D-Serine May Ameliorate Hippocampal Synaptic Plasticity Impairment Induced by Patients’ Anti-N-methyl-D-aspartate Receptor Antibodies in Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient and Anti-NMDAR Antibody Preparation
2.2. Animals
2.3. Stereotactic Intracerebroventricular Injection
2.4. Study Design and Drug Administration
2.5. Behavioral Tasks
2.6. Electrophysiological Study
2.7. Immunofluorescent Staining
2.8. Western Blotting
2.9. Statistical Analysis
3. Results
3.1. Purification of Patients’ Antibodies
3.2. A Single Injection of Patients’ Antibodies Does Not Induce Behavioral Changes Associated with Anti-NMDAR Encephalitis in Mice
3.3. D-Serine Improved Anti-NMDAR Antibody-Mediated Hippocampal LTP Impairment in Mice
3.4. D-Serine Treatment Could Not Reverse Hippocampal NMDAR1 Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seery, N.; Butzkueven, H.; O’Brien, T.J.; Monif, M. Contemporary advances in anti-NMDAR antibody (Ab)-mediated encephalitis. Autoimmun. Rev. 2022, 21, 103057. [Google Scholar] [CrossRef] [PubMed]
- Abboud, H.; Probasco, J.C.; Irani, S.; Ances, B.; Benavides, D.R.; Bradshaw, M.; Christo, P.P.; Dale, R.C.; Fernandez-Fournier, M.; Flanagan, E.P.; et al. Autoimmune encephalitis: Proposed best practice recommendations for diagnosis and acute management. J. Neurol. Neurosurg. Psychiatry 2021, 92, 757–768. [Google Scholar] [CrossRef]
- Huang, Q.; Xie, Y.; Hu, Z.; Tang, X. Anti-N-methyl-D-aspartate receptor encephalitis: A review of pathogenic mechanisms, treatment, prognosis. Brain Res. 2020, 1727, 146549. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Chen, C.; Gong, X.; Lin, J.; An, D.; Zhou, D.; Hong, Z. Long-term cognitive and neuropsychiatric outcomes in patients with anti-NMDAR encephalitis. Acta Neurol. Scand. 2019, 140, 414–421. [Google Scholar] [CrossRef]
- Heine, J.; Kopp, U.A.; Klag, J.; Ploner, C.J.; Prüss, H.; Finke, C. Long-Term Cognitive Outcome in Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Ann. Neurol. 2021, 90, 949–961. [Google Scholar] [CrossRef] [PubMed]
- Guasp, M.; Rosa-Justicia, M.; Muñoz-Lopetegi, A.; Martínez-Hernández, E.; Armangué, T.; Sugranyes, G.; Stein, H.; Borràs, R.; Prades, L.; Ariño, H.; et al. Clinical characterisation of patients in the post-acute stage of anti-NMDA receptor encephalitis: A prospective cohort study and comparison with patients with schizophrenia spectrum disorders. Lancet Neurol. 2022, 21, 899–910. [Google Scholar] [CrossRef]
- Hunter, D.; Jamet, Z.; Groc, L. Autoimmunity and NMDA receptor in brain disorders: Where do we stand? Neurobiol. Dis. 2021, 147, 105161. [Google Scholar] [CrossRef] [PubMed]
- Varley, J.A.; Strippel, C.; Handel, A.; Irani, S.R. Autoimmune encephalitis: Recent clinical and biological advances. J. Neurol. 2023, 270, 4118–4131. [Google Scholar] [CrossRef]
- Warikoo, N.; Brunwasser, S.J.; Benz, A.; Shu, H.-J.; Paul, S.M.; Lewis, M.; Doherty, J.; Quirk, M.; Piccio, L.; Zorumski, C.F.; et al. Positive Allosteric Modulation as a Potential Therapeutic Strategy in Anti-NMDA Receptor Encephalitis. J. Neurosci. 2018, 38, 3218–3229. [Google Scholar] [CrossRef] [PubMed]
- Mannara, F.; Radosevic, M.; Planagumà, J.; Soto, D.; Aguilar, E.; García-Serra, A.; Maudes, E.; Pedreño, M.; Paul, S.; Doherty, J.; et al. Allosteric modulation of NMDA receptors prevents the antibody effects of patients with anti-NMDAR encephalitis. Brain 2020, 143, 2709–2720. [Google Scholar] [CrossRef] [PubMed]
- Radosevic, M.; Planagumà, J.; Mannara, F.; Mellado, A.; Aguilar, E.; Sabater, L.; Landa, J.; García-Serra, A.; Maudes, E.; Gasull, X.; et al. Allosteric Modulation of NMDARs Reverses Patients’ Autoantibody Effects in Mice. Neurol. Neuroimmunol. Neuroinflamm. 2021, 9, e1122. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Yue, Y.; Dong, H.; Wang, Y. N-methyl-D-aspartate receptor hypofunction as a potential contributor to the progression and manifestation of many neurological disorders. Front. Mol. Neurosci. 2023, 16, 1174738. [Google Scholar] [CrossRef]
- Nava-Gómez, L.; Calero-Vargas, I.; Higinio-Rodríguez, F.; Vázquez-Prieto, B.; Olivares-Moreno, R.; Ortiz-Retana, J.; Aranda, P.; Hernández-Chan, N.; Rojas-Piloni, G.; Alcauter, S.; et al. Aging-Associated Cognitive Decline Is Reversed by D-Serine Supplementation. eNeuro. 2022, 9, ENEURO.0176-22.2022. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.M.; Folorunso, O.O.; Barragan, E.V.; Berciu, C.; Harvey, T.L.; Coyle, J.T.; Balu, D.T.; Gray, J.A. Postsynaptic Serine Racemase Regulates NMDA Receptor Function. J. Neurosci. 2020, 40, 9564–9575. [Google Scholar] [CrossRef]
- Orzylowski, M.; Fujiwara, E.; Mousseau, D.D.; Baker, G.B. An Overview of the Involvement of D-Serine in Cognitive Impairment in Normal Aging and Dementia. Front. Psychiatry 2021, 12, 754032. [Google Scholar] [CrossRef]
- Wolosker, H.; Balu, D.T. D-Serine as the gatekeeper of NMDA receptor activity: Implications for the pharmacologic management of anxiety disorders. Transl. Psychiatry 2020, 10, 184. [Google Scholar] [CrossRef]
- Peyrovian, B.; Rosenblat, J.D.; Pan, Z.; Iacobucci, M.; Brietzke, E.; McIntyre, R.S. The glycine site of NMDA receptors: A target for cognitive enhancement in psychiatric disorders. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2019, 92, 387–404. [Google Scholar] [CrossRef]
- Geoffroy, C.; Paoletti, P.; Mony, L. Positive allosteric modulation of NMDA receptors: Mechanisms, physiological impact and therapeutic potential. J. Physiol. 2022, 600, 233–259. [Google Scholar] [CrossRef] [PubMed]
- Balu, D.T.; Li, Y.; Puhl, M.D.; Benneyworth, M.A.; Basu, A.C.; Takagi, S.; Bolshakov, V.Y.; Coyle, J.T. Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proc. Natl. Acad. Sci. USA 2013, 110, E2400–E2409. [Google Scholar] [CrossRef]
- Zhang, X.-Q.; Xu, L.; Zhu, X.-Y.; Tang, Z.-H.; Dong, Y.-B.; Yu, Z.-P.; Shang, Q.; Wang, Z.-C.; Shen, H.-W. D-serine reconstitutes synaptic and intrinsic inhibitory control of pyramidal neurons in a neurodevelopmental mouse model for schizophrenia. Nat. Commun. 2023, 14, 8255. [Google Scholar] [CrossRef]
- Kantrowitz, J.T.; Epstein, M.L.; Beggel, O.; Rohrig, S.; Lehrfeld, J.M.; Revheim, N.; Lehrfeld, N.P.; Reep, J.; Parker, E.; Silipo, G.; et al. Neurophysiological mechanisms of cortical plasticity impairments in schizophrenia and modulation by the NMDA receptor agonist D-serine. Brain 2016, 139 Pt 12, 3281–3295. [Google Scholar] [CrossRef] [PubMed]
- Kantrowitz, J.T.; Malhotra, A.K.; Cornblatt, B.; Silipo, G.; Balla, A.; Suckow, R.F.; D’Souza, C.; Saksa, J.; Woods, S.W.; Javitt, D.C. High dose D-serine in the treatment of schizophrenia. Schizophr. Res. 2010, 121, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Jézéquel, J.; Johansson, E.M.; Leboyer, M.; Groc, L. Pathogenicity of Antibodies against NMDA Receptor: Molecular Insights into Autoimmune Psychosis. Trends Neurosci. 2018, 41, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Luykx, J.J.; Visscher, R.; Rossum, I.W.-V.; Waters, P.; de Witte, L.D.; Fleischhacker, W.W.; Lin, B.D.; de Boer, N.; van der Horst, M.; Yeeles, K.; et al. Clinical symptoms and psychosocial functioning in patients with schizophrenia spectrum disorders testing seropositive for anti-NMDAR antibodies: A case-control comparison with patients testing negative. Lancet Psychiatry 2024, 11, 828–838. [Google Scholar] [CrossRef] [PubMed]
- Planagumà, J.; Leypoldt, F.; Mannara, F.; Gutiérrez-Cuesta, J.; Martín-García, E.; Aguilar, E.; Titulaer, M.J.; Petit-Pedrol, M.; Jain, A.; Balice-Gordon, R.; et al. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain 2015, 138 Pt 1, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yu, Y.; Zhang, M.; Fan, N. GluN1 antibody causes behavioral deficits in prepulse inhibition and memory through CaMKIIβ signaling. J. Neuroimmunol. 2022, 373, 577998. [Google Scholar] [CrossRef] [PubMed]
- Kersten, M.; Rabbe, T.; Blome, R.; Porath, K.; Sellmann, T.; Bien, C.G.; Köhling, R.; Kirschstein, T. Novel Object Recognition in Rats with NMDAR Dysfunction in CA1 After Stereotactic Injection of Anti-NMDAR Encephalitis Cerebrospinal Fluid. Front. Neurol. 2019, 10, 586. [Google Scholar] [CrossRef]
- Cellucci, T.; Van Mater, H.; Graus, F.; Muscal, E.; Gallentine, W.; Klein-Gitelman, M.S.; Benseler, S.M.; Frankovich, J.; Gorman, M.P.; Van Haren, K.; et al. Clinical approach to the diagnosis of autoimmune encephalitis in the pediatric patient. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e663. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pan, Y.; Gui, J.; Fang, Z.; Huang, D.; Luo, H.; Cheng, L.; Chen, H.; Song, X.; Jiang, L. The Role and Mechanism of AMIGO3 in the Formation of Aberrant Neural Circuits After Status Convulsion in Immature Mice. Front. Mol. Neurosci. 2021, 14, 748115. [Google Scholar] [CrossRef]
- Wright, S.; Hashemi, K.; Stasiak, L.; Bartram, J.; Lang, B.; Vincent, A.; Upton, A.L. Epileptogenic effects of NMDAR antibodies in a passive transfer mouse model. Brain 2015, 138 Pt 11, 3159–3167. [Google Scholar] [CrossRef]
- Wei, I.H.; Chen, K.T.; Tsai, M.H.; Wu, C.H.; Lane, H.Y.; Huang, C.C. Acute Amino Acid d-Serine Administration, Similar to Ketamine, Produces Antidepressant-like Effects through Identical Mechanisms. J. Agric. Food Chem. 2017, 65, 10792–10803. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.B.; Yi, F.; Perszyk, R.E.; Furukawa, H.; Wollmuth, L.P.; Gibb, A.J.; Traynelis, S.F. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 2018, 150, 1081–1105. [Google Scholar] [CrossRef]
- Wright, S.K.; Rosch, R.E.; Wilson, M.A.; Upadhya, M.A.; Dhangar, D.R.; Clarke-Bland, C.; Wahid, T.T.; Barman, S.; Goebels, N.; Kreye, J.; et al. Multimodal electrophysiological analyses reveal that reduced synaptic excitatory neurotransmission underlies seizures in a model of NMDAR antibody-mediated encephalitis. Commun. Biol. 2021, 4, 1106. [Google Scholar] [CrossRef]
- Taraschenko, O.; Fox, H.S.; Pittock, S.J.; Zekeridou, A.; Gafurova, M.; Eldridge, E.; Liu, J.; Dravid, S.M.; Dingledine, R. A mouse model of seizures in anti-N-methyl-d-aspartate receptor encephalitis. Epilepsia 2019, 60, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Ly, L.-T.; Kreye, J.; Jurek, B.; Leubner, J.; Scheibe, F.; Lemcke, J.; Wenke, N.K.; Reincke, S.M.; Prüss, H. Affinities of human NMDA receptor autoantibodies: Implications for disease mechanisms and clinical diagnostics. J. Neurol. 2018, 265, 2625–2632. [Google Scholar] [CrossRef]
- Duong, S.L.; Prüss, H. Molecular disease mechanisms of human antineuronal monoclonal autoantibodies. Trends Mol. Med. 2023, 29, 20–34. [Google Scholar] [CrossRef]
- Hardingham, G.E.; Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nat. Rev. Neurosci. 2010, 11, 682–696. [Google Scholar] [CrossRef]
- Panizzutti, R.; Fisher, M.; Garrett, C.; Man, W.H.; Sena, W.; Madeira, C.; Vinogradov, S. Association between increased serum d-serine and cognitive gains induced by intensive cognitive training in schizophrenia. Schizophr. Res. 2019, 207, 63–69. [Google Scholar] [CrossRef] [PubMed]
Samples | Age | Gender | Diagnosis | Abs Titer |
---|---|---|---|---|
Patient 1 | 12 years 3 months | Male | Anti-NMDAR encephalitis | 1:100 |
Patient 2 | 6 years 8 months | Female | Anti-NMDAR encephalitis | 1:32 |
Patient 3 | 7 years 11 months | Female | Anti-NMDAR encephalitis | 1:32 |
Control 1 | 10 years 10 months | Male | Migraine | - |
Control 2 | 8 years 7 months | Female | Benign intracranial hypertension | - |
Control 3 | 5 years 9 months | Female | Migraine | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, H.; Yang, X.; Yang, J.; Han, Z.; Huang, D.; Gui, J.; Ding, R.; Chen, H.; Cheng, L.; Ma, J.; et al. D-Serine May Ameliorate Hippocampal Synaptic Plasticity Impairment Induced by Patients’ Anti-N-methyl-D-aspartate Receptor Antibodies in Mice. Biomedicines 2024, 12, 2882. https://doi.org/10.3390/biomedicines12122882
Luo H, Yang X, Yang J, Han Z, Huang D, Gui J, Ding R, Chen H, Cheng L, Ma J, et al. D-Serine May Ameliorate Hippocampal Synaptic Plasticity Impairment Induced by Patients’ Anti-N-methyl-D-aspartate Receptor Antibodies in Mice. Biomedicines. 2024; 12(12):2882. https://doi.org/10.3390/biomedicines12122882
Chicago/Turabian StyleLuo, Hanyu, Xiaoyue Yang, Jiaxin Yang, Ziyao Han, Dishu Huang, Jianxiong Gui, Ran Ding, Hengsheng Chen, Li Cheng, Jiannan Ma, and et al. 2024. "D-Serine May Ameliorate Hippocampal Synaptic Plasticity Impairment Induced by Patients’ Anti-N-methyl-D-aspartate Receptor Antibodies in Mice" Biomedicines 12, no. 12: 2882. https://doi.org/10.3390/biomedicines12122882
APA StyleLuo, H., Yang, X., Yang, J., Han, Z., Huang, D., Gui, J., Ding, R., Chen, H., Cheng, L., Ma, J., & Jiang, L. (2024). D-Serine May Ameliorate Hippocampal Synaptic Plasticity Impairment Induced by Patients’ Anti-N-methyl-D-aspartate Receptor Antibodies in Mice. Biomedicines, 12(12), 2882. https://doi.org/10.3390/biomedicines12122882