Pimozide Inhibits Type II but Not Type I Hair Cells in Chicken Embryo and Adult Mouse Vestibular Organs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surgical Dissection
2.2. Whole-Cell Patch-Clamp Recordings
2.3. Pimozide
2.4. Data Analysis and Statistical Methods
3. Results
3.1. Preliminary Remarks
3.2. Pimozide Inhibits Inward Rectifier Conductances in Chicken Embryo Type II Hair Cells
3.3. Pimozide Does Not Affect Chicken Embryo Type I Hair Cells
3.4. Pimozide Does Not Affect INa in Chicken Embryo Type I Hair Cells
3.5. Pimozide’s Effects on Adult Mouse Type II Hair Cells
3.6. Pimozide Only Slightly Affects Adult Mouse Type I Hair Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González-Rodríguez, A.; Monreal, J.A.; Natividad, M.; Seeman, M.V. Seventy Years of Treating Delusional Disorder with Antipsychotics: A Historical Perspective. Biomedicines 2022, 10, 3281. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Shahid, N.U.A.; Naguit, N.; Jakkoju, R.; Laeeq, S.; Reghefaoui, T.; Zahoor, H.; Yook, J.H.; Mohammed, L. Efficacy of Behavioural Intervention, Antipsychotics, and Alpha Agonists in the Treatment of Tics Disorder in Tourette’s Syndrome. Cureus 2022, 14, e22449. [Google Scholar] [CrossRef] [PubMed]
- Seeman, P. Atypical antipsychotics: Mechanism of action. Can. J. Psychiatry 2002, 47, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Drolet, B.; Rousseau, G.; Daleau, P.; Cardinal, R.; Simard, C.; Turgeon, J. Pimozide (Orap) prolongs cardiac repolarization by blocking the rapid component of the delayed rectifier potassium current in native cardiac myocytes. J. Cardiovasc. Pharmacol. Ther. 2001, 6, 255–260. [Google Scholar] [CrossRef]
- Kang, J.; Chen, X.L.; Rampe, D. The antipsychotic drugs sertindole and pimozide block erg3, a human brain K+ channel. Biochem. Biophys. Res. Commun. 2001, 286, 499–504. [Google Scholar] [CrossRef]
- Gould, R.J.; Murphy, K.M.; Reynolds, I.J.; Snyder, S.H. Antischizophrenic drugs of the diphenylbutylpiperidine type act as calcium channel antagonists. Proc. Natl. Acad. Sci. USA 1983, 80, 5122–5125. [Google Scholar] [CrossRef]
- Enyeart, J.J.; Dirksen, R.T.; Sharma, V.K.; Williford, D.J.; Sheu, S.S. Antipsychotic pimozide is a potent Ca2+ channel blocker in heart. Mol. Pharmacol. 1990, 37, 752–757. [Google Scholar] [PubMed]
- Kongsamut, S.; Kang, J.; Chen, X.L.; Roehr, J.; Rampe, D. A comparison of the receptor binding and HERG channel affinities for a series of antipsychotic drugs. Eur. J. Pharmacol. 2002, 450, 37–41. [Google Scholar] [CrossRef]
- Santi, C.M.; Cayabyab, F.S.; Sutton, K.G.; McRory, J.E.; Mezeyova, J.; Hamming, K.S.; Parker, D.; Stea, A.; Snutch, T.P. Differential inhibition of T-type calcium channels by neuroleptics. J. Neurosci. 2002, 22, 396–403. [Google Scholar] [CrossRef]
- Roessner, V.; Eichele, H.; Stern, J.S.; Skov, L.; Rizzo, R.; Debes, N.M.; Nagy, P.; Cavanna, A.E.; Termine, C.; Ganos, C.; et al. European clinical guidelines for Tourette syndrome and other tic disorders-version 2.0. Part III: Pharmacological treatment. Eur. Child Adolesc. Psychiatry 2022, 31, 425–441. [Google Scholar] [CrossRef]
- Marcotti, W.; Masetto, S. Hair Cells. eLS 2021, 2, 1–9. [Google Scholar] [CrossRef]
- Giunta, R.; Cheli, G.; Spaiardi, P.; Russo, G.; Masetto, S. Pimozide Increases a Delayed Rectifier K+ Conductance in Chicken Embryo Vestibular Hair Cells. Biomedicines 2023, 11, 488. [Google Scholar] [CrossRef] [PubMed]
- Correia, M.J.; Lang, D.G. An electrophysiological comparison of solitary type I and type II vestibular hair cells. Neurosci. Lett. 1990, 116, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Rennie, K.J.; Correia, M.J. Potassium currents in mammalian and avian isolated type I semicircular canal hair cells. J. Neurophysiol. 1994, 71, 317–329. [Google Scholar] [CrossRef]
- Rüsch, A.; Eatock, R.A. A delayed rectifier conductance in type I hair cells of the mouse utricle. J. Neurophysiol. 1996, 76, 995–1004. [Google Scholar] [CrossRef]
- Masetto, S.; Perin, P.; Malusà, A.; Zucca, G.; Valli, P. Membrane properties of chick semicircular canal hair cells in situ during embryonic development. J. Neurophysiol. 2000, 83, 2740–2756. [Google Scholar] [CrossRef]
- Masetto, S.; Bosica, M.; Correia, M.J.; Ottersen, O.P.; Zucca, G.; Perin, P.; Valli, P. Na+ currents in vestibular type I and type II hair cells of the embryo and adult chicken. J. Neurophysiol. 2003, 90, 1266–1278. [Google Scholar] [CrossRef]
- Rüsch, A.; Lysakowski, A.; Eatock, R.A. Postnatal development of type I and type II hair cells in the mouse utricle: Acquisition of voltage-gated conductances and differentiated morphology. J. Neurosci. 1998, 18, 7487–7501. [Google Scholar] [CrossRef]
- Lennan, G.W.; Steinacker, A.; Lehouelleur, J.; Sans, A. Ionic currents and current-clamp depolarisations of type I and type II hair cells from the developing rat utricle. Pflugers Arch. 1999, 438, 40–46. [Google Scholar] [CrossRef]
- Chabbert, C.; Mechaly, I.; Sieso, V.; Giraud, P.; Brugeaud, A.; Lehouelleur, J.; Couraud, F.; Valmier, J.; Sans, A. Voltage-gated Na+ channel activation induces both action potentials in utricular hair cells and brain-derived neurotrophic factor release in the rat utricle during a restricted period of development. J. Physiol. 2003, 553 Pt 1, 113–123. [Google Scholar] [CrossRef]
- Hurley, K.M.; Gaboyard, S.; Zhong, M.; Price, S.D.; Wooltorton, J.R.; Lysakowski, A.; Eatock, R.A. M-like K+ currents in type I hair cells and calyx afferent endings of the developing rat utricle. J. Neurosci. 2006, 26, 10253–10269. [Google Scholar] [CrossRef] [PubMed]
- Wooltorton, J.R.; Gaboyard, S.; Hurley, K.M.; Price, S.D.; Garcia, J.L.; Zhong, M.; Lysakowski, A.; Eatock, R.A. Developmental changes in two voltage-dependent sodium currents in utricular hair cells. J. Neurophysiol. 2007, 97, 1684–1704. [Google Scholar] [CrossRef] [PubMed]
- Corns, L.F.; Bardhan, T.; Houston, O.; Olt, J.; Holley, M.C.; Masetto, S.; Johnson, S.L.; Marcotti, W. Functional Development of Hair Cells in the Mammalian Inner Ear. In Development of Auditory and Vestibular Systems, 4th ed.; Romand, R., Varela-Nieto, I., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 155–188. [Google Scholar] [CrossRef]
- Spaiardi, P.; Tavazzani, E.; Manca, M.; Milesi, V.; Russo, G.; Prigioni, I.; Marcotti, W.; Magistretti, J.; Masetto, S. An allosteric gating model recapitulates the biophysical properties of IK,L expressed in mouse vestibular type I hair cells. J. Physiol. 2017, 595, 6735–6750. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.S.; An, J.R.; Heo, R.; Kang, M.; Park, S.; Mun, S.-Y.; Park, H.; Han, E.-T.; Han, J.-H.; Chun, W.; et al. The inhibitory effects of pimozide, an antipsychotic drug, on voltage-gated K+ channels in rabbit coronary arterial smooth muscle cells. Drug Chem. Toxicol. 2023, 46, 271–280. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Lee, Y.T.; Rhodes, K.; Wang, K.; Argentieri, T.M.; Wang, Q. Inhibitory effects of pimozide on cloned and native voltage-gated potassium channels. Mol. Brain Res. 2003, 115, 29–38. [Google Scholar] [CrossRef]
- Holt, J.R.; Eatock, R.A. Inwardly rectifying currents of saccular hair cells from the leopard frog. J. Neurophysiol. 1995, 73, 1484–1502. [Google Scholar] [CrossRef]
- Hagiwara, S.; Miyazaki, S.; Rosenthal, N.P. Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish. J. Gen. Physiol. 1976, 67, 621–638. [Google Scholar] [CrossRef]
- Zampini, V.; Masetto, S.; Correia, M.J. Elementary properties of Kir2.1, a strong inwardly rectifying K+ channel expressed by pigeon vestibular type II hair cells. Neuroscience 2008, 155, 1250–1261. [Google Scholar] [CrossRef]
- Hibino, H.; Inanobe, A.; Furutani, K.; Murakami, S.; Findlay, I.; Kurachi, Y. Inwardly rectifying potassium channels: Their structure, function, and physiological roles. Physiol. Rev. 2010, 90, 291–366. [Google Scholar] [CrossRef]
- Meredith, F.L.; Rennie, K.J. Channeling your inner ear potassium: K+ channels in vestibular hair cells. Hear. Res. 2016, 338, 40–51. [Google Scholar] [CrossRef]
- Behrend, O.; Schwark, C.; Kunihiro, T.; Strupp, M. Cyclic GMP inhibits and shifts the activation curve of the delayed-rectifier (I[K1]) of type I mammalian vestibular hair cells. Neuroreport 1997, 8, 2687–2690. [Google Scholar] [CrossRef]
- Chen, J.W.; Eatock, R.A. Major potassium conductance in type I hair cells from rat semicircular canals: Characterization and modulation by nitric oxide. J. Neurophysiol. 2000, 84, 139–151. [Google Scholar] [CrossRef]
- Martin, H.R.; Lysakowski, A.; Eatock, R.A. The potassium channel subunit KV1.8 (Kcna10) is essential for the distinctive outwardly rectifying conductances of type I and II vestibular hair cells. bioRxiv 2024. [Google Scholar] [CrossRef]
- Lang, R.; Lee, G.; Liu, W.; Tian, S.; Rafi, H.; Orias, M.; Segal, A.S.; Desir, G.V. KCNA10: A novel ion channel functionally related to both voltage-gated potassium and CNG cation channels. Am. J. Physiol. Ren. Physiol. 2000, 278, F1013–F1021. [Google Scholar] [CrossRef]
- Sousa, A.D.; Andrade, L.R.; Salles, F.T.; Pillai, A.M.; Buttermore, E.D.; Bhat, M.A.; Kachar, B. The septate junction protein caspr is required for structural support and retention of KCNQ4 at calyceal synapses of vestibular hair cells. J. Neurosci. 2009, 29, 3103–3108. [Google Scholar] [CrossRef]
- Contini, D.; Zampini, V.; Tavazzani, E.; Magistretti, J.; Russo, G.; Prigioni, I.; Masetto, S. Intercellular K+ accumulation depolarizes Type I vestibular hair cells and their associated afferent nerve calyx. Neuroscience 2012, 227, 232–246. [Google Scholar] [CrossRef]
- Songer, J.E.; Eatock, R.A. Tuning and timing in mammalian type I hair cells and calyceal synapses. J. Neurosci. 2013, 33, 3706–3724. [Google Scholar] [CrossRef]
- Govindaraju, A.C.; Quraishi, I.H.; Lysakowski, A.; Eatock, R.A.; Raphael, R.M. Nonquantal transmission at the vestibular hair cell-calyx synapse: KLV currents modulate fast electrical and slow K+ potentials. Proc. Natl. Acad. Sci. USA 2023, 120, e2207466120. [Google Scholar] [CrossRef]
- Contini, D.; Holstein, G.R.; Art, J.J. Simultaneous recordings from vestibular Type I hair cells and their calyceal afferents in mice. Front. Neurol. 2024, 15, 1434026. [Google Scholar] [CrossRef]
- Meredith, F.L.; Rennie, K.J. Regional and Developmental Differences in Na+ Currents in Vestibular Primary Afferent Neurons. Front. Cell. Neurosci. 2018, 12, 423. [Google Scholar] [CrossRef]
- Scheibinger, M.; Janesick, A.; Benkafadar, N.; Ellwanger, D.C.; Jan, T.A.; Heller, S. Cell-type identity of the avian utricle. Cell Rep. 2022, 40, 111432. [Google Scholar] [CrossRef] [PubMed]
- Elkon, R.; Milon, B.; Morrison, L.; Shah, M.; Vijayakumar, S.; Racherla, M.; Leitch, C.C.; Silipino, L.; Hadi, S.; Weiss-Gayet, M.; et al. RFX transcription factors are essential for hearing in mice. Nat. Commun. 2015, 6, 8549. [Google Scholar] [CrossRef]
- McInturff, S.; Burns, J.C.; Kelley, M.W. Characterization of spatial and temporal development of Type I and Type II hair cells in the mouse utricle using new cell-type-specific markers. Biol. Open 2018, 7, bio038083. [Google Scholar] [CrossRef]
- Jan, T.A.; Eltawil, Y.; Ling, A.H.; Chen, L.; Ellwanger, D.C.; Heller, S.; Cheng, A.G. Spatiotemporal dynamics of inner ear sensory and non-sensory cells revealed by single-cell transcriptomics. Cell Rep. 2021, 36, 109358. [Google Scholar] [CrossRef]
- Orvis, J.; Gottfried, B.; Kancherla, J.; Adkins, R.S.; Song, Y.; Dror, A.A.; Olley, D.; Rose, K.; Chrysostomou, E.; Kelly, M.C.; et al. gEAR: Gene Expression Analysis Resource portal for community-driven, multi-omic data exploration. Nat. Methods 2021, 18, 843–844. [Google Scholar] [CrossRef]
- Barrese, V.; Stott, J.B.; Greenwood, I.A. KCNQ-Encoded Potassium Channels as Therapeutic Targets. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 625–648. [Google Scholar] [CrossRef]
- Correia, M.J.; Weng, T.; Prusak, D.; Wood, T.G. Kvbeta1.1 associates with Kvalpha1.4 in Chinese hamster ovary cells and pigeon type II vestibular hair cells and enhances the amplitude, inactivation and negatively shifts the steady-state inactivation range. Neuroscience 2008, 152, 809–820. [Google Scholar] [CrossRef]
- Stühmer, W.; Ruppersberg, J.P.; Schröter, K.H.; Sakmann, B.; Stocker, M.; Giese, K.P.; Perschke, A.; Baumann, A.; Pongs, O. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J. 1989, 8, 3235–3244. [Google Scholar] [CrossRef]
- Tavazzani, E.; Spaiardi, P.; Contini, D.; Sancini, G.; Russo, G.; Masetto, S. Precision medicine: A new era for inner ear diseases. Front. Pharmacol. 2024, 15, 1328460. [Google Scholar] [CrossRef]
- Kasanami, Y.; Ishikawa, C.; Kino, T.; Chonan, M.; Toyooka, N.; Takashima, Y.; Iba, Y.; Sekiguchi, F.; Tsubota, M.; Ohkubo, T.; et al. Discovery of pimozide derivatives as novel T-type calcium channel inhibitors with little binding affinity to dopamine D2 receptors for treatment of somatic and visceral pain. Eur. J. Med. Chem. 2022, 243, 114716. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giunta, R.; Cheli, G.; Rispoli, G.; Russo, G.; Masetto, S. Pimozide Inhibits Type II but Not Type I Hair Cells in Chicken Embryo and Adult Mouse Vestibular Organs. Biomedicines 2024, 12, 2879. https://doi.org/10.3390/biomedicines12122879
Giunta R, Cheli G, Rispoli G, Russo G, Masetto S. Pimozide Inhibits Type II but Not Type I Hair Cells in Chicken Embryo and Adult Mouse Vestibular Organs. Biomedicines. 2024; 12(12):2879. https://doi.org/10.3390/biomedicines12122879
Chicago/Turabian StyleGiunta, Roberta, Giulia Cheli, Giorgio Rispoli, Giancarlo Russo, and Sergio Masetto. 2024. "Pimozide Inhibits Type II but Not Type I Hair Cells in Chicken Embryo and Adult Mouse Vestibular Organs" Biomedicines 12, no. 12: 2879. https://doi.org/10.3390/biomedicines12122879
APA StyleGiunta, R., Cheli, G., Rispoli, G., Russo, G., & Masetto, S. (2024). Pimozide Inhibits Type II but Not Type I Hair Cells in Chicken Embryo and Adult Mouse Vestibular Organs. Biomedicines, 12(12), 2879. https://doi.org/10.3390/biomedicines12122879