Acute Myeloid Leukemia with Normal Cytogenetics and NPM1-Mutation: Impact of Mutation Topography on Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Treatment Protocols
2.2. Response Definitions
2.3. Measurable Residual Disease Testing
2.4. High-Depth Targeted Regional Sequencing and Analyses
2.5. Endpoints and Statistical Methods
2.6. Trial Registration
3. Results
3.1. Subject Baseline Co-Variates and CIR or LFS
3.2. Genomic Analyses and Mutation Topography
3.3. Prognostic Co-Variates
3.4. Impact of Transplants
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, X.; Xu, Y.; Yin, J.; Tian, H.; Chen, S.; Wu, D.; Sun, A. TET2 gene mutation is unfavorable prognostic factor in cytogenetically normal acute myeloid leukemia patients with NPM1+ and FLT3-ITD-mutations. Int. J. Hematol. 2014, 100, 96–104. [Google Scholar] [CrossRef]
- Wang, M.; Yang, C.; Zhang, L.; Schaar, D.G. Molecular Mutations and Their Cooccurrences in Cytogenetically Normal Acute Myeloid Leukemia. Stem Cells Int. 2017, 2017, 6962379. [Google Scholar] [CrossRef]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef]
- Thiede, C.; Koch, S.; Creutzig, E.; Steudel, C.; Illmer, T.; Schaich, M.; Ehninger, G. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 2006, 107, 4011–4020. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Falini, B.; Brunetti, L.; Sportoletti, P.; Martelli, M.P. NPM1-mutated acute myeloid leukemia: From bench to bedside. Blood 2020, 136, 1707–1721. [Google Scholar] [CrossRef]
- Boddu, P.; Kantarjian, H.; Borthakur, G.; Kadia, T.; Daver, N.; Pierce, S.; Andreeff, M.; Ravandi, F.; Cortes, J.; Kornblau, S.M. Co-occurrence of FLT3-TKD and NPM1 mutations defines a highly favorable prognostic AML group. Blood Adv. 2017, 1, 1546–1550. [Google Scholar] [CrossRef] [PubMed]
- Eisfeld, A.K.; Kohlschmidt, J.; Mims, A.; Nicolet, D.; Walker, C.J.; Blachly, J.S.; Carroll, A.J.; Papaioannou, D.; Kolitz, J.E.; Powell, B.E.; et al. Additional gene mutations may refine the 2017 European LeukemiaNet classification in adult patients with de novo acute myeloid leukemia aged <60 years. Leukemia 2020, 34, 3215–3227. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.F.; Lima, A.S.; Piqué-Borràs, M.R.; Silveira, D.R.; Coelho-Silva, J.L.; Pereira-Martins, D.A.; Weinhäuser, I.; Franca-Neto, P.L.; Quek, L.; Corby, A.; et al. Co-occurrence of DNMT3A, NPM1, FLT3 mutations identifies a subset of acute myeloid leukemia with adverse prognosis. Blood 2020, 135, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, H.; Chen, J.; Han, M.; Huang, H.; Lai, Y.; Liu, D.; Liu, Q.; Liu, T.; Jiang, M.; et al. The consensus on indications, conditioning regimen, and donor selection of allogeneic hematopoietic cell transplantation for hematological diseases in China-recommendations from the Chinese Society of Hematology. J. Hematol. Oncol. 2018, 11, 33. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, Y.J.; Chen, J.; Han, M.; Hu, J.; Hu, J.; Huang, H.; Lai, Y.; Liu, D.; Liu, Q.; et al. Consensus on the monitoring, treatment, and prevention of leukaemia relapse after allogeneic haematopoietic stem cell transplantation in China: 2024 update. Cancer Lett. 2024, 605, 217264. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Wu, L.X.; Peter Gale, R.; Wang, Z.L.; Li, J.L.; Jiang, H.; Jiang, Q.; Jiang, B.; Cao, S.B.; Lou, F.; et al. Mutation topography and risk stratification for de novo acute myeloid leukaemia with normal cytogenetics and no nucleophosmin 1 (NPM1) mutation or Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD). Br. J. Haematol. 2020, 190, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Ruan, G.R.; Li, J.L.; Qin, Y.Z.; Li, L.D.; Xie, M.; Chang, Y.; Zhang, Y.; Liu, Y.R.; Jiang, B.; Chen, S.S.; et al. Nucleophosmin mutations in Chinese adults with acute myelogenous leukemia. Ann. Hematol. 2009, 88, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.H.; Zhang, X.H.; Qin, Y.Z.; Liu, D.H.; Jiang, H.; Chen, H.; Jiang, Q.; Xu, L.P.; Lu, J.; Han, W.; et al. MRD-directed risk stratification treatment may improve outcomes of t(8;21) AML in the first complete remission: Results from the AML05 multicenter trial. Blood 2013, 121, 4056–4062. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, Y.; Zhuo, N.; Xie, W.; Meng, H.; Lou, Y.; Mao, L.; Tong, H.; Qian, J.; Yang, M.; et al. Co-mutation landscape and its prognostic impact on newly diagnosed adult patients with NPM1-mutated de novo acute myeloid leukemia. Blood Cancer J. 2024, 14, 118. [Google Scholar] [CrossRef]
- Park, D.J.; Kwon, A.; Cho, B.S.; Kim, H.J.; Hwang, K.A.; Kim, M.; Kim, Y. Characteristics of DNMT3A mutations in acute myeloid leukemia. Blood Res. 2020, 55, 17–26. [Google Scholar] [CrossRef]
- Mason, E.F.; Hasserjian, R.P.; Aggarwal, N.; Seegmiller, A.C.; Pozdnyakova, O. Blast phenotype and comutations in acute myeloid leukemia with mutated NPM1 influence disease biology and outcome. Blood Adv. 2019, 3, 3322–3332. [Google Scholar] [CrossRef]
- Gale, R.E.; Lamb, K.; Allen, C.; El-Sharkawi, D.; Stowe, C.; Jenkinson, S.; Tinsley, S.; Dickson, G.; Burnett, A.K.; Hills, R.K.; et al. Simpson’s Paradox and the Impact of Different DNMT3A Mutations on Outcome in Younger Adults With Acute Myeloid Leukemia. J. Clin. Oncol. 2015, 33, 2072–2083. [Google Scholar] [CrossRef] [PubMed]
- Gaidzik, V.I.; Schlenk, R.F.; Paschka, P.; Stölzle, A.; Späth, D.; Kuendgen, A.; von Lilienfeld-Toal, M.; Brugger, W.; Derigs, H.G.; Kremers, S.; et al. Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia: Results of the AML Study Group (AMLSG). Blood 2013, 121, 4769–4777. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, L.; Gundry, M.C.; Goodell, M.A. DNMT3A in Leukemia. Cold Spring Harb. Perspect. Med. 2017, 7, a030320. [Google Scholar] [CrossRef] [PubMed]
- Marcucci, G.; Metzeler, K.H.; Schwind, S.; Becker, H.; Maharry, K.; Mrózek, K.; Radmacher, M.D.; Kohlschmidt, J.; Nicolet, D.; Whitman, S.P.; et al. Age-related prognostic impact of different types of DNMT3A mutations in adults with primary cytogenetically normal acute myeloid leukemia. J. Clin. Oncol. 2012, 30, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Kanagal-Shamanna, R.; Montalban-Bravo, G.; Assi, R.; Jabbour, E.; Ravandi, F.; Kadia, T.; Pierce, S.; Takahashi, K.; Nogueras Gonzalez, G.; et al. Impact of the variant allele frequency of ASXL1, DNMT3A, JAK2, TET2, TP53, and NPM1 on the outcomes of patients with newly diagnosed acute myeloid leukemia. Cancer 2020, 126, 765–774. [Google Scholar] [CrossRef]
- Ribeiro, A.F.; Pratcorona, M.; Erpelinck-Verschueren, C.; Rockova, V.; Sanders, M.; Abbas, S.; Figueroa, M.E.; Zeilemaker, A.; Melnick, A.; Löwenberg, B.; et al. Mutant DNMT3A: A marker of poor prognosis in acute myeloid leukemia. Blood 2012, 119, 5824–5831. [Google Scholar] [CrossRef] [PubMed]
- Tie, R.; Zhang, T.; Fu, H.; Wang, L.; Wang, Y.; He, Y.; Wang, B.; Zhu, N.; Fu, S.; Lai, X.; et al. Association between DNMT3A mutations and prognosis of adults with de novo acute myeloid leukemia: A systematic review and meta-analysis. PLoS ONE 2014, 9, e93353. [Google Scholar] [CrossRef]
- Patel, J.P.; Gönen, M.; Figueroa, M.E.; Fernandez, H.; Sun, Z.; Racevskis, J.; Van Vlierberghe, P.; Dolgalev, I.; Thomas, S.; Aminova, O.; et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 2012, 366, 1079–1089. [Google Scholar] [CrossRef]
- Kottaridis, P.D.; Gale, R.E.; Frew, M.E.; Harrison, G.; Langabeer, S.E.; Belton, A.A.; Walker, H.; Wheatley, K.; Bowen, D.T.; Burnett, A.K.; et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: Analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001, 98, 1752–1759. [Google Scholar] [CrossRef] [PubMed]
- Thiede, C.; Steudel, C.; Mohr, B.; Schaich, M.; Schäkel, U.; Platzbecker, U.; Wermke, M.; Bornhäuser, M.; Ritter, M.; Neubauer, A.; et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: Association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002, 99, 4326–4335. [Google Scholar] [CrossRef]
- Fröhling, S.; Schlenk, R.F.; Breitruck, J.; Benner, A.; Kreitmeier, S.; Tobis, K.; Döhner, H.; Döhner, K. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: A study of the AML Study Group Ulm. Blood 2002, 100, 4372–4380. [Google Scholar] [CrossRef]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef]
- Stone, R.M. What FLT3 inhibitor holds the greatest promise? Best. Pract. Res. Clin. Haematol. 2018, 31, 401–404. [Google Scholar] [CrossRef]
- Jegadesan, N.K.; Branzei, D. DDX11 loss causes replication stress and pharmacologically exploitable DNA repair defects. Proc. Natl. Acad. Sci. USA 2021, 118, e2024258118. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, C.; Wang, X.; Becker, D. The DEAD/DEAH box helicase, DDX11, is essential for the survival of advanced melanomas. Mol. Cancer 2012, 11, 82. [Google Scholar] [CrossRef]
- Li, J.; Liu, L.; Liu, X.; Xu, P.; Hu, Q.; Yu, Y. The Role of Upregulated DDX11 as A Potential Prognostic and Diagnostic Biomarker in Lung Adenocarcinoma. J. Cancer 2019, 10, 4208–4216. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhao, D.; Li, K.; Cai, Y.; Xu, P.; Li, R.; Li, J.; Chen, X.; Chen, P.; Cui, G. E2F1 mediated DDX11 transcriptional activation promotes hepatocellular carcinoma progression through PI3K/AKT/mTOR pathway. Cell Death Dis. 2020, 11, 273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Auer, P.; Dong, J.; Cutler, C.; Dezern, A.E.; Gadalla, S.M.; Deeg, H.J.; Nazha, A.; Carlson, K.S.; Spellman, S.; et al. Whole-genome sequencing identifies novel predictors for hematopoietic cell transplant outcomes for patients with myelodysplastic syndrome: A CIBMTR study. J. Hematol. Oncol. 2023, 16, 37. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Zhao, M.Y.; Gale, R.P.; Jiang, H.; Jiang, Q.; Liu, L.X.; Qin, J.Y.; Cao, S.B.; Lou, F.; Xu, L.P.; et al. Mutations in DEAD/H-box helicase 11 correlate with increased relapse risk in adults with acute myeloid leukaemia with normal cytogenetics. Leukemia 2024, 38, 223–225. [Google Scholar] [CrossRef]
- Zhou, Y.-L.; Wu, L.-X.; Gale, R.P.; Wang, Z.-L.; Li, J.-L.; Jiang, H.; Jiang, Q.; Jiang, B.; Cao, S.-B.; Sun, Y.; et al. Dead/H-Box Helicase 11 (DDX11) Mutations Correlate with Increased Relapse Risk in Persons with Acute Myeloid Leukaemia and Promote Proliferation and Survival of Human AML Cells in Vitro and in Immune Deficient Mice. Blood 2019, 134, 2732. [Google Scholar] [CrossRef]
- Heuser, M.; Freeman, S.D.; Ossenkoppele, G.J.; Buccisano, F.; Hourigan, C.S.; Ngai, L.L.; Tettero, J.M.; Bachas, C.; Baer, C.; Béné, M.C.; et al. 2021 Update on MRD in acute myeloid leukemia: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2021, 138, 2753–2767. [Google Scholar] [CrossRef] [PubMed]
- Vidriales, M.B.; Pérez-López, E.; Pegenaute, C.; Castellanos, M.; Pérez, J.J.; Chandía, M.; Díaz-Mediavilla, J.; Rayón, C.; de Las Heras, N.; Fernández-Abellán, P.; et al. Minimal residual disease evaluation by flow cytometry is a complementary tool to cytogenetics for treatment decisions in acute myeloid leukaemia. Leuk. Res. 2016, 40, 1–9. [Google Scholar] [CrossRef] [PubMed]
No Transplant (N = 99) | Transplant (N = 51) | p-Value | |
---|---|---|---|
Gender (male/female) | 48/51 | 30/21 | 0.30 |
Age (median, range) | 53 (16–76) | 33 (17–61) | <0.001 |
WBC (×109/L) (median, range) | 29.8 (0.3–224.4) | 35.1 (0.9–266.0) | 0.69 |
Hemoglobin (g/L) (mean, SD) | 87 (22) | 88 (25) | 0.86 |
Platelets (×109/L) (median, range) | 68 (6–806) | 59 (10–535) | 0.61 |
Bone marrow blasts (%) (median, range) | 72 (26–99) | 70 (21–96) | 0.31 |
CR after first induction (n, %) | 78 (79%) | 44 (86%) | 0.28 |
MRD-positive (n, %) | 50 (51%) | 23 (45%) | 0.61 |
Variable | DNMT3A | FLT3-ITD | IDH2 | PTPN11 | ||||
---|---|---|---|---|---|---|---|---|
WT (N = 76) | MUT (N = 74) | WT (N = 98) | MUT (N = 52) | WT (N = 106) | MUT (N = 44) | WT (N = 121) | MUT (N = 29) | |
Gender, male/female | 35/41 | 43/31 | 48/50 | 30/22 | 53/53 | 25/19 | 62/59 | 16/13 |
Age (median, range) | 41 (17–73) | 50 (22–76) * | 49 (17–76) | 47 (16–68) | 48 (16–76) | 48 (17–65) | 47 (16–76) | 48 (17–67) |
WBC (×109/L) (median, range) | 21 (0–228) | 37 (2–226) * | 29 (0–266) | 38 (1–185) | 32 (1–266) | 25 (0–192) | 31 (0–266) | 30 (3–224) |
Hemoglobin (g/L) (mean, SD) | 85 (24) | 91(23) | 85 (23) | 92 (24) | 86 (24) | 91 (22) | 88 (24) | 86 (19) |
Platelets (×109/L) (median, range) | 48 (6–267) | 76(11–806) * | 69 (6–535) | 56(10–806) | 59 (6–806) | 78 (7–535) | 64 (6–806) | 73 (9–211) |
Bone marrow blasts (%) (median, range) | 70 (23–96) | 72 (21–99) | 65 (21–99) | 76 (27–96) * | 70 (21–94) | 73 (31–99) | 71 (24–99) | 57 (21–91) |
Variables | Multivariate Analysis of CIR | Multivariate Analysis of LFS | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
MRD test (+/−) | 6.00 (3.31–10.85) | <0.001 | 5.49 (3.01–10.04) | <0.001 |
DNMT3A (Mutated vs. WT) | 3.01 (1.57–5.78) | <0.001 | 2.99 (1.60–5.62) | <0.001 |
FLT3-ITD (Mutated with VAF ≥ 0.5 vs. WT or mutated with VAF < 0.5) | 4.40 (1.89–10.24) | <0.001 | 4.20 (1.87–9.40) | <0.001 |
DDX11 (Mutated vs. WT) | 4.38 (2.38–8.04) | <0.001 | 4.22 (1.99–8.95) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Liao, M.; Gale, R.P.; Zhang, M.; Wu, L.; Yan, N.; Liu, L.; Qin, J.; Cao, S.; Chang, Y.; et al. Acute Myeloid Leukemia with Normal Cytogenetics and NPM1-Mutation: Impact of Mutation Topography on Outcomes. Biomedicines 2024, 12, 2921. https://doi.org/10.3390/biomedicines12122921
Zhao M, Liao M, Gale RP, Zhang M, Wu L, Yan N, Liu L, Qin J, Cao S, Chang Y, et al. Acute Myeloid Leukemia with Normal Cytogenetics and NPM1-Mutation: Impact of Mutation Topography on Outcomes. Biomedicines. 2024; 12(12):2921. https://doi.org/10.3390/biomedicines12122921
Chicago/Turabian StyleZhao, Mingyue, Mingyue Liao, Robert Peter Gale, Meijie Zhang, Lixin Wu, Nan Yan, Lixia Liu, Jiayue Qin, Shanbo Cao, Yingjun Chang, and et al. 2024. "Acute Myeloid Leukemia with Normal Cytogenetics and NPM1-Mutation: Impact of Mutation Topography on Outcomes" Biomedicines 12, no. 12: 2921. https://doi.org/10.3390/biomedicines12122921
APA StyleZhao, M., Liao, M., Gale, R. P., Zhang, M., Wu, L., Yan, N., Liu, L., Qin, J., Cao, S., Chang, Y., Jiang, Q., Xu, L., Zhang, X., Huang, X., Jiang, H., & Ruan, G. (2024). Acute Myeloid Leukemia with Normal Cytogenetics and NPM1-Mutation: Impact of Mutation Topography on Outcomes. Biomedicines, 12(12), 2921. https://doi.org/10.3390/biomedicines12122921