Integration of Stromal Cells and Hydrogel Below Epithelium Results in Optimal Barrier Properties of Small Intestine Organoid Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Collection
2.2. Cell Isolation and Culture
2.2.1. Primary Small Intestine Epithelial Organoids
2.2.2. Stromal Cells
2.2.3. Cell Lines
2.3. Construction of Small Intestine Models
2.3.1. Epithelial (EPI) Model
2.3.2. Full Thickness (FT) Model
2.3.3. Collection of Stromal Cell Conditioned Medium and Construction of Paracrine Model
2.4. Measurement of Transepithelial Electrical Resistance (TEER)
2.5. (Immuno)Histochemical Analysis of Paraffin Embedded Tissue Sections
2.6. Measurement of Cytokine Secretion in Culture Supernatant
2.7. Zonulin ELISA
2.8. Statistical Analysis
3. Results
3.1. Characterization of the Cell Line and Organoid Models
3.2. Lamina Propria Hydrogel as Well as Stromal Cells Contribute to In Vivo Like Barrier Properties
3.3. Differential Secretion of Angiogenic and Growth Factors
3.4. LP-Epithelium Synergistic Crosstalk Increases Their Potential to Recruit Immune Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Darling, N.J.; Mobbs, C.L.; Gonzalez-Hau, A.L.; Freer, M.; Przyborski, S. Bioengineering Novel in vitro Co-culture Models That Represent the Human Intestinal Mucosa With Improved Caco-2 Structure and Barrier Function. Front. Bioeng. Biotechnol. 2020, 8, 992. [Google Scholar] [CrossRef] [PubMed]
- Macedo, M.H.; Martinez, E.; Barrias, C.C.; Sarmento, B. Development of an Improved 3D in vitro Intestinal Model to Perform Permeability Studies of Paracellular Compounds. Front. Bioeng. Biotechnol. 2020, 8, 524018. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Ko, H.; Kwon, I.K.; Shin, K. Extracellular Matrix Revisited: Roles in Tissue Engineering. Int. Neurourol. J. 2016, 20, S23–S29. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.I.; Poulin, E.J.; Blask, E.; Bukhalid, R.; Whitehead, R.H.; Franklin, J.L.; Coffey, R.J. Myofibroblast keratinocyte growth factor reduces tight junctional integrity and increases claudin-2 levels in polarized Caco-2 cells. Growth Factors 2012, 30, 320–332. [Google Scholar] [CrossRef] [PubMed]
- Halttunen, T.; Marttinen, A.; Rantala, I.; Kainulainen, H.; Maki, M. Fibroblasts and transforming growth factor beta induce organization and differentiation of T84 human epithelial cells. Gastroenterology 1996, 111, 1252–1262. [Google Scholar] [CrossRef]
- Asal, M.; Rep, M.; Bontkes, H.J.; van Vliet, S.J.; Mebius, R.E.; Gibbs, S. Towards Full Thickness Small Intestinal Models: Incorporation of Stromal Cells. Tissue Eng. Regen. Med. 2023. [CrossRef]
- Costa, J.; Ahluwalia, A. Advances and Current Challenges in Intestinal in vitro Model Engineering: A Digest. Front. Bioeng. Biotechnol. 2019, 7, 144. [Google Scholar] [CrossRef]
- Artursson, P.; Palm, K.; Luthman, K. Caco-2 monolayers in experimental and theoretical predictions of drug transport1PII of original article: S0169-409X(96)00415-2. Adv. Drug Deliv. Rev. 1996, 22, 67–84.1, Erratum in Adv. Drug Deliv. Rev. 2001, 46, 27–43. [Google Scholar] [CrossRef]
- Hidalgo, I.J.; Raub, T.J.; Borchardt, R.T. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 1989, 96, 736–749. [Google Scholar] [CrossRef]
- Sun, H.; Chow, E.C.; Liu, S.; Du, Y.; Pang, K.S. The Caco-2 cell monolayer: Usefulness and limitations. Expert. Opin. Drug Metab. Toxicol. 2008, 4, 395–411. [Google Scholar] [CrossRef]
- Srinivasan, B.; Kolli, A.R.; Esch, M.B.; Abaci, H.E.; Shuler, M.L.; Hickman, J.J. TEER measurement techniques for in vitro barrier model systems. J. Lab. Autom. 2015, 20, 107–126. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Stange, D.E.; Ferrante, M.; Vries, R.G.; Van Es, J.H.; Van den Brink, S.; Van Houdt, W.J.; Pronk, A.; Van Gorp, J.; Siersema, P.D.; et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 2011, 141, 1762–1772. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Vries, R.G.; Snippert, H.J.; van de Wetering, M.; Barker, N.; Stange, D.E.; van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009, 459, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Asal, M.; Güven, S. Stem cells: Sources, properties, and cell types. In Biomaterials for Organ and Tissue Regeneration; Woodhead Publishing: Sawston, UK, 2020; pp. 177–196. [Google Scholar]
- Sato, T.; Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: Mechanism and applications. Science 2013, 340, 1190–1194. [Google Scholar] [CrossRef]
- Noel, G.; Baetz, N.W.; Staab, J.F.; Donowitz, M.; Kovbasnjuk, O.; Pasetti, M.F.; Zachos, N.C. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Sci. Rep. 2017, 7, 45270. [Google Scholar] [CrossRef]
- Kozuka, K.; He, Y.; Koo-McCoy, S.; Kumaraswamy, P.; Nie, B.; Shaw, K.; Chan, P.; Leadbetter, M.; He, L.; Lewis, J.G.; et al. Development and Characterization of a Human and Mouse Intestinal Epithelial Cell Monolayer Platform. Stem Cell Reports 2017, 9, 1976–1990. [Google Scholar] [CrossRef]
- Tong, Z.; Martyn, K.; Yang, A.; Yin, X.; Mead, B.E.; Joshi, N.; Sherman, N.E.; Langer, R.S.; Karp, J.M. Towards a defined ECM and small molecule based monolayer culture system for the expansion of mouse and human intestinal stem cells. Biomaterials 2018, 154, 60–73. [Google Scholar] [CrossRef]
- Fofanova, T.Y.; Stewart, C.J.; Auchtung, J.M.; Wilson, R.L.; Britton, R.A.; Grande-Allen, K.J.; Estes, M.K.; Petrosino, J.F. A novel human enteroid-anaerobe co-culture system to study microbial-host interaction under physiological hypoxia. BioRxiv 2019. [Google Scholar] [CrossRef]
- Yamashita, T.; Inui, T.; Yokota, J.; Kawakami, K.; Morinaga, G.; Takatani, M.; Hirayama, D.; Nomoto, R.; Ito, K.; Cui, Y.; et al. Monolayer platform using human biopsy-derived duodenal organoids for pharmaceutical research. Mol. Ther. Methods Clin. Dev. 2021, 22, 263–278. [Google Scholar] [CrossRef]
- Fasano, A. Zonulin and Its Regulation of Intestinal Barrier Function: The Biological Door to Inflammation, Autoimmunity, and Cancer. Physiol. Rev. 2011, 91, 151–175. [Google Scholar] [CrossRef]
- Tajik, N.; Frech, M.; Schulz, O.; Schalter, F.; Lucas, S.; Azizov, V.; Durholz, K.; Steffen, F.; Omata, Y.; Rings, A.; et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat. Commun. 2020, 11, 1995. [Google Scholar] [CrossRef] [PubMed]
- Rowland, K.J.; Choi, P.M.; Warner, B.W. The role of growth factors in intestinal regeneration and repair in necrotizing enterocolitis. Semin. Pediatr. Surg. 2013, 22, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Shiou, S.R.; Yu, Y.; Chen, S.; Ciancio, M.J.; Petrof, E.O.; Sun, J.; Claud, E.C. Erythropoietin protects intestinal epithelial barrier function and lowers the incidence of experimental neonatal necrotizing enterocolitis. J. Biol. Chem. 2011, 286, 12123–12132. [Google Scholar] [CrossRef] [PubMed]
- Halpern, M.D.; Denning, P.W. The role of intestinal epithelial barrier function in the development of NEC. Tissue Barriers 2015, 3, e1000707. [Google Scholar] [CrossRef]
- Schumacher, M.A.; Danopoulos, S.; Al Alam, D.; Frey, M.R. Growth Factors in the Intestinal Tract. In Physiology of the Gastrointestinal Tract; Academic Press: Cambridge, MA, USA, 2018; pp. 71–101. [Google Scholar]
- Tang, X.; Liu, H.; Yang, S.; Li, Z.; Zhong, J.; Fang, R. Epidermal Growth Factor and Intestinal Barrier Function. Mediators Inflamm. 2016, 2016, 1927348. [Google Scholar] [CrossRef]
- Wang, T.; Langley, K.E.; Gourley, W.K.; Klimpel, G.R. Stem cell factor (SCF) can regulate the activation and expansion of murine intraepithelial lymphocytes. Cytokine 2000, 12, 272–280. [Google Scholar] [CrossRef]
- Shimizu, M.; Minakuchi, K.; Tsuda, A.; Hiroi, T.; Tanaka, N.; Koga, J.; Kiyono, H. Role of stem cell factor and c-kit signaling in regulation of fetal intestinal epithelial cell adhesion to fibronectin. Exp. Cell Res. 2001, 266, 311–322. [Google Scholar] [CrossRef]
- Klebl, F.H.; Olsen, J.E.; Jain, S.; Doe, W.F. Expression of macrophage-colony stimulating factor in normal and inflammatory bowel disease intestine. J. Pathol. 2001, 195, 609–615. [Google Scholar] [CrossRef]
- Schlieve, C.R.; Mojica, S.G.; Holoyda, K.A.; Hou, X.; Fowler, K.L.; Grikscheit, T.C. Vascular Endothelial Growth Factor (VEGF) Bioavailability Regulates Angiogenesis and Intestinal Stem and Progenitor Cell Proliferation during Postnatal Small Intestinal Development. PLoS ONE 2016, 11, e0151396. [Google Scholar] [CrossRef]
- Pasztoi, M.; Ohnmacht, C. Tissue Niches Formed by Intestinal Mesenchymal Stromal Cells in Mucosal Homeostasis and Immunity. Int. J. Mol. Sci. 2022, 23. [Google Scholar] [CrossRef]
- Roy, N.; Turner-Brannen, E.; West, A.R. Development of an in vitro Experimental Model for Investigating the Effect of Matrix Stiffness on Epithelial Barrier Permeability. bioRxiv 2019, 828079. [Google Scholar] [CrossRef]
- Perez-Gonzalez, C.; Ceada, G.; Greco, F.; Matejcic, M.; Gomez-Gonzalez, M.; Castro, N.; Menendez, A.; Kale, S.; Krndija, D.; Clark, A.G.; et al. Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration. Nat. Cell Biol. 2021, 23, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Speer, J.E.; Gunasekara, D.B.; Wang, Y.; Fallon, J.K.; Attayek, P.J.; Smith, P.C.; Sims, C.E.; Allbritton, N.L. Molecular transport through primary human small intestinal monolayers by culture on a collagen scaffold with a gradient of chemical cross-linking. J. Biol. Eng. 2019, 13, 36. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, G.; Kamyabi, N.; Carter, H.E.; Rajan, A.; Karandikar, U.; Criss, Z.K.; Shroyer, N.F.; Robertson, M.J.; Coarfa, C.; Huang, C.; et al. Effect of substrate stiffness on human intestinal enteroids' infectivity by enteroaggregative Escherichia coli. Acta Biomater. 2021, 132, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Ayehunie, S.; Landry, T.; Stevens, Z.; Armento, A.; Hayden, P.; Klausner, M. Human Primary Cell-Based Organotypic Microtissues for Modeling Small Intestinal Drug Absorption. Pharm. Res. 2018, 35, 72. [Google Scholar] [CrossRef]
- Spiekstra, S.W.; Breetveld, M.; Rustemeyer, T.; Scheper, R.J.; Gibbs, S. Wound-healing factors secreted by epidermal keratinocytes and dermal fibroblasts in skin substitutes. Wound Repair. Regen. 2007, 15, 708–717. [Google Scholar] [CrossRef]
- Boxman, I.; Lowik, C.; Aarden, L.; Ponec, M. Modulation of IL-6 production and IL-1 activity by keratinocyte-fibroblast interaction. J. Invest. Dermatol. 1993, 101, 316–324. [Google Scholar] [CrossRef]
- Williams, I.R. CCR6 and CCL20. Ann. N. Y. Acad. Sci. 2006, 1072, 52–61. [Google Scholar] [CrossRef]
- Morrison, A.I.; Mikula, A.M.; Spiekstra, S.W.; de Kok, M.; Affandi, A.J.; Roest, H.P.; van der Laan, L.J.W.; de Winde, C.M.; Koning, J.J.; Gibbs, S.; et al. An Organotypic Human Lymph Node Model Reveals the Importance of Fibroblastic Reticular Cells for Dendritic Cell Function. Tissue Eng. Regen. Med. 2024, 21, 455–471. [Google Scholar] [CrossRef]
- Koning, J.J.; Rodrigues Neves, C.T.; Schimek, K.; Thon, M.; Spiekstra, S.W.; Waaijman, T.; de Gruijl, T.D.; Gibbs, S. A Multi-Organ-on-Chip Approach to Investigate How Oral Exposure to Metals Can Cause Systemic Toxicity Leading to Langerhans Cell Activation in Skin. Front. Toxicol. 2021, 3, 824825. [Google Scholar] [CrossRef]
Cell Type | TEER (Ωcm2) |
---|---|
Colon (in vivo) | 300–400 |
Small intestine (in vivo) | 50–100 |
Caco-2 | 1100–1350 |
Caco-2 and HT29-MTX | 100–300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asal, M.; Thon, M.; Waaijman, T.; Bontkes, H.J.; van Vliet, S.J.; Mebius, R.E.; Gibbs, S. Integration of Stromal Cells and Hydrogel Below Epithelium Results in Optimal Barrier Properties of Small Intestine Organoid Models. Biomedicines 2024, 12, 2913. https://doi.org/10.3390/biomedicines12122913
Asal M, Thon M, Waaijman T, Bontkes HJ, van Vliet SJ, Mebius RE, Gibbs S. Integration of Stromal Cells and Hydrogel Below Epithelium Results in Optimal Barrier Properties of Small Intestine Organoid Models. Biomedicines. 2024; 12(12):2913. https://doi.org/10.3390/biomedicines12122913
Chicago/Turabian StyleAsal, Melis, Maria Thon, Taco Waaijman, Hetty J. Bontkes, Sandra J. van Vliet, Reina E. Mebius, and Susan Gibbs. 2024. "Integration of Stromal Cells and Hydrogel Below Epithelium Results in Optimal Barrier Properties of Small Intestine Organoid Models" Biomedicines 12, no. 12: 2913. https://doi.org/10.3390/biomedicines12122913
APA StyleAsal, M., Thon, M., Waaijman, T., Bontkes, H. J., van Vliet, S. J., Mebius, R. E., & Gibbs, S. (2024). Integration of Stromal Cells and Hydrogel Below Epithelium Results in Optimal Barrier Properties of Small Intestine Organoid Models. Biomedicines, 12(12), 2913. https://doi.org/10.3390/biomedicines12122913