin glycosides from Colubrina asiatica. J. Nat. Prod. 2000, 63, 1580–1583. [Google Scholar] [CrossRef] [PubMed]
- Alarcón, J.; Cespedes, C.L. Chemical constituents and biological activities of South American Rhamnaceae. Phytochem. Rev. 2015, 14, 389–401. [Google Scholar] [CrossRef]
- Wang, J.P.; Shu, Y.; Hu, J.T.; Liu, R.; Cai, X.Y.; Sun, C.T. Roquefornine A, a sesterterpenoid with a 5/6/5/5/6-fused ring system from the fungus Penicillium roqueforti YJ-14. Org. Chem. Front. 2020, 7, 1463–1468. [Google Scholar] [CrossRef]
- Wang, J.P.; Yu, J.; Shu, Y.; Shi, Y.X.; Luo, P.; Cai, L.; Ding, Z.T. Peniroquesines A–C: Sesterterpenoids possessing a 5–6–5–6–5-fused pentacyclic ring system from Penicillium roqueforti YJ-14. Org. Lett. 2018, 20, 5853–5856. [Google Scholar] [CrossRef]
- Matsuyama, T.; Togashi, K.; Nakano, M.; Sato, H.; Uchiyama, M. Revision of the peniroquesine biosynthetic pathway by retrobiosynthetic theoretical analysis: Ring strain controls the unique carbocation rearrangement cascade. JACS Au 2023, 3, 1596–1603. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, B.; Chen, G.; Pan, Y.; Zhou, D.; Li, N. Spirostane saponins with a rearranged A/B ring system isolated from the rhizomes of Ophiopogon japonicus. Phytochemistry 2022, 193, 112975. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.Y.; Ruan, L.J.; Yu, T.; Zheng, Q.F.; Chen, N.H.; Wu, R.B. Bufospirostenin A and bufogargarizin B, steroids with rearranged skeletons from the toad Bufo bufo gargarizans. J. Nat. Prod. 2017, 80, 1182–1186. [Google Scholar] [CrossRef]
- Tian, H.Y.; Wang, L.; Zhang, X.Q.; Wang, Y.; Zhang, D.M. Bufogargarizins A and B: Two novel 19-Norbufadienolides with unprecedented skeletons from the venom of Bufo bufo gargarizans. Chem. A Eur. J. 2010, 16, 10989–10993. [Google Scholar] [CrossRef]
- Song, Y.Y.; Miao, J.H.; Qin, F.Y.; Yan, Y.M.; Yang, J.; Qin, D.P.; Hou, F.H.; Zhou, L.L.; Cheng, Y.X. Belamchinanes A–D from Belamcanda chinensis: Triterpenoids with an unprecedented carbon skeleton and their activity against age-related renal fibrosis. Org. Lett. 2018, 20, 5506–5509. [Google Scholar] [CrossRef] [PubMed]
- Dorfman, R.I.; Fajkoš, J.; Joska, J. Biological activity of various steroids including B-norsteroids. Steroids 1964, 3, 675–686. [Google Scholar] [CrossRef]
- Nussim, M.; Mazur, Y. Synthesis and conformational analysis of A-homo-B-nor and A-nor-B-homoe steroids. Tetrahedron 1968, 24, 5337–5359. [Google Scholar] [CrossRef] [PubMed]
- Shavva, A.G.; Antimonova, O.I.; Baigozin, D.V. Synthesis and molecular structure of D-homo-B-nor-8α analogs of steroidal estrogens. Russ. J. Org. Chem. 2010, 46, 1511–1516. [Google Scholar] [CrossRef]
- Wu, Q.; Nay, B.; Yang, M.; Ni, Y.; Wang, H.; Yao, L.; Li, X. Marine sponges of the genus Stelletta as promising drug sources: Chemical and biological aspects. Acta Pharm. Sin. B 2019, 9, 237–257. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.; Praharaj, P.P.; Panigrahi, D.P. Bioactive compounds from marine invertebrates as potent anticancer drugs: The possible pharmacophores modulating cell death pathways. Mol. Biol. Rep. 2020, 47, 7209–7228. [Google Scholar] [CrossRef] [PubMed]
- Lazzara, V.; Arizza, V.; Luparello, C.; Mauro, M.; Vazzana, M. Bright spots in the darkness of cancer: A review of starfishes-derived compounds and their anti-tumor action. Mar. Drugs 2019, 17, 617. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Liu, Z.; Cui, J.; Huang, Y.; Chen, H.; Wu, Y.; Huang, X.; Gan, C. Apoptosis inducing properties of 3-biotinylate-6-benzimidazole B-nor-cholesterol analogues. Steroids 2021, 169, 108822. [Google Scholar] [CrossRef]
- Miyamoto, T.; Kodama, K.; Aramaki, Y.; Higuchi, R.; Van Soest, R.W.M. Orostanal, a novel abeo-sterol inducing apoptosis in leukemia cell from a marine sponge, Stelletta hiwasaensis. Tetrahedron Lett. 2001, 42, 6349–6351. [Google Scholar] [CrossRef]
- Wei, X.; Rodríguez, A.D.; Wang, Y.; Franzblau, S.G. Novel ring B abeo-sterols as growth inhibitors of Mycobacterium tuberculosis isolated from a Caribbean Sea sponge, Svenzea zeai. Tetrahedron Lett. 2007, 48, 8851–8854. [Google Scholar] [CrossRef]
- Turner, A.B. Steroids: Sterols and bile acids. In Supplements to the 2nd Edition of Rodd’s Chemistry of Carbon Compounds; A Modern Comprehensive Treatise; Elsevier: Amsterdam, The Netherlands, 1975; Volume II, pp. 143–178. [Google Scholar]
- Mackenzie, A.; Lamb, N.; Maxwell, J. Steroid hydrocarbons and the thermal history of sediments. Nature 1982, 295, 223–226. [Google Scholar] [CrossRef]
- Rampen, S.W.; Schouten, S.; Hopmans, E.C.; Abbas, B.; Noordeloos, A.A.M.; Geenevasen, J.A.J.; Moldowan, J.M.; Denisevich, P.; Sinninghe Damsté, J.S. Occurrence and biomarker potential of 23-methyl steroids in diatoms and sediments. Org. Geochem. 2009, 40, 219–228. [Google Scholar] [CrossRef]
- Shin, A.Y.; Lee, H.S.; Lee, Y.J.; Lee, J.S.; Son, A.; Choi, C.; Lee, L. Oxygenated theonellastrols: Interpretation of unusual chemical behaviors using quantum mechanical calculations and stereochemical reassignment of 7α-hydroxytheonellasterol. Mar. Drugs 2020, 18, 607. [Google Scholar] [CrossRef] [PubMed]
- Su, J.H.; Lin, F.Y.; Huang, H.C.; Dai, C.F. Novel steroids from the soft coral Nephthea chabrolii. Tetrahedron 2007, 63, 703–707. [Google Scholar] [CrossRef]
- Díaz-Marrero, A.R.; Porras, G.; Aragón, Z.; de la Rosa, J.M.; Dorta, E. Carijodienone from the octocoral Carijoa multiflora. A spiropregnane-based steroid. J. Nat. Prod. 2011, 74, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Chang, C.W.; Tseng, Y.J.; Lee, J. Bioactive steroids from the Formosan soft coral Umbellulifera petasites. Mar. Drugs 2016, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A. Fallaxosides B1 and D3, triterpene glycosides with novel skeleton types of aglycones from the sea cucumber Cucumaria fallax. Tetrahedron 2017, 73, 2335–2341. [Google Scholar] [CrossRef]
- Galappaththi, M.C.A.; Patabendige, N.M.; Premarathne, B.M.; Hapuarachchi, K.K.; Tibpromma, S.; Dai, D.Q.; Suwannarach, N.; Rapior, S.; Karunarathna, S.C. A Review of Ganoderma triterpenoids and their bioactivities. Biomolecules 2023, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Kuo, L.M.; Su, J.S.; Hwang, T.L. Pinnigorgiols A–C, 9,11-secosterols with a rare ring arrangement from a gorgonian coral Pinnigorgia sp. Tetrahedron 2016, 72, 999–1004. [Google Scholar] [CrossRef]
- Chang, Y.C.; Hwang, T.L.; Sheu, J.H.; Wu, Y.C. New anti-Inflammatory 9,11-secosterols with a rare tricyclo [5,2,1,1]decane ring from a Formosan gorgonian Pinnigorgia sp. Mar. Drugs 2016, 14, 218. [Google Scholar] [CrossRef]
- Uddin, M.H.; Hossain, M.K.; Nigar, M.; Roy, M.C.; Tanaka, J. New cytotoxic spongian-class rearranged diterpenes from a marine sponge. Chem. Nat. Compd. 2012, 48, 412–415. [Google Scholar] [CrossRef]
- Rungprom, W.; Chavasiri, W.; Kokpol, U.; Kotze, A.; Garson, M.J. Bioactive chromodorolide diterpenes from an Aplysillid sponge. Mar. Drugs 2004, 2, 101–107. [Google Scholar] [CrossRef]
- Kashman, Y.; Carmely, S.; Blasberger, D.; Hirsch, S.; Green, D. Marine natural products: New results from Red Sea invertebrates. Pure Appl. Chem. 1989, 61, 517–520. [Google Scholar] [CrossRef]
- Hochlowski, J.E.; Faulkner, D.F.; Matsumoto, G.K.; Clardy, J. Norrisolide, a novel diterpene from the dorid nudibranch Chromodoris norrisi. J. Org. Chem. 1983, 48, 1141. [Google Scholar] [CrossRef]
- Bobzin, S.C.; Faulkner, D.J. Diterpenes from the marine sponge Aplysilla polyrhaphis and the dorid nudibranch Chromodoris norrisi. J. Org. Chem. 1989, 54, 3902–3907. [Google Scholar] [CrossRef]
- Rudi, A.; Kashman, Y. Three new norrisolide related rearranged spongians. Tetrahedron 1990, 46, 4019. [Google Scholar] [CrossRef]
- Bergquist, P.R.; Bowden, B.F.; Cambie, R.C.; Craw, P.A.; Karuso, P.; Poiner, A.; Taylor, W.C. The constituents of marine sponges. VI. Diterpenoid metabolites of the New Zealand sponge Chelonaplysilla violacea. Aust. J. Chem. 1993, 46, 623. [Google Scholar] [CrossRef]
- Carmely, S.; Cojocaru, M.; Loya, Y.; Kashman, Y. Ten new rearranged spongian diterpenes from two Dysidea species. J. Org. Chem. 1988, 53, 4801–4807. [Google Scholar] [CrossRef]
- Hambley, T.W.; Poiner, A.; Taylor, W.C. The Constituents of marine sponges. V. The isolation from Chelonaplysilla violacea (Dendroceratida) of aplyviolene and other diterpenes, and the determination of the crystal structure of aplyviolene. Aust. J. Chem. 1990, 43, 1861–1870. [Google Scholar] [CrossRef]
- Bobzin, S.C.; Faulkner, D.J. Diterpenes from the Pohnpeian marine sponge Chelonaplysilla sp. J. Nat. Prod. 1991, 54, 225–232. [Google Scholar] [CrossRef]
- Dewi, A.S.; Pierens, G.K.; Cheney, K.L.; Blanchfield, J.T.; Garson, M.J. Chromolactol, an oxygenated diterpene from the Indo-Pacific nudibranch Goniobranchus coi: Spectroscopic and computational studies. Aust. J. Chem. 2018, 71, 798–803. [Google Scholar] [CrossRef]
- Turner, A.B. Terpenoids and steroids. Annu. Rep. Prog. Chem. Sect. B Org. Chem. 1968, 65, 409–440. [Google Scholar] [CrossRef]
- Hanson, J.R. The microbiological transformation of diterpenoids. Nat. Prod. Rep. 1992, 9, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.H.; Fang, J.M.; Cheng, Y.S. Diterpenoids and steroids from Taiwania cryptomerioides. Phytochemistry 1998, 48, 1391–1397. [Google Scholar]
- Shukla, Y.J.; Pawar, R.S.; Ding, Y.; Li, X.C.; Ferreira, D.; Khan, I.A. Pregnane glycosides from Hoodia gordonii. Phytochemistry 2009, 70, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; He, Y.L.; Wen, C.W.; Zheng, S.-Z. The Chemical Constituents of Polypodium Niponicum. J. Chin. Chem. Soc. 2009, 56, 626–631. [Google Scholar] [CrossRef]
- Andersson, P.F.; Bengtsson, S.; Stenlid, J.; Broberg, A. B-norsteroids from Hymenoscyphus pseudoalbidus. Molecules 2012, 17, 7769–7781. [Google Scholar] [CrossRef]
- Kikuchi, T.; Mori, M.; In, Y.; Zhang, J.; Yamada, T.; Hirano, T. Pleurocorols A and B: Rearranged steroids from the fruiting bodies of Pleurotus cornucopiae. Org. Chem. Front. 2020, 7, 2022–2028. [Google Scholar] [CrossRef]
- Hen, J.-J.; Zhand, Z.X.; Zhou, J.; Wang, D.-Z.; Zhou, L.; Tao, G.D. A novel C21 steroidal glycoside from Marsdenia incisa. Plant Diversity 1991, 13, 1–3. [Google Scholar]
- Zhao, Q.Q.; Song, Q.Y.; Jiang, K.; Li, G.D.; Wei, W.J.; Li, Y.; Gao, K. Spirochensilides A and B, two new rearranged triterpenoids from Abies chensiensis. Org. Lett. 2015, 17, 2760–2763. [Google Scholar] [CrossRef]
- Wang, S.Y.; Huang, C.; Sun, R.K.; Lu, L.H.; Liang, H.G.; Gao, L. New tirucallane triterpenoids from the dried latex of Euphorbia resinifera. Phytochem. Lett. 2019, 29, 220–224. [Google Scholar] [CrossRef]
- Guo, J.; He, H.P.; Fang, X.; Di, Y.T.; Li, S.L.; Zhang, Z.; Hao, X.J. Kansuinone, a novel euphane-type triterpene from Euphorbia kansui. Tetrahedron Lett. 2010, 51, 6286–6289. [Google Scholar] [CrossRef]
- Abdel-Aziz, A.; Brain, K.; Shatalebi, M.A.; Blunden, G.; Patel, A. A B-ring contracted spirostane from Tacca leontopetaloides. Phytochemistry 1990, 29, 2623–2627. [Google Scholar] [CrossRef]
- Cao, S.; Ross, L.; Tamayo, G.; Clardy, J. Asterogynins: Secondary metabolites from a Costa Rican endophytic fungus. Org. Lett. 2010, 12, 4661–4663. [Google Scholar] [CrossRef]
- Anke, A.; Werle, A.; Kappe, R.; Sterner, O. Laschiatrion, a new antifungal agent from a Favolaschia species (Basidiomycetes) active against human pathogens. J. Antibiot. 2004, 57, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Cai, J.L.; Li, X.M.; Zhou, Z.Y.; Huang, R.; Zheng, Y.S. Phellibarin D with an unprecedented triterpenoid skeleton isolated from the mushroom Phellinus rhabarbarinus. Tetrahedron Lett. 2016, 57, 3544–3546. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, D.H.; Zhao, B.T.; Le, D.D.; Min, B.S. Triterpenoids and sterols from the grains of Echinochloa utilis Ohwi & Yabuno and their cytotoxic activity. Biomed. Pharmacother. 2017, 93, 202–207. [Google Scholar] [PubMed]
- Chen, H.; Meng, Y.H.; Guo, D.A.; Liu, X.; Liu, J.H.; Hu, L.H. New cytotoxic 19-norbufadienolide and bufogargarizin isolated from Chan Su. Fitoterapia 2015, 104, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.W.; Quan, J.Y.; Li, Z.W.; Ye, G.; Shang, Z.; Chen, Z.P. Bufadienolides from the eggs of the toad Bufo bufo gargarizans and their antimelanoma activities. J. Nat. Prod. 2021, 84, 1425–1433. [Google Scholar] [CrossRef]
- Pu, D.B.; Du, B.W.; Chen, W.; Gao, J.B.; Hu, K.; Shi, N.; Li, Y.M. Premnafulvol A: A diterpenoid with a 6/5/7/3-fused tetracyclic core and its biosynthetically related analogues from Premna fulva. Org. Lett. 2018, 20, 6314–6317. [Google Scholar] [CrossRef]
- Tian, Y.; Guo, Q.; Xu, W.; Zhu, C.; Yang, Y.; Shi, S. A minor diterpenoid with a new 6/5/7/3 fused-ring skeleton from Euphorbia micractina. Org. Lett. 2014, 16, 3950–3953. [Google Scholar] [CrossRef]
- Lee, S.; Lee, D.; Ryoo, R.; Kim, J.C.; Park, H.B.; Kang, K.S. Calvatianone, a sterol possessing a 6/5/6/5-fused ring system with a contracted tetrahydrofuran B-ring, from the fruiting bodies of Calvatia nipponica. J. Nat. Prod. 2020, 83, 2737–2742. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; In, Y.; Fukaya, K.; Yang, T.; Harunari, E.; Urabe, D.; Imada, C.; Oku, N.; Igarashi, Y. Kumemicinones A–G, cytotoxic angucyclinones from a deep sea-derived Actinomycete of the genus Actinomadura. J. Nat. Prod. 2022, 85, 1098–1108. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Li, L.; Zhong, J.; Tohtaton, Z.; Ren, Q.; Han, L.; Huang, X.; Yuan, T. Officimalonic acids A−H, lanostane triterpenes from the fruiting bodies of Fomes officinalis. Phytochemistry 2016, 130, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R.; Wada, S.I.; Aoki, H.; Matsunaga, S.; Yamori, T. Spiromarienonols A and B: Two new 7(8→9)-abeo-lanostane-type triterpene lactones from the stem bark of Abies mariesii. Helv. Chim. Acta 2004, 87, 240–249. [Google Scholar] [CrossRef]
- Srisurichan, S.; Piapukiew, J.; Puthong, S.; Pornpakakul, S. Lanostane triterpenoids, spiro-astraodoric acid, and astraodoric acids E and F, from the edible mushroom Astraeus odoratus. Phytochem. Lett. 2017, 21, 78–83. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, D.; Cao, S.; Yao, T.; Liu, G.; Chen, L.; Qiu, F. Anti-proliferative tirucallane triterpenoids from gum resin of Boswellia sacra. Bioorg. Chem. 2022, 129, 106155. [Google Scholar] [CrossRef] [PubMed]
- Su, L.H.; Geng, C.A.; Li, T.Z.; Huang, X.Y.; Ma, Y.B. Spiroseoflosterol, a rearranged ergostane-steroid from the fruiting bodies of Butyriboletus roseoflavus. J. Nat. Prod. 2020, 83, 1706–1710. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.F.; Liu, J.Q.; Yan, Y.X.; Chen, J.C.; Yang Lu, Y.; Guo, Y.H.; Qiu, M.H. Three new triterpenoids containing four-membered ring from the fruiting body of Ganoderma sinense. Org. Lett. 2010, 12, 1656–1659. [Google Scholar] [CrossRef]
- Li, Z.Y.; Qi, F.M.; Zhi, D.J.; Hu, Q.L.; Liu, Y.H.; Zhang, Z.X.; Fei, D.Q. A novel spirocyclic triterpenoid and a new taraxerane triterpenoid from Teucrium viscidum. Org. Chem. Front. 2017, 4, 42–46. [Google Scholar] [CrossRef]
- Vieira, L.M.M.; Kijjoa, A.; Wilairat, R.; Nascimento, M.S.J.; Gales, L.; Damas, A.M.; Silva, A.M.S.; Mondranondra, I.O.; Herz, W. Bioactive friedolanostanes and 11(10→8)-abeolanostanes from the bark of Garcinia speciosa. J. Nat. Prod. 2004, 67, 2043–2047. [Google Scholar] [CrossRef]
- Chen, D.-L.; Xu, X.-D.; Li, R.-T.; Wang, B.-W.; Yu, M.; Liu, Y.-Y.; Ma, G.-X. Five new cucurbitane-type triterpenoid glycosides from the rhizomes of Hemsleya penxianensis with cytotoxic activities. Molecules 2019, 24, 2937. [Google Scholar] [CrossRef]
- Luchanskaya, V.N.; Kondratenko, E.S.; Abubakirov, N.K. Triterpene glycosides of Gypsophila trichotoma III. Structure of trichoside B. Chem. Nat. Compd. 1971, 7, 409–411. [Google Scholar] [CrossRef]
- Ratnaweera, P.B.; Williams, D.E.; Patrick, B.O.; de Silva, E.D.; Andersen, R.J. Solanioic acid, an antibacterial degraded steroid produced in culture by the fungus Rhizoctonia solani isolated from the tubers of the medicinal plant Cyperus rotundus. Org. Lett. 2015, 17, 2074–2077. [Google Scholar] [CrossRef] [PubMed]
- Ramshan, R.M.; Ratnaweera, P.B.; Williams, D.E.; de Silva, E.D.; Andersen, R.J. Stable isotope feeding studies reveal a steroid 5(6→7)abeo ring 3 contraction biogenesis for the antibiotic solanioic acid produced by 4 cultures of the fungus Rhizoctonia solani. J. Antibiot. 2019, 72, 246–251. [Google Scholar] [CrossRef]
- Ferreira, R.J.; Kincses, A.; Gajdács, M.; Spengler, G.; dos Santos, D.J.V.A.; Molnár, J.; Ferreira, M.J.U. Terpenoids from Euphorbia pedroi as multidrug-resistance reversers. J. Nat. Prod. 2018, 81, 2032–2040. [Google Scholar] [CrossRef]
- Hill, R.A.; Connolly, J.D. Triterpenoids. Nat. Prod. Rep. 2020, 37, 962–998. [Google Scholar] [CrossRef]
- Luo, J.; Huang, W.S.; Hu, S.M.; Zhang, P.P.; Zhou, X.W.; Wang, X.B.; Yang, M.H. Rearranged limonoids with unique 6/5/6/5 tetracarbocyclic skeletons from Toona ciliata and biomimetic structure divergence. Org. Chem. Front. 2017, 4, 2417–2421. [Google Scholar] [CrossRef]
- Yang, B.J.; Fan, S.R.; Cai, J.Y.; Wang, Y.T.; Jing, C.X.; Guo, J.J.; Chen, D.Z.; Hao, X.J. Aphananoid A is an anti-Inflammatory limonoid with a new 5/6/5 fused ring featuring a C24 carbon skeleton from Aphanamixis polystachya. J. Org. Chem. 2020, 85, 8597–8602. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, C.X.; Ni, W.; Hua, Y.; Liu, H.Y. Spirostanol tetraglycosides from Ypsilandra thibetica. Steroids 2010, 75, 982–987. [Google Scholar] [CrossRef]
- Chen, Y.; Ni, W.; Yan, H.; Qin, X.J.; Khan, A.; Liu, H.; Shu, T.; Jin, L.Y.; Liu, H.Y. Spirostanol glycosides with hemostatic and antimicrobial activities from Trillium kamtschaticum. Phytochemistry 2016, 131, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.J.; Hong, S.M.; Yoon, D.H.; Ham, S.L. Triterpenoids from the leaves of Abies koreana and their biological activities. Phytochemistry 2023, 208, 113594. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Oh, J.; Subedi, L. Holophyllane A: A triterpenoid possessing an unprecedented B-nor-3,4-seco-17,14-friedo-lanostane architecture from Abies holophylla. Sci. Rep. 2017, 7, 43646. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, H.J.C. Photochemistry of conjugated trienes: Vitamin D revisited. Pure Appl. Chem. 1995, 67, 63–70. [Google Scholar] [CrossRef]
- Kalaras, M.D. Production of Ergocalciferol (Vitamin D2) and Related Sterols in Mushrooms with Exposure to Pulsed Ultraviolet Light. Ph.D. Thesis, Pennsylvania State University, State College, PA, USA, 2012. [Google Scholar]
- Qiua, Y.; Gao, S. Trends in applying C–H oxidation to the total synthesis of natural products. Nat. Prod. Rep. 2016, 33, 562–581. [Google Scholar] [CrossRef]
- Mimaki, Y.; Sashida, Y. Steroidal saponins from the Liliaceae plants and their biological activities. In Saponins Used in Traditional and Modern Medicine; Advances in Experimental Medicine and Biology; Waller, G.R., Yamasaki, K., Eds.; Springer: Boston, MA, USA, 2016; Volume 404. [Google Scholar] [CrossRef]
- Gasi, P.; Sakac, M.; Jovanovic-Santa, S.; Djurendic, E. An overview of partial synthesis and transformations of secosteroids. Curr. Org. Chem. 2014, 18, 216–259. [Google Scholar] [CrossRef]
- Trang, D.T.; Dung, D.T.; Nhiem, N.X.; Cuc, N.T.; Yen, P.H. New tetracyclic and pentacyclic isomalabaricanes from the marine sponge Rhabdastrella globostellata (Carter, 1883). Tetrahedron Lett. 2022, 89, 153607. [Google Scholar] [CrossRef]
- Marion, F.; Williams, D.E.; Patrick, B.O.; Hollander, I.; Mallon, R.; Kim, S.C.; Roll, D.M.; Feldberg, L.; Van Soest, R.; Andersen, R.J. Liphagal, a selective inhibitor of PI3 kinase α isolated from the sponge Aka coralliphaga: Structure elucidation and biomimetic synthesis. Org. Lett. 2006, 8, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tang, H.; Kurtán, T.; Mándi, A.; Zhuang, C.L.; Su, L.; Zheng, G.L.; Zhang, W. Swinhoeisterols from the South China sea sponge Theonella swinhoei. J. Nat. Prod. 2018, 81, 1645–1650. [Google Scholar] [CrossRef]
- Gong, J.; Sun, P.; Jiang, N.; Riccio, R.; Lauro, G.; Bifulco, G.; Li, T.J.; Gerwick, W.H.; Zhang, W. New steroids with a rearranged skeleton as (h)P300 inhibitors from the sponge Theonella swinhoei. Org. Lett. 2014, 16, 2224–2227. [Google Scholar] [CrossRef]
- Miyata, Y.; Diyabalanage, T.; Amsler, C.D.; McClintock, J.B.; Valeriote, F.A.; Baker, B.J. Ecdysteroids from the Antarctic tunicate Synoicum adareanum. J. Nat. Prod. 2007, 70, 1859–1864. [Google Scholar] [CrossRef]
- Shubina, L.K.; Kalinovsky, A.I.; Makarieva, T.N.; Fedorov, S.N.; Dyshlovoy, S.A. New meroterpenoids from the marine sponge Aka coralliphaga. Nat. Prod. Commun. 2012, 7, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Calvin, M. Occurrence of C22-C25 isoprenoids in Bell Creek crude oil. Geochim. Cosmochim. Acta 1969, 33, 733. [Google Scholar] [CrossRef]
- Morand, P.F.; Lyall, J.M. Steroidal estrogens. Chem. Rev. 1968, 68, 85–124. [Google Scholar] [CrossRef]
- Dung, D.T.; Hang, D.T.T.; Kiem, P.V. Rhabdaprovidines D–G, four new 6,6,5-tricyclic terpenoids from the Vietnamese sponge Rhabdastrella providentiae. Nat. Prod. Commun. 2018, 13, 1251–1254. [Google Scholar] [CrossRef]
- Bourguet-Kondracki, M.L.; Kornprobst, J.M. Marine pharmacology: Potentialities in the treatment of infectious diseases, osteoporosis and Alzheimer’s disease. In Marine Biotechnology II; Advances in Biochemical Engineering/Biotechnology; Ulber, R., Le Gal, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 97. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2004, 21, 1–49. [Google Scholar] [CrossRef]
- Chang, Y.C.; Tseng, S.W.; Liu, L.L.; Chou, Y.; Ho, Y.S.; Lu, M.C.; Su, J.H. Cytotoxic sesterterpenoids from a sponge Hippospongia sp. Mar. Drugs 2012, 10, 987–997. [Google Scholar] [CrossRef]
- Goclik, E.; König, G.M.; Wright, A.D.; Kaminsky, R. Pelorol from the tropical marine sponge Dactylospongia elegans. J. Nat. Prod. 2000, 63, 1150–1152. [Google Scholar] [CrossRef]
- Matsukawa, M.; Akizawa, T.; Morris, J.F. Marinoic acid, a novel bufadienolide-related substance in the skin of the giant toad, Bufo marinus. Chem. Pharm. Bull. 1996, 44, 255–257. [Google Scholar] [CrossRef]
- Gao, W.; Chai, C.; He, Y.; Li, F.; Hao, X.; Cao, F.; Gu, L.; Liu, J.; Hu, Z.; Zhang, Y. Periconiastone A, an antibacterial ergosterol with a pentacyclo [8.7.0.01,5.02,14.010,15]heptadecane system from Periconia sp. TJ403-rc01. Org. Lett. 2019, 21, 8469–8472. [Google Scholar] [CrossRef]
- Ma, K.X.; Shen, X.T.; He, J. Bioactive metabolites produced by the endophytic fungus Phomopsis sp. YM355364. Nat. Prod. Commun. 2014, 9, 669–670. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Wu, Y.; Xie, S.; Sun, W.; Guo, Y.; Li, X.N.; Liu, J.; Li, H. Phomopsterones A and B, two functionalized ergostane-type steroids from the endophytic fungus Phomopsis sp. TJ507A. Org. Lett. 2017, 19, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, C.; Cheng, L.; Wei, M.; Dai, C.; He, Y.; Gong, J.; Zhu, R.; Li, X.-N.; Liu, J.; et al. Emeridones A–F, a series of 3,5-demethylorsellinic acid-based meroterpenoids with rearranged skeletons from an endophytic fungus Emericella sp. TJ29. J. Org. Chem. 2019, 84, 1534–1541. [Google Scholar] [CrossRef]
- Su, H.G.; Liang, H.F.; Hu, G.L.; Zhou, L.; Peng, X.R.; Bi, H.C.; Qiu, M.H. Applanoids A—E as the first examples of C-15/C-20 Michael adducts in Ganoderma triterpenoids and their PXR agonistic activity. Chin. J. Chem. 2022, 40, 2633–2641. [Google Scholar] [CrossRef]
- Han, J.J.; Bao, L.; Tao, Q.Q.; Yao, Y.J.; Liu, X.Z.; Yin, W.B.; Liu, H.W. Gloeophyllins A–J, cytotoxic ergosteroids with various skeletons from a Chinese Tibet fungus Gloeophyllum abietinum. Org. Lett. 2015, 17, 2538–2541. [Google Scholar] [CrossRef]
- Mierau, V.; Rojas de La Parra, V.; Sterner, O. The dasyscyphins A-C and niveulone, new biologically active compounds from the Ascomycete Dasyscyphus niveus. J. Antibiot. 2006, 59, 53–56. [Google Scholar] [CrossRef]
- Liermann, J.C.; Kolshorn, H.; Anke, H.; Thines, E.; Opatz, T. Tetracyclic Terpenoids from Dasyscyphus niveus, dasyscyphins D and E. J. Nat. Prod. 2008, 71, 1654–1656. [Google Scholar] [CrossRef]
- Li, L.; Peng, X.R.; Dong, J.R.; Lu, S.Y.; Li, X.N.; Zhou, L.; Qiu, M.H. Rearranged lanostane-type triterpenoids with anti-hepatic fibrosis activities from Ganoderma applanatum. RSC Adv. 2018, 8, 31287–31295. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.R.; Huang, Y.J.; Lu, S.Y.; Yang, J.; Qiu, M.H. Ganolearic acid A, a hexanorlanostane triterpenoid with a 3/5/6/5-fused tetracyclic skeleton from Ganoderma cochlear. J. Org. Chem. 2018, 83, 13178–13183. [Google Scholar] [CrossRef]
- Peng, X.-R.; Wang, X.; Zhou, L.; Hou, B.; Zuo, Z.L.; Qiu, M.-H. Ganocochlearic acid A, a rearranged hexanorlanostane triterpenoid, and cytotoxic triterpenoids from the fruiting bodies of Ganoderma cochlear. RSC Adv. 2015, 5, 95212–95222. [Google Scholar] [CrossRef]
- Yao, J.N.; Chen, L.; Tang, Y. Lanostane triterpenoids from fruiting bodies of basidiomycete Stereum sp., structures and biological activities. J. Antibiot. 2017, 70, 1104–1111. [Google Scholar] [CrossRef]
- Baby, S.; Johnson, A.J.; Govindan, B. Secondary metabolites from Ganoderma. Phytochemistry 2015, 114, 66–101. [Google Scholar] [CrossRef]
- Luis, J.G.; Lahlou, E.H.; Andrés, L.S.; Sood, G.H.N.; Ripoll, M.M. Apiananes: C23 terpenoids with a new type of skeleton from Salvia apiana. Tetrahedron Lett. 1996, 37, 4213–4216. [Google Scholar] [CrossRef]
- Miura, K.; Kikuzaki, H.; Nakatani, N. Apianane terpenoids from Salvia officinalis. Phytochemistry 2001, 58, 1171–1175. [Google Scholar] [CrossRef]
- Kamtcha, D.W.; Tene, M.; Bedane, K.G.; Knauer, L.; Strohmann, C.; Tane, P.; Kusari, S.; Spiteller, M. Cardenolides from the stem bark of Salacia staudtiana. Fitoterapia 2018, 127, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Gao, Y.X.; Yang, Z.W.; Jin, H.Z.; Ye, Y.; Simmons, L. Cytotoxic triterpenoids from Abies recurvate. Phytochemistry 2012, 81, 159–164. [Google Scholar] [CrossRef]
- Li, Y.L.; Gao, Y.X.; Jin, H.Z.; Shan, L.; Liang, X.S.; Xu, X.K. Chemical constituents of Abies nukiangensis. Phytochemistry 2014, 106, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.J.; Zang, Y.; Li, C.; Yuan, L.; Zeng, H.; Li, J.; Hu, J.F.; Xiong, J. Forrestiacids C and D, unprecedented triterpene-diterpene adducts from Pseudotsuga forrestii. Chin. Chem. Lett. 2022, 33, 4264–4268. [Google Scholar] [CrossRef]
- MacKinnon, S.L.; Bensimon, C.; Arnason, J.T.; Sanchez-Vindas, P.E.; Durst, T. Spirocaracolitones, CD-spiro triterpenoids from Ruptiliocarpon caracolito. J. Org. Chem. 1997, 62, 840–845. [Google Scholar] [CrossRef]
- Li, L.N.; Liu, X.Q.; Zhu, D.R.; Chen, C.; Lin, Y.L.; Wang, W.L. Officinalins A and B, a pair of C23 terpenoid epimers with a tetracyclic 6/7/5/5 system from Salvia officinalis. Org. Chem. Front. 2019, 6, 3369–3373. [Google Scholar] [CrossRef]
- Lavoie, S.; Legault, J.; Gauthier, C.; Mshvildadze, V.; Mercier, S.; Pichette, A. Abibalsamins A and B, two new tetraterpenoids from Abies balsamea Oleoresin. Org. Lett. 2012, 14, 1504–1507. [Google Scholar] [CrossRef] [PubMed]
- Nabiev, A.; Shakirov, R.; Yunusov, S.Y. Alkaloids of Petilium raddeana. V. Structure of petisidinone. Chem. Nat. Compd. 1986, 22, 583–584. [Google Scholar] [CrossRef]
- Harrison, D.M. Steroidal alkaloids. Nat. Prod. Rep. 1990, 7, 139–147. [Google Scholar] [CrossRef]
- Saito, K. Veratramine, a new alkaloid of white hellebore (Veratrum grandifiorum Loes. fil.). Bull. Chem. Soc. Jpn. 1940, 15, 22–27. [Google Scholar] [CrossRef]
- Saito, K.; Suginome, H.; Takaoka, M. On the alkaloids of white hellebore. I. Isolation of constituent alkaloids. Bull. Chem. Soc. Jpn. 1934, 9, 15. [Google Scholar] [CrossRef]
- Fried, J.; Wintersteiner, O.; Moore, M.; Iselin, B.M.; Klingsberg, A. The structure of jervine. II. Degradation to perhydrobenzfluorene derivatives. J. Am. Chem. Soc. 1951, 73, 2970–2971. [Google Scholar] [CrossRef]
- Heretsch, P.; Giannis, A. The Veratrum and Solanum alkaloids. Alkaloids Chem. Biol. 2015, 74, 201–232. [Google Scholar] [PubMed]
- He, J.; Xu, J.K.; Zhang, J.; Bai, H.J.; Ma, B.Z.; Cheng, Y.C.; Zhang, W.K. Fischeriana A, a meroterpenoid with an unusual 6/6/5/5/5/6/6 heptacyclic carbon skeleton from the roots of Euphorbia fischeriana. Org. Biomol. Chem. 2019, 17, 2721–2724. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qi, Y.; Lai, H.; Zhang, J.; Jia, X.; Liu, H.; Zhang, B.; Xiao, P. Genus Kadsura, a good source with considerable characteristic chemical constituents and potential bioactivities. Phytomedicine 2014, 21, 1092–1097. [Google Scholar] [CrossRef]
- Yang, L.M.; Shang, S.Z.; Li, Y.; Zheng, Y.T.; Zhang, H.B.; Xiao, W.L.; Sun, H.D. Kadcoccitones A and B, two new 6/6/5/5-fused tetracyclic triterpenoids from Kadsura coccinea. Org. Lett. 2012, 14, 6362–6365. [Google Scholar]
- Kangouri, K.; Miyoshi, T.; Kawashima, A.; Ikeda, A.; Mizutani, T.; Omura, S. Isolation and structure elucidation of neokadsuranic acid A, the first triterpenoid with the 14 (13→12)-abeo-lanostane skeleton, and (24Z)-3-oxo-lanosta-8,24-dien-26-oic acid. Planta Med. 1989, 55, 297–299. [Google Scholar] [CrossRef] [PubMed]
- Li, L.N.; Hong, X.; Kangouri, K.; Ikeda, A.; Omura, S. Triterpenoid acids from Kadsura longipedunculata. Neokadsuranic acids B and C: Two novel triterpenoids with 14 (13 → 12)-abeo-lanostane skeletons. Planta Med. 1989, 55, 294–296. [Google Scholar]
- Hu, Z.X.; Hu, K.; Shi, Y.M.; Wang, W.G.; Du, X.; Li, Y.; Zhang, Y.H.; Pu, J.X.; Sun, H.D. Rearranged 6/6/5/6-fused triterpenoid acids from the stems of Kadsura coccinea. J. Nat. Prod. 2016, 79, 2590–2598. [Google Scholar] [CrossRef]
- Xu, H.C.; Hu, K.; Sun, H.D. Four 14(13 → 12)-abeo-lanostane triterpenoids with 6/6/5/6-fused ring system from the roots of Kadsura coccinea. Nat. Prod. Bioprospect. 2019, 9, 165–173. [Google Scholar] [CrossRef]
- Hu, Z.X.; Shi, Y.M.; Wang, W.G.; Li, X.N.; Du, X.; Liu, M.; Li, Y.; Xue, Y.B. Kadcoccinones A–F, new biogenetically related lanostane-type triterpenoids with diverse skeletons from Kadsura coccinea. Org. Lett. 2015, 18, 4616–4619. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Pu, J.P.; Du, X.; Su, J.; Li, X.N.; Yang, J.H.; Zhao, W. Kadpolysperins A–N, lanostane triterpene acids possessing rich structure types from Kadsura polysperma. Tetrahedron 2012, 68, 4820–4829. [Google Scholar] [CrossRef]
- Zhao, J.Q.; Wang, Y.M.; He, H.P.; Li, S.H.; Li, X.N.; Yang, C.R. Two new highly oxygenated and rearranged limonoids from Phyllanthus cochinchinensis. Org. Lett. 2013, 15, 2414–2417. [Google Scholar] [CrossRef] [PubMed]
- Han, M.L.; Zhang, H.; Yang, S.P.; Yue, J.M. Walsucochinoids A and B: New rearranged limonoids from Walsura cochinchinensis. Org. Lett. 2012, 14, 486–489. [Google Scholar] [CrossRef]
- Yang, J.H.; Pu, J.X.; Wen, J.; Li, X.N.; He, F.; Su, J.; Li, Y.; Sun, H.D. Unusual cycloartane triterpenoids from Kadsura ananosma. Phytochemistry 2015, 109, 36–42. [Google Scholar] [CrossRef]
- Liang, C.Q.; Shi, Y.M.; Wang, W.G.; Hu, Z.X.; Li, Y.; Zheng, Y.T.; Li, X.N. Kadcoccinic acids A–J, triterpene acids from Kadsura coccinea. J. Nat. Prod. 2015, 78, 2067–2073. [Google Scholar] [CrossRef]
- Xu, H.C.; Hu, K.; Shi, X.H.; Tang, J.W.; Li, X.N.; Sun, H.D.; Puno, P.T. Synergistic use of NMR computation and quantitative interproton distance analysis in the structural determination of neokadcoccitane A, a rearranged triterpenoid featuring an aromatic ring D from Kadsura coccinea. Nat. Prod. Bioprosp. 2023, 13, 12. [Google Scholar] [CrossRef]
- Pu, J.X.; Li, R.T.; Xiao, W.L.; Gong, N.B.; Huang, S.X.; Lu, Y. Longipedlactones A–I, nine novel triterpene dilactones possessing a unique skeleton from Kadsura longipedunculata. Tetrahedron 2006, 62, 6073–6081. [Google Scholar] [CrossRef]
- Pu, J.X.; Huang, S.X.; Ren, J.; Xiao, W.L.; Li, L.M.; Li, R.T.; Li, L.B. Isolation and structure elucidation of kadlongilactones C−F from Kadsura longipedunculata by NMR spectroscopy and DFT computational methods. J. Nat. Prod. 2007, 70, 1706–1711. [Google Scholar] [CrossRef] [PubMed]
- Kitazawa, E.; Ogiasso, A. Two diterpene alcohol from Petunia patagonica. Phytochemistry 1981, 20, 287–289. [Google Scholar] [CrossRef]
- Dembitsky, V.M. Chemistry and biodiversity of the biologically active natural glycosides. Chem. Biodiver. 2004, 1, 673–781. [Google Scholar] [CrossRef] [PubMed]
- Dembitsky, V.M. Naturally occurring bioactive cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants. Phytomedicine 2014, 21, 1559–1581. [Google Scholar] [CrossRef]
- Townsenda, S.D.; Rossb, A.G.; Liua, K.; Danishefsky, S.J. Stereospecificcis-andtrans-ring fusions arisingfrom common intermediates. Proc. Nat. Acad. Sci. USA 2014, 111, 7931–7935. [Google Scholar] [CrossRef] [PubMed]
- Allan, A. Preparative Routes to C-Homosteroids. Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, 1976. [Google Scholar]
- Meinwald, J.; Taggi, A.J.; Luhan, P.A.; McPhail, A.T. D-Nor steroids: Anomalous conformation and reactivity of Cf-D-cis-D-Norandrostanes. Proc. Nat. Acad. Sci. USA 1974, 71, 78–79. [Google Scholar] [CrossRef] [PubMed]
- Mateos, J.L.; Chao, O.; Flores, H.R. Some reactions of 16-diazo-androstan-3β-ol-17-one: Synthesis of D-nor-steroids. Tetrahedron 1963, 19, 1051–1056. [Google Scholar] [CrossRef]
- Meinwald, J.; Taggi, A.J. D-nor steroids. VI. Stereochemical effects on carbonium ion reactions of C/D cis D-nor steroids. J. Am. Chem. Soc. 1973, 95, 7663–7671. [Google Scholar] [CrossRef]
- Meinwald, J.; Labana, L.L.; Wheeler, T.N. D-Nor steroids. III. Synthesis of conformationally defined cyclobutylamines and alcohols. J. Am. Chem. Soc. 1970, 92, 1006–1009. [Google Scholar] [CrossRef] [PubMed]
- Coggon, P.; McPhail, A.T.; Levine, S.G.; Misra, R. Conformations of D-nor-steroids by X-ray analysis. J. Chem. Soc. D 1971, 11, 1133–1134. [Google Scholar] [CrossRef]
- Mateos, J.L.; Pozas, R. Synthesis of D-nor-desoxycorticosterone acetate. Steroids 1963, 2, 525–527. [Google Scholar] [CrossRef]
- Djerassi, C.; Popov, S.; Eadon, G. Mass spectrometry in structural and stereochemical problems. CCXIII. Effect of ring size upon the electron impact induced behavior of steroidal ketones. J. Org. Chem. 1972, 37, 155–165. [Google Scholar] [CrossRef]
- Marcotullio, M.C.; Rosati, O.; Curini, M. Virescenols: Sources, structures and chemistry. Nat. Prod. Commun. 2008, 3, 975–988. [Google Scholar] [CrossRef]
- Hu, L.; Liu, G.; Ma, L.; Li, D. Cassane diterpene-lactones from the seed of Caesalpinia minax Hance. Chem. Biodiv. 2006, 3, 1260–1265. [Google Scholar]
- Wang, X.N.; Bashyal, B.P.; Wijeratne, E.M.K.; U’Ren, J.M.; Liu, M.X.; Gunatilaka, M.K.; Arnold, A.E.; Gunatilaka, A.A.L. Smardaesidins A–G, isopimarane and 20-Nor-isopimarane diterpenoids from Smardaea sp., a fungal endophyte of the moss Ceratodon purpureus. J. Nat. Prod. 2011, 74, 2052–2061. [Google Scholar] [CrossRef]
- Jing, L. Study of Insecticidal Active Components in Jatropha curcas L. Seed on Its Extraction, Isolation and Toxicity Action Mechanism. Ph.D. Thesis, Sichuan University, Chengdu, China, 2005. [Google Scholar]
- Jing, L.; Fang, Y.; Ying, X.; Wenxing, H.; Meng, X.; Syed, M.N.; Fang, C. Toxic impact of ingested jatropherol-I on selected enzymatic activities and the ultra structure of midgut cells in silkworm, Bombyx mori L. J. Appl. Entomol. 2005, 129, 98–104. [Google Scholar] [CrossRef]
- Nguyen, H.X.; Nguyen, M.T.T.; Nguyen, T.A.; Nguyen, N.Y.T.; Phan, D.A.T.; Thi, P.H.; Nguyen, T.H.P.; Dang, P.H. Cleistanthane diterpenes from the seed of Caesalpinia sappan and their antiausterity activity against PANC-1 human pancreatic cancer cell line. Fitoterapia 2013, 91, 148–153. [Google Scholar] [CrossRef]
- Xiao, F.; Tang, C.P.; Ke, C.Q.; Sand, Y.; Ye, Y. Rearranged diterpenoids from the seeds of Caesalpinia sappan. Chin. Chem. Lett. 2016, 27, 1751–1754. [Google Scholar] [CrossRef]
- Kubo, M.; Uemura, M.; Harada, K.; Ohsaki, A.; Fukuyama, Y. A new pimarane-type diterpenoid from the seeds of Bowdichia virgilioides. Nat. Prod. Commun. 2016, 11, 917–919. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.Y.; Yang, C.T.; Hou, S.Q.; Tian, K.; Wang, W.; Hu, Q.F.; Huang, X.Z. Cytotoxic diterpenoids from the roots of Aralia melanocarpa. Planta Med. 2016, 82, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.S.; Lin, C.R.; Du, Y.C.; Lübken, T.; Chiang, M.Y.; Chen, I.H.; Wu, C.C. Acasiane A and B and farnesirane A and B, diterpene derivatives from the roots of Acacia farnesiana. Planta Med. 2009, 75, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Jæger, D.; O’Leary, M.C.; Weinstein, P. Phytochemistry and bioactivity of Acacia sensu stricto (Fabaceae: Mimosoideae). Phytochem. Rev. 2019, 18, 129–172. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, P.; Zhu, M.; Wang, Y.; Sun, Y.; Li, H.; Chen, L. Diterpenoids from the genus Euphorbia: Structure and biological activity (2013–2019). Phytochemistry 2021, 190, 112846. [Google Scholar] [CrossRef]
- Bailly, C. Yuexiandajisu diterpenoids from Euphorbia ebracteolata Hayata (Langdu roots): An overview. Phytochemistry 2023, 213, 113784. [Google Scholar] [CrossRef] [PubMed]
- Jian, B.; Zhang, H.; Liu, J. Structural diversity and biological activities of diterpenoids derived from Euphorbia fischeriana Steud. Molecules 2018, 23, 935. [Google Scholar] [CrossRef] [PubMed]
- da Silva Oliveira, F.G.; de Souza Araújo, C.; Rolim, L.A.; Barbosa-Filho, J.M.; da Silva Almeida, J.R.G. The genus Hymenaea (Fabaceae): A chemical and pharmacological review. Stud. Nat. Prod. Chem. 2018, 58, 339–388. [Google Scholar]
- Hanson, J.R. Diterpenoids of terrestrial origin. Nat. Prod. Rep. 2011, 28, 1755–1772. [Google Scholar] [CrossRef]
- Mendes, E.; Ramalhete, C.; Duarte, N. Myrsinane-type diterpenes: A comprehensive review on structural diversity, chemistry and biological activities. Int. J. Mol. Sci. 2024, 25, 147. [Google Scholar] [CrossRef]
- Tao, W.-W.; Duan, J.A.; Tang, Y.P.; Yang, N.Y.; Li, J.P.; Qian, Y.F. Casbane diterpenoids from the roots of Euphorbia pekinensis. Phytochemistry 2013, 94, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Thibodeaux, C.J.; Chang, W.; Liu, H. Enzymatic chemistry of cyclopropane, epoxide, and aziridine biosynthesis. Chem. Rev. 2012, 112, 1681–1709. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.-W.; Su, X.H.; Kiyota, H. Chemical and pharmacological research of the plants in genus Euphorbia. Chem. Rev. 2008, 108, 4295–4327. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.B.; Wang, X.Y.; Liu, L.P.; Qin, G.W.; Kang, T.G. Tigliane diterpenoids from the Euphorbiaceae and Thymelaeaceae families. Chem. Rev. 2015, 115, 2975–3011. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-González, V.; Kowalczyk, T.; Piekarski, J.; Szemraj, J.; Rijo, P.; Sitarek, P. Nature’s green potential: Anticancer properties of plants of the Euphorbiaceae family. Cancers 2024, 16, 114. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.H.; Wang, Y.W.; Yang, J.; Tong, Z.J. Natural products as potential lead compounds to develop new antiviral drugs over the past decade. Eur. J. Med. Chem. 2023, 260, 115726. [Google Scholar] [CrossRef]
- Tan, H.H.; Xia, M.; Su, P.; Huang, L.Q. Research progress in tigliane-type macrocyclic diterpenoids. Zhongguo Zhongyao Zazhi (J. Chin. Mater. Medica) 2023, 48, 4620–4633. [Google Scholar]
- Flaschenträger, B.; Van Wolffersdorff, R. Über den Giftstoff des Crotonöles. 1. Die Säuren des Crotonöles. Helv. Chim. Acta 1934, 17, 1444–1452. [Google Scholar] [CrossRef]
- Abbas Miana, G.; Riaz, M.; Shahzad-ul-Hussan, S.; Zafar Paracha, R.; Zafar Paracha, U. Prostratin: An overview. Mini Rev. Med. Chem. 2015, 13, 1122–1130. [Google Scholar] [CrossRef] [PubMed]
- Giuseppina, C.; Amin, H.I.M.; Maioli, C.; Reddell, P.; Parsons, P.; Cullen, J.; Johns, J.; Handoko, H.; Boyle, G.; Appendino, G.; et al. Cryptic Epoxytiglianes from the Kernels of the Blushwood Tree (Fontainea picrosperma). J. Nat. Prod. 2022, 85, 1959–1966. [Google Scholar]
- Huang, X.L.; Huang, X.S.; Li, Q.R.; Ma, M.D.; Cui, Y.D.; Yang, L.M.; Wang, H.B.; Luo, R.H.; Chen, J.L.; Yang, J.X.; et al. Seco-cyclic phorbol derivatives and their anti-HIV-1 activities. Chin. J. Nat. Med. 2024, 22, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.H.; Tian, X.G.; Cui, Y.L.; Huo, X.K.; Zhang, B.J.; Deng, S. Diterpenoids from the roots of Euphorbia ebracteolata and their inhibitory effects on human carboxylesterase 2. Phytochemistry 2018, 146, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Wirasisya, D.G.; Hohmann, J. An overview of the traditional use, phytochemistry, and biological activity of the genus Homalanthus. Fitoterapia 2023, 166, 105466. [Google Scholar] [CrossRef] [PubMed]
- Nothias, L.F.; Nothias-Esposito, M.; da Silva, R.; Wang, M.; Protsyuk, I.; Zhang, Z.; Sarvepalli, A. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J. Nat. Prod. 2018, 81, 758–767. [Google Scholar] [CrossRef]
- Zhan, Z.J.; Li, S.; Chu, W.; Yin, S. Euphorbia diterpenoids: Isolation, structure, bioactivity, biosynthesis, and synthesis (2013–2021). Nat. Prod. Rep. 2022, 39, 2132–2174. [Google Scholar] [CrossRef] [PubMed]
- Duarte, N.; Ferreira, M.J.U. Lagaspholones A and B: Two new jatropholane-type diterpenes from Euphorbia lagascae. Org. Lett. 2007, 9, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.F.; Liu, J.Q.; Shi, L. New jatropholane-type diterpenes from Jatropha curcas cv. Nat. Prod. Bioprospect. 2013, 3, 99–102. [Google Scholar] [CrossRef]
- Yang, D.S.; Zhang, Y.L.; Peng, W.B.; Wang, L.Y.; Li, Z.L.; Wang, X.; Liu, K.C.; Yang, Y.P.; Li, H.L.; Li, X.L. Jatropholane-type diterpenes from Euphorbia sikkimensis. J. Nat. Prod. 2013, 76, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Tokuyama, S.; Nagai, K.; Yasuda, N.; Noguchi, K.; Matsumoto, T.; Hirai, H.; Kawagishi, H. Strophasterols A to D with an unprecedented steroid skeleton: From the mushroom Stropharia rugosoannulata. Angew. Chem. 2012, 124, 10978–10980. [Google Scholar] [CrossRef]
- Yaoita, Y.; Kikuchi, M.; Machida, K. Terpenoids and sterols from mushrooms. Stud. Nat. Prod. Chem. 2015, 44, 1–32. [Google Scholar]
- Kikuchi, T.; Isobe, M.; Uno, S.; In, Y.; Zhang, J.; Yamada, T. Strophasterols E and F: Rearranged ergostane-type sterols from Pleurotus eryngii. Bioorg. Chem. 2019, 89, 103011. [Google Scholar] [CrossRef]
- Aung, H.T.; Porta, A.; Clericuzio, M.; Takaya, Y.; Vidari, G. Two new ergosterol derivatives from the Basidiomycete Cortinarius glaucopus. Chem. Biodiver. 2017, 14, e1600421. [Google Scholar] [CrossRef]
- Song, Y.P.; Shi, Z.Z.; Miao, F.P.; Fang, S.T.; Yin, X.L.; Ji, N.Y. Tricholumin A, a highly transformed ergosterol derivative from the alga-endophytic fungus Trichoderma asperellum. Org. Lett. 2018, 20, 6306–6309. [Google Scholar] [CrossRef]
- Achanta, P.S.; Gattu, R.K.; Belvotagi, A.R.V.; Akkinepally, R.R.; Bobbala, R.K.; Achanta, A.R.V.N. New malabaricane triterpenes from the oleoresin of Ailanthus malabarica. Fitoterapia 2015, 100, 166–173. [Google Scholar] [CrossRef]
- Li, J.; Xu, B.; Cui, J.; Deng, Z.; de Voogd, N.J.; Proksch, P.; Lin, W. Globostelletins A–I, cytotoxic isomalabaricane derivatives from the marine sponge Rhabdastrella globostellata. Bioorg. Med. Chem. 2010, 18, 4639–4647. [Google Scholar] [CrossRef]
- Kolesnikova, S.A.; Lyakhova, E.G.; Kozhushnaya, A.B.; Kalinovsky, A.I.; Berdyshev, D.V.; Popov, R.S.; Stonik, V.A. New isomalabaricane-derived metabolites from a Stelletta sp. marine sponge. Molecules 2021, 26, 678. [Google Scholar] [CrossRef]
- Tanaka, N.; Momose, R.; Shibazaki, A.; Gonoi, T.; Fromont, J.; Kobayashi, J. Stelliferins JeN, isomalabaricane-type triterpenoids from Okinawan marine sponge Rhabdastrella cf. globostellata. Tetrahedron 2011, 67, 6689–6696. [Google Scholar] [CrossRef]
- Hirashima, M.; Tsuda, K.; Hamada, T.; Okamura, H.; Furukawa, T. Cytotoxic isomalabaricane derivatives and a monocyclic triterpene glycoside from the sponge Rhabdastrella globostellata. J. Nat. Prod. 2010, 73, 1512–1518. [Google Scholar] [CrossRef]
- Jin, D.J.; Tang, S.A.; Xing, G.S.; Zhao, W.J.; Zhao, C.; Duan, H.Q. Jaspiferins C–F, four new isomalabaricane-type triterpenoids from the South China Sea sponge Jaspis stellifera. J. Asian Nat. Prod. Res. 2014, 16, 427–433. [Google Scholar] [CrossRef]
- Kawagoe, F.; Mototani, S.; Kittaka, A. The synthesis and biological evaluation of D-ring-modified vitamin D analogues. Biomolecules 2021, 11, 1639. [Google Scholar] [CrossRef]
- Iqbal, A.; Siddiqui, T. A review on synthesis and biological activities of D-ring modified pregnenolone. Steroids 2021, 170, 108827. [Google Scholar] [CrossRef]
- Goyer, E.; Lavaud, C.; Massiot, G. Meroterpenoids? A historical and critical review of this biogenetic determinant. Nat. Prod. Rep. 2023, 40, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.; Saleem, M.; Tousif, M.I.; Anwar, M.A.; Surup, F. Meroterpenoids: A comprehensive update insight on structural diversity and biology. Biomolecules 2021, 11, 957. [Google Scholar] [CrossRef]
- Zhao, M.; Tang, Y.; Xie, J.; Zhao, Z.; Cui, H. Meroterpenoids produced by fungi: Occurrence, structural diversity, biological activities, and their molecular targets. Eur. J. Med. Chem. 2021, 209, 112860. [Google Scholar] [CrossRef]
- Dumdei, E.J.; Kubanek, J.; Coleman, J.E.; Pika, J.; Andersen, R.J.; Steiner, J.R.; Clardy, J. New terpenoid metabolites from the skin extracts, an egg mass, and dietary sponges of the Northeastern Pacific dorid nudibranch Cadlina luteomarginata. Can. J. Chem. 1997, 75, 773–789. [Google Scholar] [CrossRef]
- Yu, C.M.; Wright, J.L.C. Murrayanolide, an unusual C21 tetracyclic terpenoid lactone from the marine bryozoan Dendrobeania murrayana. J. Nat. Prod. 1995, 58, 1978–1982. [Google Scholar] [CrossRef] [PubMed]
- Salva, J.; Faulkner, D.J. Metabolites of the sponge Strongylophora durissima from Maricaban Island, Philippines. J. Org. Chem. 1990, 55, 1941–1943. [Google Scholar] [CrossRef]
- Buchanan, M.S.; Edser, A.; King, G.; Whitmore, J.; Quinn, R.J. Cheilanthane sesterterpenes, protein kinase inhibitors, from a marine sponge of the genus Ircinia. J. Nat. Prod. 2001, 64, 300–303. [Google Scholar] [CrossRef]
- Conte, M.R.; Fattorusso, E.; Lanzotti, V.; Magno, S.; Mayol, L. Lintenolides, new pentacyclic bioactive sesterterpenes from the Caribbean sponge Cacospongia cf. linteiformis. Tetrahedron 1994, 50, 849–856. [Google Scholar] [CrossRef]
- He, H.; Kulanthaivel, P.; Baker, J.B. New cytotoxic sesterterpenes from the marine sponge Spongia sp. Tetrahedron. Lett. 1994, 35, 7189–7192. [Google Scholar] [CrossRef]
- Carotenuto, A.; Fattorusso, E.; Lanzotti, V.; Magno, S.; Carnuccio, R.; Iuvone, T. Antiproliferative sesterterpenes from the Caribbean sponge Cacospongia cf. linteiformis. Comp. Biochem. Physiol. 1998, 119, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Han, G.Y.; Sun, D.Y.; Liang, L.F.; Yao, L.G.; Chen, K.X.; Guo, Y.W. Spongian diterpenes from Chinese marine sponge Spongia officinalis. Fitoterapia 2018, 127, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Lambert, L.K.; Garson, M.J. Structures and anatomical distribution of oxygenated diterpenes in the Australian nudibranch Chromodoris reticulate. Aust. J. Chem. 2011, 64, 757–765. [Google Scholar]
- Cimino, G.; Crispino, A.; Gavagnin, M.; Sodano, G. Diterpenes from the nudibranch Chromodoris luteorosea. J. Nat. Prod. 1990, 53, 102–106. [Google Scholar] [CrossRef]
- Schmitz, J.F.; Chang, S.J.; Hossain, B.M.; van der Helm, D. Marine natural product: Spongian derivatives from the sponge Igernella notabilis. J. Org. Chem. 1985, 50, 2862. [Google Scholar] [CrossRef]
- Miyamoto, T.; Sakamoto, K.; Arao, K.; Komori, T.; Higuchi, R.; Sasaki, T. Dorisenones, cytotoxic spongian diterpenoids, from the nudibranch Chromodoris obsolete. Tetrahedron 1996, 52, 8187. [Google Scholar] [CrossRef]
- Taylor, W.C.; Toth, S. The Constituents of marine sponges. VIII. Minor diterpenoid metabolites of Aplysilla rosea and A. var. sulphurea. Aust. J. Chem. 1997, 50, 895–902. [Google Scholar] [CrossRef]
- Gonzalez, M.A. Spongiane Diterpenoids. Curr. Bioactive Comp. 2007, 3, 1–36. [Google Scholar] [CrossRef]
- Cimino, G.; De Rosa, D.; De Stefano, S.; Minale, L. Isoagatholactone, a diterpene of a new structural type from the sponge Spongia officinalis. Tetrahedron 1974, 30, 645–649. [Google Scholar] [CrossRef]
- Zeng, M.; Guan, Z.; Su, J.-Y.; Feng, X.-L.; Cai, J.-W. Two new spongian diterpene lactones. Acta Chim. Sin. 2001, 59, 1675–1679. [Google Scholar]
- Su, J.-Y.; Lin, C.-W.; Zeng, L.-M.; Yan, S.-J.; Feng, X.-L.; Cai, J.-W. Separation and structure determination of a new 19-Nor-spongian diterpenoid. Chem. J. Chin. Uni. 2003, 24, 817–819. [Google Scholar]
- Gunasekera, S.P.; Schmitz, F.J. New spongian diterpenoids from a Great Barrier Reef sponge, Spongia sp. J. Org. Chem. 1991, 56, 1250–1253. [Google Scholar] [CrossRef]
- Costa, M.; Fernández, R.; Pérez, M.; Thorsteinsdottir, M. Two new spongian diterpene analogues isolated from the marine sponge Acanthodendrilla sp. Nat. Prod. Res. 2020, 34, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.Q.; Liao, X.J.; Lin, J.L.; Xu, W.; Chen, G.D.; Zhao, B.X.; Xu, S.H. Spongiains A-C: Three new spongian diterpenes with ring A rearrangement from the marine sponge Spongia sp. Tetrahedron 2019, 75, 3802–3808. [Google Scholar] [CrossRef]
- Liang, Y.Q.; Liao, X.J.; Zhao, B.X.; Xu, S.H. Novel 3,4-seco-3,19-dinorspongian and 5,17-epoxy-19-norspongian diterpenes from the marine sponge Spongia sp. Org. Chem. Front. 2020, 7, 3253–3261. [Google Scholar] [CrossRef]
- Li, X.; Li, X.-M.; Li, X.-D.; Xu, G.-M.; Liu, Y.; Wang, B.-G. 20-Nor-isopimarane cycloethers from the deep-sea sediment-derived fungus Aspergillus wentii SD-310. RSC Adv. 2016, 6, 75981–75987. [Google Scholar] [CrossRef]
- Bai, J.; Mu, R.; Dou, M.; Yan, D.; Liu, B.; Wei, Q.; Wan, J.; Tang, Y.; Hu, Y. Epigenetic modification in histone deacetylase deletion strain of Calcarisporium arbuscula leads to diverse diterpenoids. Acta Pharm. Sin. B 2018, 8, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.H.; Li, Z.H.; Feng, T.; Liu, J.K. Inonotolides A-C, isopimarane diterpenoid lactones from Inonotus sinensis. Fitoterapia 2018, 127, 410–412. [Google Scholar] [CrossRef]
- Wu, S.H.; He, J.; Li, X.N.; Huang, R.; Song, F.; Chen, Y.W.; Miao, C.P. Guaiane sesquiterpenes and isopimarane diterpenes from an endophytic fungus Xylaria sp. Phytochemistry 2014, 105, 197–204. [Google Scholar] [CrossRef]
- Jossang, J.; Bel-Kassaoui, H.; Jossang, A.; Seuleiman, M.; Nel, A. Quesnoin, a novel pentacyclic ent-diterpene from 55 million years old Oise amber. J. Org. Chem. 2008, 73, 412–417. [Google Scholar] [CrossRef]
- Chen, H.-P.; Zhao, Z.-Z.; Cheng, G.-G.; Zhao, K.; Han, K.-Y.; Zhou, L.; Feng, T.; Li, Z.-H.; Liu, J.-K. Immunosuppressive norisopimarane diterpenes from cultures of the fungicolous fungus Xylaria longipes HFG1018. J. Nat. Prod. 2020, 83, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Kanokmedhakul, K.; Kanokmedhakul, S.; Suwannatrai, R.; Soytong, K.; Prabpai, S.; Kongsaere, P. Bioactive meroterpenoids and alkaloids from the fungus Eurotium chevalieri. Tetrahedron 2011, 67, 5461–5468. [Google Scholar] [CrossRef]
- Rajachan, O.A.; Kanokmedhakul, K.; Sanmanoch, W.; Boonlue, S.; Hannongbua, S.; Saparpakorn, P.; Kanokmedhakul, S. Chevalone C analogues and globoscinic acid derivatives from the fungus Neosartorya spinosa KKU-1NK1. Phytochemistry 2016, 132, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-Y.; Zeng, Q.; Chen, Y.-C.; Zhong, W.-M.; Xiang, Y.; Wang, J.-F.; Shi, X.-F.; Zhang, W.-M.; Zhang, S.; Wang, F.-Z. Chevalones H–M: Six new α-pyrone meroterpenoids from the gorgonian coral-derived fungus Aspergillus hiratsukae SCSIO 7S2001. Mar. Drugs 2022, 20, 71. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, K.; Sevenet, T.; Dumontet, V.; Pais, M.; Tri, M.V.; Hadi, H.; Awang, K.; Martin, M.T. Dammarane triterpenes and pregnane steroids from Aglaia lawii and A. tomentosa. Phytochemistry 1999, 51, 1031–1037. [Google Scholar] [CrossRef]
- Qin, Y.; Zou, L.; Lei, X.; Su, J.; Yang, R.; Xie, W.; Li, W.; Chen, G. OSMAC strategy integrated with molecular networking discovery peniciacetals A−I, nine new meroterpenoids from the mangrove-derived fungus Penicillium sp. HLLG-122. Bioorg. Chem. 2023, 130, 106271. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Liu, Y.; Ruan, Q.; Zhao, M.; Zhao, Z.; Cui, H. Aspermeroterpenes A-C: Three meroterpenoids from the marine-derived fungus Aspergillus terreus GZU-31-1. Org Lett. 2020, 22, 1336–1339. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Chen, C.; Mo, S.; Qi, C.; Gong, J.; Li, X.N. Highly oxygenated meroterpenoids from the Antarctic fungus Aspergillus terreus. Phytochemistry 2019, 164, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Yang, S.; Huang, J.; Zhou, L. Insecticidal triterpenes in Meliaceae: Plant species, molecules and activities: Part I (Aphanamixis-Chukrasia). Int. J. Mol. Sci. 2021, 22, 13262. [Google Scholar] [CrossRef]
- Tsukamoto, Y.; Oya, H.; Kikuchi, T.; Yamada, T.; Tanaka, R. Guianofruits C–I from fruit oil of andiroba (Carapa guianensis, Meliaceae). Tetrahedron 2019, 75, 1149–1156. [Google Scholar] [CrossRef]
- Abdelgaleil, S.A.M.; Okamura, H.; Iwagawa, T.; Sato, A.; Miyahara, I.; Doe, M.; Nakatani, M. Khayanolides, rearranged phragmalin limonoid antifeedants from Khaya senegalensis. Tetrahedron 2001, 57, 119–126. [Google Scholar] [CrossRef]
- Li, G.-Y.; Li, B.G.; Yang, T.; Yin, J.H.; Qi, H.Y.; Liu, G.Y.; Zhang, G.L. Sesterterpenoids, terretonins A− D, and an alkaloid, asterrelenin, from Aspergillus terreus. J. Nat. Prod. 2005, 68, 1243–1246. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Zhou, Q.; Gao, W.; Liu, M.; Chen, C.; Li, X.N. Anti-BACE1 and anti-AchE activities of undescribed spirodioxolane-containing meroterpenoids from the endophytic fungus Aspergillus terreus Thom. Phytochemistry 2019, 165, 112041. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Liu, M.; Zhou, Q.; Gao, W.; Chen, C.; Lai, Y. BACE1 inhibitory meroterpenoids from Aspergillus terreus. J. Nat. Prod. 2018, 81, 1937–1945. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.C.; Kuo, T.H.; Su, C.R.; Liou, M.J.; Wu, T.S. Cytotoxic principles and α-pyrone ring-opening derivatives of bufadienolides from Kalanchoe hybrid. Tetrahedron 2008, 64, 3392–3396. [Google Scholar] [CrossRef]
- Zheng, M.; Lin, Z.; Lin, S.; Qu, X. Chemoenzymatic synthesis of steroidal products: Recent advances. Eur. J. Org. Chem. 2024, 27, e202301066. [Google Scholar] [CrossRef]
- Wang, Y.; Gui, J. Bioinspired skeletal reorganization approach for the synthesis of steroid natural products. Acc. Chem. Res. 2024, 57, 568–579. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Li, X.; Xiong, L.; Liu, K.; Liu, Y.; Xue, Z.; Han, R. Green manufacturing of steroids via Mycolicbacteria: Current status and development trends. Fermentation 2023, 9, 890. [Google Scholar] [CrossRef]
- Indua, S.; Kaliappan, K.P. Synthetic approaches towards cortistatins: Evolution and progress through its ages. Org. Biomol. Chem. 2020, 18, 3965–3995. [Google Scholar] [CrossRef]
- Kaur, K.; Srivastava, S. Beckmann rearrangement catalysis: A review of recent advances. New J. Chem. 2020, 44, 18530–18572. [Google Scholar] [CrossRef]
- Pereira dos Santos, V.H.; Coelho Neto, D.M.; Lacerda Júnior, V.; Borges, W.S.; de Oliveira Silva, E. Fungal biotransformation: An efficient approach for stereoselective chemical reactions. Curr. Org. Chem. 2020, 24, 2902–2953. [Google Scholar] [CrossRef]
- Ekobena, P.; Ivanyuk, A.; Livio, F. Pharmacovigilance update. Rev. Med. Suisse 2021, 17, 80–84. [Google Scholar] [PubMed]
- Dembitsky, V.M. Steroids bearing heteroatom as potential drugs for medicine. Biomedicines 2023, 11, 2698. [Google Scholar] [CrossRef] [PubMed]
- Bricout, V.; Wright, F. Update on nandrolone and norsteroids: How endogenous or xenobiotic are these substances? Eur. J. Appl. Physiol. 2004, 92, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Melby, J.C.; Azar, S.T.; Delaney, M.; Holbrook, M.; Griffing, G.T.; Johnston, J.O. 19-Nor-corticosteroids in genetic hypertension. Effects of inhibitors of 11μ,18,19-hydroxylase activity. J. Steroid Biochem. Mol. Biol. 1993, 45, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Zaĭdieva, I.Z. Norsteroids: Their biological activity and clinical use. Akush. Ginekol. (Moskva) 1990, 9, 5–8. [Google Scholar]
- Silva, E.D.O.; Furtado, N.A.J.C.; Aleu, J. Non-terpenoid biotransformations by Mucor species. Phytochem. Rev. 2015, 14, 745–764. [Google Scholar] [CrossRef]
- Waters, J.A.; Kondo, Y.; Witkop, B. Photochemistry of steroids. J. Pharm. Sci. 1972, 61, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Weisenborn, F.L.; Applegate, H.E. Synthesis of A-Norsteroids. J. Am. Chem. Soc. 1959, 81, 1960–1964. [Google Scholar] [CrossRef]
- Djerassi, C. Steroids Made It Possible; American Chemical Society: Washington, DC, USA, 1990. [Google Scholar]
- Applezweig, N. Steroid Drugs; McGraw-Hill: New York, NY, USA, 1962. [Google Scholar]
- Marker, R. The early production of steroidal hormones. CHOC News 1987, 4, 36. [Google Scholar]
- Lehmann, P.A.F.; Bolivar, G.; Quintero, R.; Marker, R.E. Pionero de la industria de los Esteroides. Rev. Soc. Quím. Méx. 1970, 14, 133–144. [Google Scholar]
- Djerassi, C. The Politics of Contraception; W. W. Norton: New York, NY, USA, 1980. [Google Scholar]
- Lehmann, P.A.F. Early history of steroid chemistry in Mexico: The story of three remarkable men. Steroids 1992, 57, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, G. From Ruzicka’s terpenes in Zurich to Mexican steroids via Cuba. Steroids 1992, 57, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Marker, R.E. Suggestion for an empirical method for predicting the configuration of optically active carbon compounds. J. Am. Chem. Soc. 1936, 58, 976–978. [Google Scholar] [CrossRef]
- Marker, R.E.; Kamm, O.; Oakwood, T.S.; Laucius, J.F. Sterols. VII. Cis and trans 3-carboxyandrostanone. An oestrus-producing male hormone derivative, and epi-cholesterol. J. Am. Chem. Soc. 1936, 58, 1948–1950. [Google Scholar] [CrossRef]
- Marker, R.E.; Rohrmann, E. Sterols. LIII. The structure of the side chain of sarsasapogenin. J. Am. Chem. Soc. 1939, 61, 846–851. [Google Scholar] [CrossRef]
- Marker, R.E.; Krueger, J. Sterols. CXII. Sapogenins. XLI. The preparation of trillin and its conversion to progesterone. J. Am. Chem. Soc. 1940, 62, 3349–3350. [Google Scholar] [CrossRef]
- Marker, R.E.; Kamm, O.; Crooks, H.M., Jr.; Oakwood, T.S.; Lawson, E.J.; Wittle, E.L. Sterols. XXIII. Pregnandiols in pregnancy urine of mares. J. Am. Chem. Soc. 1937, 59, 2297–2298. [Google Scholar] [CrossRef]
- Marker, R.E.; Lawson, E.J. Sterols. XXVI. Sitosteryl chloride, stigmasteryl chloride and related compounds. J. Am. Chem. Soc. 1937, 59, 2711–2713. [Google Scholar] [CrossRef]
- Thomas, C. Synthetic Approaches to Anti-Hormonal Steroids. Ph.D. Thesis, New York City University, New York, NY, USA, 1993. [Google Scholar]
- Butenandt, A. Über die chemische Untersuchung der Sexualhormone. Zeitsch. Angew. Chem. 1931, 44, 905–908. [Google Scholar] [CrossRef]
- Ellis, D.J. The Chemistry and Biological Activity of A-Nor-B-Norsteroids. Berkeley ProQuest Dissertations Publishing. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1965; p. 6910418. [Google Scholar]
- Sánchez-Flores, J.; Pelayo-González, V.G.; Romero-Ávila, M.; Flores-Pérez, B.; Flores-Álamo, M.; Iglesias-Arteaga, M.A. Hypervalent-iodine induced quasi-Favorskii C-ring contraction of 12-oxosteroids: A shortcut to C-norsteroids. Steroids 2013, 78, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Mitsuhashi, H.; Tomimoto, K. Synthesis of a heterocyclic ring steroid. Rearrangements of C-nor-steroid. Chem. Pharm. Bull. 1971, 19, 1974–1978. [Google Scholar] [CrossRef]
- Al Quntar, A.A.A.; Srebnik, M.; Terent’ev, A.O.; Dembitsky, V.M. Cyclobutyl-and cyclobutenylphosphonates: Synthesis, transformations and biological activities. Mini-Rev. Org. Chem. 2014, 11, 445–461. [Google Scholar] [CrossRef]
Steroid No. | Reported Activity of A-Norsteroids | Ref. |
---|---|---|
52–55 | Moderate cytotoxicity against HCT-116 tumor cells | [47] |
61–63 | Antifouling properties | [53] |
66 | Calcium-binding activity | [55] |
80,81 | Inhibitory effects on membrane-type matrix metalloproteinase | [62] |
105 | Strong cytotoxic activity against human cancer cell lines HL-60 and PC-3 | [74] |
106 | Antibacterial activity against Gram-positive bacteria | [75] |
107 | Antiacetylcholinesterase activity Strong cytotoxicity against PACA, A431, and HepG2 cells | [76,77] |
108–110 | Resistance (MDR)-reversing activity | [78] |
111,112 | Antiproliferative activity | [79] |
114 | Inhibitory effects on nitric oxide production | [81] |
115 | Used to alleviate abdominal pain and treat cancer | [82] |
118,119 | Immunosuppressive activities | [85] |
120–122 | Strong cytotoxicity and antibacterial activity | [86] |
123 | Antibacterial activity | [75] |
137,138 | Moderate cytotoxicity against various cancer cell lines | [97] |
142 | Cytotoxic activity against BGC-823 and HepG2 cells | [100] |
170 | Moderate cytotoxicity against five human cancer cell lines | [110,111] |
Steroid No. | Reported Activity of B-Norsteroids | Ref. |
---|---|---|
189 | Strong cytotoxic effects against human leukemia HL-60 cells | [130,131] |
205–207 | Strong cytotoxicity against the P388 mouse leukemia cell line | [146] |
219 | Anti-inflammatory and ichthyotoxic properties | [149,150,151,152] |
221,222 | Antimicrobial activity | [155] |
242 | Cytotoxic effects against MCF-7 | [166] |
243 | Inhibitory activity against 11β-HSD1 | [167] |
251 | Antifungal against human pathogens | [170] |
252 | Cytotoxicity against human cancer cell lines | [171] |
260 | Cytotoxicity against leukemia cells | [178] |
264 | Cytotoxicity against various cancer cell lines | [181] |
275 | Antibacterial activity | [189] |
284 | Strong cytotoxic activities against several cancer cell lines | [197] |
286,287 | Antihypercholesterolemic and hypolipidemic activities | [199] |
Steroid No. | Reported Activity of C-Norsteroids | Ref. |
---|---|---|
288–290 | Cytotoxic activities toward various cancer cell lines | [204] |
291 | Cytotoxicity towards breast cancer cells | [205] |
294 | Cytotoxicity towards lung and bone cancer cells An inhibitory effect on (h)p300 | [206,207] |
305 | Antitrypanosomal and antiplasmodial effects | [216] |
306 | Inhibition of Na+, K+-ATPase | [217] |
307 | Antibacterial activity | [218] |
309 | Inhibitory activity against influenza A | [219] |
310 | Anti-inflammatory activity | [220] |
319 | Cytotoxicity against human cancer cell lines | [223] |
320–324 | Cytotoxic activities against various human cell lines | [224,225] |
352 | Antiproliferative effects | [234] |
363,364 | NO inhibitory activity | [238] |
385–387 | Cytotoxicity against various human tumor cell lines | [251] |
390 | Anticoagulant activity | [252] |
394 | Antifeedant activity | [255] |
406,407 | Antiplatelet aggregation activity | [259] |
408–416 | Strong cytotoxicity against various cancer cell lines | [260] |
Steroid No. | Reported Activity of D-Norsteroids | Ref. |
---|---|---|
423–432 | Reproductive system conditions, hypertension, and anticancer activity | [265,266,267,268,269,270,271,272,273,274] |
435 | Insecticidal activity | [277,278] |
436–438 | Antiausterity agents, cytotoxicity against the PANC-1 human pancreatic cancer cell line | [279] |
441,442 | Anticancer activity | [282] |
453–455 | Veterinary anticancer drugs | [300] |
474 | Antimicrobial activity | [313] |
486–489 | Antimicrobial activity | [317] |
No. | Reported Activity of Meroterpenoids | Ref. |
---|---|---|
496 | Protein kinase inhibitor | [328] |
497,498 | Strong ichthyotoxic and antifeedant activity | [329] |
524 | Strong cytotoxicity against L1210 and KB cancer cells | [338] |
526–528 | Cytotoxic activity against P388 cell lines | [340,341] |
544 | Cytotoxic activity against the PC3 and PBL-2H3 cell lines | [345] |
556 | Antifungal activity | [349] |
561 | Antimycobacterial activity | [351] |
567–572 | Antibacterial activity | [354] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dembitsky, V.M. Naturally Occurring Norsteroids and Their Design and Pharmaceutical Application. Biomedicines 2024, 12, 1021. https://doi.org/10.3390/biomedicines12051021
Dembitsky VM. Naturally Occurring Norsteroids and Their Design and Pharmaceutical Application. Biomedicines. 2024; 12(5):1021. https://doi.org/10.3390/biomedicines12051021
Chicago/Turabian StyleDembitsky, Valery M. 2024. "Naturally Occurring Norsteroids and Their Design and Pharmaceutical Application" Biomedicines 12, no. 5: 1021. https://doi.org/10.3390/biomedicines12051021
APA StyleDembitsky, V. M. (2024). Naturally Occurring Norsteroids and Their Design and Pharmaceutical Application. Biomedicines, 12(5), 1021. https://doi.org/10.3390/biomedicines12051021