Discordance Between Triglycerides, Remnant Cholesterol and Systemic Inflammation in Patients with Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Biochemical Analyses
2.3. NMR Spectroscopy
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kritharides, L.; Chow, V.; Lambert, T.J. Cardiovascular disease in patients with schizophrenia. Med. J. Aust. 2017, 206, 91–95. [Google Scholar] [CrossRef]
- Hsu, M.C.; Ouyang, W.C. Subsequent Dyslipidemia and Factors Associated with Mortality in Schizophrenia: A Population-Based Study in Taiwan. Healthcare 2021, 9, 545. [Google Scholar] [CrossRef]
- Mitchell, A.J.; Vancampfort, D.; Sweers, K.; van Winkel, R.; Yu, W.; De Hert, M. Prevalence of metabolic syndrome and metabolic abnormalities in schizophrenia and related disorders-A systematic review and meta-analysis. Schizophr. Bull. 2013, 39, 306–318. [Google Scholar] [CrossRef]
- Austin, M.A.; Hokanson, J.E.; Edwards, K.L. Hypertriglyceridemia as a cardiovascular risk factor. Am. J. Cardiol. 1998, 81, 7b–12b. [Google Scholar] [CrossRef]
- Wang, J.; Kockx, M.; Bolek, M.; Lambert, T.; Sullivan, D.; Chow, V.; Kritharides, L. Triglyceride-rich lipoprotein, remnant cholesterol, and apolipoproteins CII, CIII and E in patients with schizophrenia. J. Lipid Res. 2024, 65, 100577. [Google Scholar] [CrossRef] [PubMed]
- Liberale, L.; Badimon, L.; Montecucco, F.; Lüscher, T.F.; Libby, P.; Camici, G.G. Inflammation, Aging, and Cardiovascular Disease: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2022, 79, 837–847. [Google Scholar] [CrossRef]
- Chung, K.H.; Chen, P.H.; Kuo, C.J.; Tsai, S.Y.; Huang, S.H.; Wu, W.C. Risk factors for early circulatory mortality in patients with schizophrenia. Psychiatry Res. 2018, 267, 7–11. [Google Scholar] [CrossRef]
- Kaptoge, S.; Di Angelantonio, E.; Lowe, G.; Pepys, M.B.; Thompson, S.G.; Collins, R.; Danesh, J. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: An individual participant meta-analysis. Lancet 2010, 375, 132–140. [Google Scholar] [CrossRef]
- Li, X.; Liu, M.; Wang, G. The neutrophil-lymphocyte ratio is associated with all-cause and cardiovascular mortality in cardiovascular patients. Sci. Rep. 2024, 14, 26692. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Rifai, N.; Stampfer, M.J.; Hennekens, C.H. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000, 101, 1767–1772. [Google Scholar] [CrossRef] [PubMed]
- Ballout, R.A.; Remaley, A.T. GlycA: A New Biomarker for Systemic Inflammation and Cardiovascular Disease (CVD) Risk Assessment. J. Lab. Precis. Med. 2020, 5, 17. [Google Scholar] [CrossRef]
- Varbo, A.; Benn, M.; Tybjærg-Hansen, A.; Nordestgaard, B.G. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation 2013, 128, 1298–1309. [Google Scholar] [CrossRef] [PubMed]
- Bernelot Moens, S.J.; Verweij, S.L.; Schnitzler, J.G.; Stiekema, L.C.A.; Bos, M.; Langsted, A.; Kuijk, C.; Bekkering, S.; Voermans, C.; Verberne, H.J.; et al. Remnant Cholesterol Elicits Arterial Wall Inflammation and a Multilevel Cellular Immune Response in Humans. Arter. Thromb. Vasc. Biol. 2017, 37, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Cesena, F.Y.; Generoso, G.; Santos, R.D.; Pereira, A.C.; Blaha, M.J.; Jones, S.R.; Toth, P.P.; Lotufo, P.A.; Bittencourt, M.S.; Benseñor, I.M. The association between triglyceride-rich lipoproteins, circulating leukocytes, and low-grade inflammation: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). J. Clin. Lipidol. 2023, 17, 261–271. [Google Scholar] [CrossRef]
- Feingold, K.R.; Shigenaga, J.K.; Kazemi, M.R.; McDonald, C.M.; Patzek, S.M.; Cross, A.S.; Moser, A.; Grunfeld, C. Mechanisms of triglyceride accumulation in activated macrophages. J. Leukoc. Biol. 2012, 92, 829–839. [Google Scholar] [CrossRef]
- Goldsmith, D.R.; Rapaport, M.H.; Miller, B.J. A meta-analysis of blood cytokine network alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatry 2016, 21, 1696–1709. [Google Scholar] [CrossRef] [PubMed]
- Frydecka, D.; Krzystek-Korpacka, M.; Lubeiro, A.; Stramecki, F.; Stańczykiewicz, B.; Beszłej, J.A.; Piotrowski, P.; Kotowicz, K.; Szewczuk-Bogusławska, M.; Pawlak-Adamska, E.; et al. Profiling inflammatory signatures of schizophrenia: A cross-sectional and meta-analysis study. Brain. Behav. Immun. 2018, 71, 28–36. [Google Scholar] [CrossRef]
- Potvin, S.; Stip, E.; Sepehry, A.A.; Gendron, A.; Bah, R.; Kouassi, E. Inflammatory cytokine alterations in schizophrenia: A systematic quantitative review. Biol. Psychiatry 2008, 63, 801–808. [Google Scholar] [CrossRef]
- Miller, B.J.; Mellor, A.; Buckley, P. Total and differential white blood cell counts, high-sensitivity C-reactive protein, and the metabolic syndrome in non-affective psychoses. Brain Behav. Immun. 2013, 31, 82–89. [Google Scholar] [CrossRef]
- Fan, X.; Liu, E.Y.; Freudenreich, O.; Park, J.H.; Liu, D.; Wang, J.; Yi, Z.; Goff, D.; Henderson, D.C. Higher white blood cell counts are associated with an increased risk for metabolic syndrome and more severe psychopathology in non-diabetic patients with schizophrenia. Schizophr. Res. 2010, 118, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Beumer, W.; Drexhage, R.C.; De Wit, H.; Versnel, M.A.; Drexhage, H.A.; Cohen, D. Increased level of serum cytokines, chemokines and adipokines in patients with schizophrenia is associated with disease and metabolic syndrome. Psychoneuroendocrinology 2012, 37, 1901–1911. [Google Scholar] [CrossRef] [PubMed]
- Balõtšev, R.; Koido, K.; Vasar, V.; Janno, S.; Kriisa, K.; Mahlapuu, R.; Ljubajev, U.; Parksepp, M.; Veiksaar, P.; Volke, V.; et al. Inflammatory, cardio-metabolic and diabetic profiling of chronic schizophrenia. Eur. Psychiatry 2017, 39, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chow, V.; Reddel, C.; Pennings, G.; Scott, E.; Pasqualon, T.; Ng, A.C.; Yeoh, T.; Curnow, J.; Kritharides, L. Global hypercoagulability in patients with schizophrenia receiving long-term antipsychotic therapy. Schizophr. Res. 2015, 162, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Chow, V.; Yeoh, T.; Ng, A.C.; Pasqualon, T.; Scott, E.; Plater, J.; Whitwell, B.; Hanzek, D.; Chung, T.; Thomas, L.; et al. Asymptomatic left ventricular dysfunction with long-term clozapine treatment for schizophrenia: A multicentre cross-sectional cohort study. Open Heart 2014, 1, e000030. [Google Scholar] [CrossRef] [PubMed]
- Anastasius, M.; Luquain-Costaz, C.; Kockx, M.; Jessup, W.; Kritharides, L. A critical appraisal of the measurement of serum ‘cholesterol efflux capacity’ and its use as surrogate marker of risk of cardiovascular disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 1257–1273. [Google Scholar] [CrossRef]
- Luquain-Costaz, C.; Kockx, M.; Anastasius, M.; Chow, V.; Kontush, A.; Jessup, W.; Kritharides, L. Increased ABCA1 (ATP-Binding Cassette Transporter A1)-Specific Cholesterol Efflux Capacity in Schizophrenia. Arter. Thromb. Vasc. Biol. 2020, 40, 2728–2737. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Connelly, M.A.; Otvos, J.D.; Shalaurova, I.; Playford, M.P.; Mehta, N.N. GlycA, a novel biomarker of systemic inflammation and cardiovascular disease risk. J. Transl. Med. 2017, 15, 219. [Google Scholar] [CrossRef]
- Matyus, S.P.; Braun, P.J.; Wolak-Dinsmore, J.; Jeyarajah, E.J.; Shalaurova, I.; Xu, Y.; Warner, S.M.; Clement, T.S.; Connelly, M.A.; Fischer, T.J. NMR measurement of LDL particle number using the Vantera Clinical Analyzer. Clin. Biochem. 2014, 47, 203–210. [Google Scholar] [CrossRef]
- Kosmala, W.; Derzhko, R.; Przewlocka-Kosmala, M.; Orda, A.; Mazurek, W. Plasma levels of TNF-alpha, IL-6, and IL-10 and their relationship with left ventricular diastolic function in patients with stable angina pectoris and preserved left ventricular systolic performance. Coron. Artery Dis. 2008, 19, 375–382. [Google Scholar] [CrossRef]
- Dizdarević-Hudić, L.; Kusljugić, Z.; Baraković, F.; Brkić, S.; Sabitović, D.; Jahić, E.; Isabegović, M.; Smajić, E.; Hudić, I.; Divković, K. Correlation between interleukin 6 and interleukin 10 in acute myocardial infarction. Bosn. J. Basic Med. Sci. 2009, 9, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhong, X.; Cheng, G.; Zhao, C.; Zhang, L.; Hong, Y.; Wan, Q.; He, R.; Wang, Z. Hs-CRP and all-cause, cardiovascular, and cancer mortality risk: A meta-analysis. Atherosclerosis 2017, 259, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, Q.; Zheng, Z.; Qing, M.; Yao, T.; Wang, B.; Zhou, M.; Wang, D.; Ke, Q.; Ma, J.; et al. Genetic association of inflammatory marker GlycA with lung function and respiratory diseases. Nat. Commun. 2024, 15, 3751. [Google Scholar] [CrossRef] [PubMed]
- Akinkuolie, A.O.; Buring, J.E.; Ridker, P.M.; Mora, S. A novel protein glycan biomarker and future cardiovascular disease events. J. Am. Heart Assoc. 2014, 3, e001221. [Google Scholar] [CrossRef]
- Gruppen, E.G.; Riphagen, I.J.; Connelly, M.A.; Otvos, J.D.; Bakker, S.J.; Dullaart, R.P. GlycA, a Pro-Inflammatory Glycoprotein Biomarker, and Incident Cardiovascular Disease: Relationship with C-Reactive Protein and Renal Function. PLoS ONE 2015, 10, e0139057. [Google Scholar] [CrossRef]
- Duprez, D.A.; Otvos, J.; Sanchez, O.A.; Mackey, R.H.; Tracy, R.; Jacobs, D.R., Jr. Comparison of the Predictive Value of GlycA and Other Biomarkers of Inflammation for Total Death, Incident Cardiovascular Events, Noncardiovascular and Noncancer Inflammatory-Related Events, and Total Cancer Events. Clin. Chem. 2016, 62, 1020–1031. [Google Scholar] [CrossRef] [PubMed]
- Guasti, L.; Dentali, F.; Castiglioni, L.; Maroni, L.; Marino, F.; Squizzato, A.; Ageno, W.; Gianni, M.; Gaudio, G.; Grandi, A.M.; et al. Neutrophils and clinical outcomes in patients with acute coronary syndromes and/or cardiac revascularisation. A systematic review on more than 34,000 subjects. Thromb. Haemost. 2011, 106, 591–599. [Google Scholar] [CrossRef]
- Angkananard, T.; Anothaisintawee, T.; McEvoy, M.; Attia, J.; Thakkinstian, A. Neutrophil Lymphocyte Ratio and Cardiovascular Disease Risk: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2018, 2018, 2703518. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Rifai, N.; Pfeffer, M.; Sacks, F.; Lepage, S.; Braunwald, E. Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation 2000, 101, 2149–2153. [Google Scholar] [CrossRef]
- Brown, M.A.; Hural, J. Functions of IL-4 and control of its expression. Crit. Rev. Immunol. 1997, 17, 1–32. [Google Scholar] [CrossRef]
- Piazzon, M.C.; Lutfalla, G.; Forlenza, M. IL10, A Tale of an Evolutionarily Conserved Cytokine across Vertebrates. Crit. Rev. Immunol. 2016, 36, 99–129. [Google Scholar] [CrossRef] [PubMed]
- Wadström, B.N.; Pedersen, K.M.; Wulff, A.B.; Nordestgaard, B.G. Elevated remnant cholesterol, plasma triglycerides, and cardiovascular and non-cardiovascular mortality. Eur. Heart J. 2023, 44, 1432–1445. [Google Scholar] [CrossRef] [PubMed]
- Pontzen, D.L.; Bahls, M.; Albrecht, D.; Felix, S.B.; Dörr, M.; Ittermann, T.; Nauck, M.; Friedrich, N. Low-grade inflammation is associated with a heterogeneous lipoprotein subclass profile in an apparently healthy population sample. Lipids Health Dis. 2023, 22, 100. [Google Scholar] [CrossRef] [PubMed]
- Doi, T.; Langsted, A.; Nordestgaard, B.G. Dual elevated remnant cholesterol and C-reactive protein in myocardial infarction, atherosclerotic cardiovascular disease, and mortality. Atherosclerosis 2023, 379, 117141. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.C.; Gao, F.; Zhang, J.H.; Ruan, Y.; Gao, T.G.; Cai, J.Y.; Liu, S.F. Investigating the impact of remnant cholesterol on new-onset stroke across diverse inflammation levels: Insights from the China Health and Retirement Longitudinal Study (CHARLS). Int. J. Cardiol. 2024, 405, 131946. [Google Scholar] [CrossRef]
- Shi, J.; Levinson, D.F.; Duan, J.; Sanders, A.R.; Zheng, Y.; Pe’er, I.; Dudbridge, F.; Holmans, P.A.; Whittemore, A.S.; Mowry, B.J.; et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009, 460, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Sekar, A.; Bialas, A.R.; de Rivera, H.; Davis, A.; Hammond, T.R.; Kamitaki, N.; Tooley, K.; Presumey, J.; Baum, M.; Van Doren, V.; et al. Schizophrenia risk from complex variation of complement component 4. Nature 2016, 530, 177–183. [Google Scholar] [CrossRef]
- Benros, M.E.; Pedersen, M.G.; Rasmussen, H.; Eaton, W.W.; Nordentoft, M.; Mortensen, P.B. A nationwide study on the risk of autoimmune diseases in individuals with a personal or a family history of schizophrenia and related psychosis. Am. J. Psychiatry 2014, 171, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.R.; Benros, M.E.; Mortensen, P.B. Hospital contacts with infection and risk of schizophrenia: A population-based cohort study with linkage of Danish national registers. Schizophr. Bull. 2014, 40, 1526–1532. [Google Scholar] [CrossRef]
- Miller, B.J.; Buckley, P.; Seabolt, W.; Mellor, A.; Kirkpatrick, B. Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects. Biol. Psychiatry 2011, 70, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Upthegrove, R.; Manzanares-Teson, N.; Barnes, N.M. Cytokine function in medication-naive first episode psychosis: A systematic review and meta-analysis. Schizophr. Res. 2014, 155, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.K.; Miller, B.J. Meta-analysis of Cerebrospinal Fluid Cytokine and Tryptophan Catabolite Alterations in Psychiatric Patients: Comparisons Between Schizophrenia, Bipolar Disorder, and Depression. Schizophr. Bull. 2018, 44, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Mazza, M.G.; Lucchi, S.; Rossetti, A.; Clerici, M. Neutrophil-lymphocyte ratio, monocyte-lymphocyte ratio and platelet-lymphocyte ratio in non-affective psychosis: A meta-analysis and systematic review. World J. Biol. Psychiatry 2020, 21, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Na, K.S.; Kim, W.H.; Jung, H.Y.; Ryu, S.G.; Min, K.J.; Park, K.C.; Kim, Y.S.; Yoon, J.S.; Ahn, Y.M.; Kim, C.E. Relationship between inflammation and metabolic syndrome following treatment with paliperidone for schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2012, 39, 295–300. [Google Scholar] [CrossRef]
- Meyer, J.M.; Koro, C.E. The effects of antipsychotic therapy on serum lipids: A comprehensive review. Schizophr. Res. 2004, 70, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Correll, C.U.; Detraux, J.; De Lepeleire, J.; De Hert, M. Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatry 2015, 14, 119–136. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Yu, H.; Zhang, Y.; Lu, Z.; Sun, Y.; Guo, L.; Guo, J.; Kang, Z.; Feng, X.; Sun, Y.; et al. Genome-wide association study implicates lipid pathway dysfunction in antipsychotic-induced weight gain: Multi-ancestry validation. Mol. Psychiatry 2024, 29, 1857–1868. [Google Scholar] [CrossRef]
- Meyer, J.M.; McEvoy, J.P.; Davis, V.G.; Goff, D.C.; Nasrallah, H.A.; Davis, S.M.; Hsiao, J.K.; Swartz, M.S.; Stroup, T.S.; Lieberman, J.A. Inflammatory markers in schizophrenia: Comparing antipsychotic effects in phase 1 of the clinical antipsychotic trials of intervention effectiveness study. Biol. Psychiatry 2009, 66, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.J.; Park, J.; Lee, S.Y.; Hwang, I.; Kim, J.B.; Park, T.S.; Lee, H.J.; Koo, S.H. Atypical antipsychotic drugs perturb AMPK-dependent regulation of hepatic lipid metabolism. Am. J. Physiol. Endocrinol. Metab. 2011, 300, E624–E632. [Google Scholar] [CrossRef]
- Giridharan, V.V.; Scaini, G.; Colpo, G.D.; Doifode, T.; Pinjari, O.F.; Teixeira, A.L.; Petronilho, F.; Macedo, D.; Quevedo, J.; Barichello, T. Clozapine Prevents Poly (I:C) Induced Inflammation by Modulating NLRP3 Pathway in Microglial Cells. Cells 2020, 9, 577. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, M.; Vieira, P.; O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 2020, 217, e20190418. [Google Scholar] [CrossRef] [PubMed]
- Porro, C.; Cianciulli, A.; Panaro, M.A. The Regulatory Role of IL-10 in Neurodegenerative Diseases. Biomolecules 2020, 10, 1017. [Google Scholar] [CrossRef]
- Maes, M.; Bosmans, E.; Kenis, G.; De Jong, R.; Smith, R.S.; Meltzer, H.Y. In vivo immunomodulatory effects of clozapine in schizophrenia. Schizophr. Res. 1997, 26, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Klemettilä, J.P.; Kampman, O.; Seppälä, N.; Viikki, M.; Hämäläinen, M.; Moilanen, E.; Leinonen, E. Cytokine and adipokine alterations in patients with schizophrenia treated with clozapine. Psychiatry Res. 2014, 218, 277–283. [Google Scholar] [CrossRef]
- Pollmächer, T.; Hinze-Selch, D.; Mullington, J. Effects of clozapine on plasma cytokine and soluble cytokine receptor levels. J. Clin. Psychopharmacol. 1996, 16, 403–409. [Google Scholar] [CrossRef]
- Fabrazzo, M.; Prisco, V.; Sampogna, G.; Perris, F.; Catapano, F.; Monteleone, A.M.; Maj, M. Clozapine versus other antipsychotics during the first 18 weeks of treatment: A retrospective study on risk factor increase of blood dyscrasias. Psychiatry Res. 2017, 256, 275–282. [Google Scholar] [CrossRef]
- Capllonch, A.; de Pablo, S.; de la Torre, A.; Morales, I. Increase in white cell and neutrophil counts during the first eighteen weeks of treatment with clozapine in patients admitted to a long-term psychiatric care inpatient unit. Rev. Psiquiatr. Salud Ment. 2018, 11, 94–100. [Google Scholar] [CrossRef]
- Pollmächer, T.; Fenzel, T.; Mullington, J.; Hinze-Selch, D. The influence of clozapine treatment on plasma granulocyte colony-stimulating (G-CSF) levels. Pharmacopsychiatry 1997, 30, 118–121. [Google Scholar] [CrossRef] [PubMed]
Healthy Controls (n = 56) | SZ (n = 147) | p Value | |
---|---|---|---|
Age, years | 38.5 (31.3–49.8) | 40.0 (30.0–51.0) | ns |
Biological sex, M/F; %M | 29/27 (52) | 97/50 (66) | ns |
BMI, kg/m2 | 24.0 (22.5–26.4) | 28.4 (24.5–32.9) | <0.001 |
HbA1c, % | 5.4 (5.3–5.6) | 5.7 (5.4–6.0) | 0.04 |
Smoking, % current | 2/56 (4) | 64/147 (44) | <0.001 |
Diabetes, % | 2/56 (4) | 30/147 (20) | 0.004 |
Statin therapy, % | 0/56 (0) | 30/146 (21) | <0.001 |
Hypertension, % | 4/53 (8) | 16/133 (12) | ns |
SZ duration of illness, years | - | 15.3 (8.8–23.6) | - |
Clozapine therapy, % | - | 119/147 (81) | - |
Healthy Controls (n = 56) | SZ (n = 147) | p Value | |
---|---|---|---|
Unadjusted | |||
TC, mmol/L | 4.9 (4.3–5.6) | 5.0 (4.2–5.7) | ns |
LDL-C mmol/L | 2.7 (2.3–3.5) | 3.0 (2.3–3.6) | ns |
HDL-C, mmol/L | 1.4 (1.2–1.8) | 1.1 (0.9–1.4) | <0.001 |
TG, mmol/L | 0.9 (0.7–1.5) | 1.7 (1.2–2.4) | <0.001 |
Remnant cholesterol, mmol/L | 0.4 (0.3–0.7) | 0.8 (0.5–1.1) | <0.001 |
apoB, µmol/L | 1.6 (1.3–2.0) | 1.6 (1.4–2.0) | ns |
Multivariable-adjusted | |||
Log10 TC, mmol/L | 0.65 ± 0.02 | 0.65 ± 0.01 | ns |
Log10 LDL-C, mmol/L | 0.31 ± 0.03 | 0.35 ± 0.02 | ns |
Log10 HDL-C, mmol/L | 0.12 ± 0.02 | 0.05 ± 0.01 | 0.002 |
Log10 TG, mmol/L | 0.08 ± 0.05 | 0.25 ± 0.03 | <0.001 |
Log10 remnant cholesterol, mmol/L | −0.29 ± 0.05 | −0.17 ± 0.03 | 0.004 |
Log10 apoB, µmol/L | 0.22 ± 0.03 | 0.20 ± 0.02 | ns |
Healthy Controls (n = 54) | SZ (n = 147) | p Value | |
---|---|---|---|
Unadjusted | |||
Log10 hsCRP, mg/L | −0.11 ± 0.50 | 0.37 ± 0.50 | <0.001 |
Log10 GlycA, µmol/L | 2.56 ± 0.08 | 2.65 ± 0.08 | <0.001 |
Adjusted for age and sex | |||
Log10 hsCRP, mg/L | −0.11 ± 0.07 | 0.37 ± 0.04 | <0.001 |
Log10 GlycA, µmol/L | 2.56 ± 0.01 | 2.65 ± 0.01 | <0.001 |
Adjusted for age, sex, body mass index, diabetes, smoking and statin use | |||
Log10 hsCRP, mg/L | −0.01 ± 0.10 | 0.30 ± 0.06 | <0.001 |
Log10 GlycA, µmol/L | 2.57 ± 0.02 | 2.65 ± 0.01 | <0.001 |
Healthy Controls (n = 22) | SZ (n = 147) | p Value | |
---|---|---|---|
Unadjusted | |||
Log10 WBC, ×109/L | 0.80 ± 0.09 | 0.88 ± 0.14 | 0.002 |
Log10 PMN, ×109/L | 0.54 ± 0.13 | 0.68 ± 0.18 | <0.001 |
Log10 Monocytes, ×109/L | −0.34 ± 0.16 | −0.26 ± 0.16 | ns |
Log10 Lymphocytes, ×109/L | 0.32 ± 0.12 | 0.29 ± 0.15 | ns |
Log10 NLR | 0.22 ± 0.18 | 0.38 ± 0.22 | <0.001 |
Log10 MLR | −0.67 ± 0.15 | −0.56 ± 0.20 | 0.008 |
Adjusted for age and sex | |||
Log10 WBC, ×109/L | 0.80 ± 0.03 | 0.88 ± 0.01 | 0.01 |
Log10 PMN, ×109/L | 0.54 ± 0.04 | 0.68 ± 0.02 | <0.001 |
Log10 Monocytes, ×109/L | −0.34 ± 0.04 | −0.27 ± 0.02 | ns |
Log10 Lymphocytes, ×109/L | 0.32 ± 0.03 | 0.29 ± 0.01 | ns |
Log10 NLR | 0.22 ± 0.05 | 0.38 ± 0.02 | 0.001 |
Log10 MLR | −0.68 ± 0.05 | −0.56 ± 0.02 | 0.02 |
Adjusted for age, sex, body mass index, diabetes, smoking and statin use | |||
Log10 WBC, mg/L | 0.89 ± 0.03 | 0.92 ± 0.02 | ns |
Log10 PMN, ×109/L | 0.62 ± 0.05 | 0.71 ± 0.02 | 0.035 |
Log10 Monocytes, ×109/L | −0.27 ± 0.05 | −0.24 ± 0.02 | ns |
Log10 Lymphocytes, ×109/L | 0.39 ± 0.04 | 0.32 ± 0.02 | 0.044 |
Log10 NLR | 0.24 ± 0.06 | 0.40 ± 0.03 | 0.005 |
Log10 MLR | −0.66 ± 0.06 | −0.57 ± 0.03 | ns |
HDL-C, mmol/L | TG, mmol/L | Remnant Cholesterol, mmol/L | apoB, µmol/L | |||||
---|---|---|---|---|---|---|---|---|
ρ | p Value | ρ | p Value | ρ | p Value | ρ | p Value | |
hsCRP, mg/L | −0.14 | ns | 0.02 | ns | −0.03 | ns | 0.02 | ns |
GlycA, µmol/L | −0.02 | ns | 0.06 | ns | −0.07 | ns | 0.10 | ns |
WBC, ×109/L | −0.13 | ns | 0.10 | ns | 0.06 | ns | −0.03 | ns |
PMN, ×109/L | −0.07 | ns | 0.06 | ns | 0.05 | ns | −0.04 | ns |
NLR | 0.03 | ns | 0.02 | ns | 0.02 | ns | 0.03 | ns |
MLR | 0.13 | ns | −0.02 | ns | −0.05 | ns | −0.07 | ns |
Healthy Controls (n = 54) | SZ (n = 147) | p Value | |
---|---|---|---|
Adjusted for hsCRP | |||
Log10 HDL-C, mmol/L | 0.16 ± 0.02 | 0.05 ± 0.01 | <0.001 |
Log10 TG, mmol/L | 0.03 ± 0.04 | 0.23 ± 0.02 | <0.001 |
Log10 remnant cholesterol, mmol/L | −0.31 ± 0.04 | −0.15 ± 0.02 | <0.001 |
Log10 apoB, µmol/L | 0.21 ± 0.02 | 0.21 ± 0.01 | ns |
Adjusted for GlycA | |||
Log10 HDL-C, mmol/L | 0.17 ± 0.02 | 0.05 ± 0.01 | <0.001 |
Log10 TG, mmol/L | 0.01 ± 0.04 | 0.23 ± 0.03 | <0.001 |
Log10 remnant cholesterol, mmol/L | −0.34 ± 0.04 | −0.15 ± 0.03 | <0.001 |
Log10 apoB, µmol/L | 0.23 ± 0.02 | 0.20 ± 0.01 | ns |
Adjusted for hsCRP and GlycA | |||
Log10 HDL-C, mmol/L | 0.16 ± 0.02 | 0.05 ± 0.01 | <0.001 |
Log10 TG, mmol/L | 0.02 ± 0.04 | 0.23 ± 0.03 | <0.001 |
Log10 remnant cholesterol, mmol/L | −0.33 ± 0.04 | −0.16 ± 0.03 | <0.001 |
Log10 apoB, µmol/L | 0.22 ± 0.02 | 0.20 ± 0.01 | ns |
Healthy Controls (n = 54) | SZ (n = 147) | p Value | |
---|---|---|---|
Adjusted for HDL-C | |||
Log10 hsCRP, mg/L | −0.06 ± 0.07 | 0.35 ± 0.04 | <0.001 |
Log10 GlycA, µmol/L | 2.56 ± 0.01 | 2.65 ± 0.01 | <0.001 |
Adjusted for TG | |||
Log10 hsCRP, mg/L | −0.08 ± 0.07 | 0.36 ± 0.04 | <0.001 |
Log10 GlycA, µmol/L | 2.56 ± 0.01 | 2.64 ± 0.01 | <0.001 |
Adjusted for remnant cholesterol | |||
Log10 hsCRP, mg/L | −0.10 ± 0.07 | 0.36 ± 0.04 | <0.001 |
Log10 GlycA, µmol/L | 2.56 ± 0.01 | 2.64 ± 0.01 | <0.001 |
Adjusted for apoB | |||
Log10 hsCRP, mg/L | −0.12 ± 0.08 | 0.37 ± 0.05 | <0.001 |
Log10 GlycA, µmol/L | 2.56 ± 0.01 | 2.65 ± 0.01 | <0.001 |
Adjusted for HDL-C, TG, remnant cholesterol and apoB | |||
Log10 hsCRP, mg/L | −0.07 ± 0.08 | 0.34 ± 0.05 | <0.001 |
Log10 GlycA, µmol/L | 2.56 ± 0.01 | 2.64 ± 0.01 | <0.001 |
Healthy Controls (n = 19) | SZ (n = 53) | p Value | |
---|---|---|---|
IL-1β, pg/mL | 0.6 (0.1–1.8) | 0.8 (0.1–4.6) | ns |
IL-6, pg/mL | 5.0 (3.4–5.9) | 5.9 (4.1–10.5) | ns |
TNF-α, pg/mL | 6.9 (4.4–8.9) | 8.3 (6.6–11.7) | 0.05 |
IFN-γ, pg/mL | 3.9 (2.3–12.7) | 6.6 (3.6–29.5) | ns |
IL-4, pg/mL | 12.6 (10.3–19.2) | 17.2 (10.1–31.4) | ns |
IL-10, pg/mL | 1.9 (0.9–5.0) | 6.9 (2.1–16.2) | 0.004 |
IL-6/IL-10 | 2.7 (1.6–5.2) | 1.2 (0.5–2.5) | 0.01 |
TNF-α/IL-10 | 4.7 (2.1–6.5) | 1.4 (0.6–3.8) | 0.01 |
IFN-γ/IL-4 | 0.4 (0.1–0.9) | 0.4 (0.2–1.1) | ns |
IFN-γ/IL-10 | 2.4 (1.2–5.6) | 1.3 (0.7–3.7) | ns |
HDL-C, mmol/L | TG, mmol/L | Remnant Cholesterol, mmol/L | apoB, µmol/L | |||||
---|---|---|---|---|---|---|---|---|
ρ | p Value | ρ | p Value | ρ | p Value | ρ | p Value | |
IL-1β, pg/mL | 0.25 | ns | −0.24 | ns | −0.26 | ns | −0.31 | 0.03 |
IL-6, pg/mL | 0.27 | ns | −0.31 | 0.02 | −0.34 | 0.02 | −0.30 | 0.03 |
TNF-α, pg/mL | −0.01 | ns | −0.02 | ns | 0.01 | ns | 0.07 | ns |
IFN-γ, pg/mL | 0.31 | 0.02 | −0.26 | ns | −0.26 | ns | −0.21 | ns |
IL-4, pg/mL | 0.37 | 0.01 | −0.25 | ns | −0.20 | ns | −0.33 | 0.02 |
IL-10, pg/mL | 0.21 | ns | −0.21 | ns | −0.16 | ns | −0.17 | ns |
IL-6/IL-10 | −0.04 | ns | 0.08 | ns | 0.07 | ns | 0.07 | ns |
TNF-α/IL-10 | −0.16 | ns | 0.22 | ns | 0.20 | ns | 0.21 | ns |
IFN-γ/IL-4 | 0.20 | ns | −0.16 | ns | −0.21 | ns | −0.05 | ns |
IFN-γ/IL-10 | 0.19 | ns | −0.08 | ns | −0.10 | ns | −0.08 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Kockx, M.; Pennings, G.J.; Lambert, T.; Chow, V.; Kritharides, L. Discordance Between Triglycerides, Remnant Cholesterol and Systemic Inflammation in Patients with Schizophrenia. Biomedicines 2024, 12, 2884. https://doi.org/10.3390/biomedicines12122884
Wang J, Kockx M, Pennings GJ, Lambert T, Chow V, Kritharides L. Discordance Between Triglycerides, Remnant Cholesterol and Systemic Inflammation in Patients with Schizophrenia. Biomedicines. 2024; 12(12):2884. https://doi.org/10.3390/biomedicines12122884
Chicago/Turabian StyleWang, Jeffrey, Maaike Kockx, Gabrielle J. Pennings, Tim Lambert, Vincent Chow, and Leonard Kritharides. 2024. "Discordance Between Triglycerides, Remnant Cholesterol and Systemic Inflammation in Patients with Schizophrenia" Biomedicines 12, no. 12: 2884. https://doi.org/10.3390/biomedicines12122884
APA StyleWang, J., Kockx, M., Pennings, G. J., Lambert, T., Chow, V., & Kritharides, L. (2024). Discordance Between Triglycerides, Remnant Cholesterol and Systemic Inflammation in Patients with Schizophrenia. Biomedicines, 12(12), 2884. https://doi.org/10.3390/biomedicines12122884