Development of Preliminary Criteria of Macrophage Activation Syndrome in Multisystem Inflammatory Syndrome Associated with COVID-19 in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. COVID-19 Confirmation
- (1)
- Positive PCR with reverse transcription (13%);
- (2)
- Identified antibodies to SARS-CoV-2 of classes Ig M (40.3%) or Ig G (97.4%);
- (3)
- Close contact with a person with confirmed COVID-19 (65.6%).
2.3. Assessments
2.4. Statistics
3. Results
3.1. Characteristics of Patients with MIS-C
3.2. Comparison of MAS and No MAS Groups
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prieur, A.M.; Stephan, J.L. Syndrome d’activation du macrophage au cours des maladies rhumatismales chez l’enfant [Macrophage activation syndrome in rheumatic diseases in children]. Rev. Rhum. Ed. Fr. 1994, 61, 447–451. (In French) [Google Scholar] [PubMed]
- Ravelli, A.; Grom, A.A.; Behrens, E.M.; Cron, R.Q. Macrophage activation syndrome as part of systemic juvenile idiopathic arthritis: Diagnosis, genetics, pathophysiology, and treatment. Genes Immun. 2012, 13, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Han, S.B.; Lee, S.Y. Macrophage activation syndrome in children with Kawasaki disease: Diagnostic and therapeutic approaches. World J. Pediatr. 2020, 16, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Cron, R.Q.; Goyal, G.; Chatham, W.W. Cytokine Storm Syndrome. Annu. Rev. Med. 2023, 74, 321–337. [Google Scholar] [CrossRef]
- Jones, V.G.; Mills, M.; Suarez, D.; Hogan, C.A.; Yeh, D.; Segal, J.B.; Nguyen, E.L.; Barsh, G.R.; Maskatia, S.; Mathew, R. COVID-19 and Kawasaki Disease: Novel Virus and Novel Case. Hosp. Pediatr. 2020, 10, 537–540. [Google Scholar] [CrossRef]
- Multisystem Inflammatory Syndrome in Children and Adolescents Temporally Related to COVID-19. Available online: https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19 (accessed on 1 November 2024).
- McCrindle, B.W.; Rowley, A.H.; Newburger, J.W.; Burns, J.C.; Bolger, A.F.; Gewitz, M.; Baker, A.L.; Jackson, M.A.; Takahashi, M.; Shah, P.B.; et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals from the American Heart Association. Circulation 2017, 135, e927–e999. [Google Scholar] [CrossRef]
- Pouletty, M.; Borocco, C.; Ouldali, N.; Caseris, M.; Basmaci, R.; Lachaume, N.; Bensaid, P.; Pichard, S.; Kouider, H.; Morelle, G.; et al. Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): A multicentre cohort. Ann. Rheum. Dis. 2020, 79, 999–1006. [Google Scholar] [CrossRef]
- Verdoni, L.; Mazza, A.; Gervasoni, A.; Martelli, L.; Ruggeri, M.; Ciuffreda, M.; Bonanomi, E.; D’Antiga, L. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: An observational cohort study. Lancet 2020, 395, 1771–1778. [Google Scholar] [CrossRef]
- Feldstein, L.R.; Rose, E.B.; Horwitz, S.M.; Collins, J.P.; Newhams, M.M.; Son, M.B.F.; Newburger, J.W.; Kleinman, L.C.; Heidemann, S.M.; Martin, A.A.; et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N. Engl. J. Med. 2020, 383, 334–346. [Google Scholar] [CrossRef]
- Whittaker, E.; Bamford, A.; Kenny, J.; Kaforou, M.; Jones, C.E.; Shah, P.; Ramnarayan, P.; Fraisse, A.; Miller, O.; Davies, P.; et al. Clinical Characteristics of 58 Children with a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2. J. Am. Med. Assoc. 2020, 324, 259–269. [Google Scholar] [CrossRef]
- Kostik, M.M.; Bregel, L.V.; Avrusin, I.S.; Dondurei, E.A.; Matyunova, A.E.; Efremova, O.S.; Isupova, E.A.; Kornishina, T.L.; Masalova, V.V.; Snegireva, L.S.; et al. Distinguishing Between Multisystem Inflammatory Syndrome, Associated with COVID-19 in Children and the Kawasaki Disease: Development of Preliminary Criteria Based on the Data of the Retrospective Multicenter Cohort Study. Front. Pediatr. 2021, 9, 787353. [Google Scholar] [CrossRef] [PubMed]
- Abrams, J.Y.; Oster, M.E.; Godfred-Cato, S.E.; Bryant, B.; Datta, S.D.; Campbell, A.P.; Leung, J.W.; Tsang, C.A.; Pierce, T.J.; Kennedy, J.L.; et al. Factors linked to severe outcomes in multisystem inflammatory syndrome in children (MIS-C) in the USA: A retrospective surveillance study. Lancet Child Adolesc. Health 2021, 5, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Kostik, M.M.; Bregel, L.V.; Avrusin, I.S.; Efremova, O.S.; Belozerov, K.E.; Dondurei, E.A.; Kornishina, T.L.; Isupova, E.A.; Abramova, N.N.; Felker, E.Y.; et al. Heart Involvement in Multisystem Inflammatory Syndrome, Associated with COVID-19 in Children: The Retrospective Multicenter Cohort Data. Front. Pediatr. 2022, 10, 829420. [Google Scholar] [CrossRef] [PubMed]
- Radia, T.; Williams, N.; Agrawal, P.; Harman, K.; Weale, J.; Cook, J.; Gupta, A. Multi-system inflammatory syndrome in children & adolescents (MIS-C): A systematic review of clinical features and presentation. Paediatr. Respir. Rev. 2021, 38, 51–57. [Google Scholar]
- Godfred-Cato, S.; Bryant, B.; Leung, J.; Oster, M.E.; Conklin, L.; Abrams, J.; Roguski, K.; Wallace, B.; Prezzato, E.; Koumans, E.H.; et al. COVID-19-Associated Multisystem Inflammatory Syndrome in Children—United States, March–July 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 1074–1080, Erratum in Morb. Mortal. Wkly. Rep. 2020, 69, 1229. [Google Scholar] [CrossRef]
- Hoste, L.; Van Paemel, R.; Haerynck, F. Multisystem inflammatory syndrome in children related to COVID-19: A systematic review. Eur. J. Pediatr. 2021, 180, 2019–2034. [Google Scholar] [CrossRef]
- Ahmed, M.; Advani, S.; Moreira, A.; Zoretic, S.; Martinez, J.; Chorath, K.; Acosta, S.; Naqvi, R.; Burmeister-Morton, F.; Burmeister, F.; et al. Multisystem inflammatory syndrome in children: A systematic review. EClinicalMedicine 2020, 26, 100527. [Google Scholar] [CrossRef]
- Dufort, E.M.; Koumans, E.H.; Chow, E.J.; Rosenthal, E.M.; Muse, A.; Rowlands, J.; Barranco, M.A.; Maxted, A.M.; Rosenberg, E.S.; Easton, D.; et al. Multisystem Inflammatory Syndrome in Children in New York State. N. Engl. J. Med. 2020, 383, 347–358. [Google Scholar] [CrossRef]
- Avrusin, I.S.; Abramova, N.N.; Belozerov, K.E.; Kondratiev, G.V.; Bregel, L.V.; Efremova, O.S.; Vilnits, A.A.; Konstantinova, J.E.; Isupova, E.A.; Kornishina, T.L.; et al. Determination of Risk Factors for Severe Life-Threatening Course of Multisystem Inflammatory Syndrome Associated with COVID-19 in Children. Children 2023, 10, 1366. [Google Scholar] [CrossRef]
- Holm, M.; Hartling, U.B.; Schmidt, L.S.; Glenthøj, J.P.; Kruse, A.; Rytter, M.H.; Lindhard, M.S.; Lawaetz, M.C.; Zaharov, T.; Petersen, J.J.; et al. Multisystem inflammatory syndrome in children occurred in one of four thousand children with severe acute respiratory syndrome coronavirus 2. Acta Paediatr. 2021, 110, 2581–2583. [Google Scholar] [CrossRef]
- Multisystem Inflammatory Syndrome in Children (MIS-C): Information for Healthcare Providers about Talking with Families and Caregivers. Available online: https://www.cdc.gov/mis/mis-c/hcp/provider-families.html (accessed on 1 November 2024).
- Otar Yener, G.; Paç Kısaarslan, A.; Ulu, K.; Atalay, E.; Haşlak, F.; Özdel, S.; Bozkaya Yücel, B.; Gezgin Yıldırım, D.; Çakmak, F.; Öztürk, K.; et al. Differences and similarities of multisystem inflammatory syndrome in children, Kawasaki disease and macrophage activating syndrome due to systemic juvenile idiopathic arthritis: A comparative study. Rheumatol. Int. 2022, 42, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Brisca, G.; Consolaro, A.; Caorsi, R.; Pirlo, D.; Tuo, G.; Campanello, C.; Castagnola, E.; Moscatelli, A.; Gattorno, M.; Ravelli, A. Timely Recognition and Early Multi-Step Antinflammatory Therapy May Prevent ICU Admission of Patients with MIS-C: Proposal for a Severity Score. Front. Pediatr. 2021, 9, 783745. [Google Scholar] [CrossRef] [PubMed]
- Noval Rivas, M.; Arditi, M. Kawasaki Disease and Multisystem Inflammatory Syndrome in Children: Common Inflammatory Pathways of Two Distinct Diseases. Rheum. Dis. Clin. N. Am. 2023, 49, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Cattalini, M.; Della Paolera, S.; Zunica, F.; Bracaglia, C.; Giangreco, M.; Verdoni, L.; Meini, A.; Sottile, R.; Caorsi, R.; Zuccotti, G.; et al. Defining Kawasaki disease and pediatric inflammatory multisystem syndrome-temporally associated to SARS-CoV-2 infection during SARS-CoV-2 epidemic in Italy: Results from a national, multicenter survey. Pediatr. Rheumatol. Online J. 2021, 19, 29. [Google Scholar] [CrossRef] [PubMed]
- Reiff, D.D.; Cron, R.Q. Performance of Cytokine Storm Syndrome Scoring Systems in Pediatric COVID-19 and Multisystem Inflammatory Syndrome in Children. ACR Open Rheumatol. 2021, 3, 820–826. [Google Scholar] [CrossRef]
- Buda, P.; Strauss, E.; Januszkiewicz-Lewandowska, D.; Czerwinska, E.; Ludwikowska, K.; Szenborn, L.; Gowin, E.; Okarska-Napierała, M.; Kuchar, E.; Ksiązyk, J. Clinical characteristics of children with MIS-C fulfilling classification criteria for macrophage activation syndrome. Front. Pediatr. 2022, 10, 981711. [Google Scholar] [CrossRef]
- Henter, J.-I.; Horne, A.; Aricó, M.; Egeler, R.M.; Filipovich, A.H.; Imashuku, S.; Ladisch, S.; McClain, K.; Webb, D.; Winiarski, J.; et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer 2006, 48, 124–131. [Google Scholar] [CrossRef]
- Ravelli, A.; Magni-Manzoni, S.; Pistorio, A.; Besana, C.; Foti, T.; Ruperto, N.; Viola, S.; Martini, A. Preliminary diagnostic guidelines for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. J. Pediatr. 2005, 146, 598–604. [Google Scholar] [CrossRef]
- Ravelli, A.; Minoia, F.; Davì, S.; Horne, A.; Bovis, F.; Pistorio, A.; Aricò, M.; Avcin, T.; Behrens, E.M.; De Benedetti, F.; et al. 2016 Classification Criteria for Macrophage Activation Syndrome Complicating Systemic Juvenile Idiopathic Arthritis: A European League Against Rheumatism/American College of Rheumatology/Paediatric Rheumatology International Trials Organisation Collaborative Initiative. Arthritis Rheumatol. 2016, 68, 566–576. [Google Scholar]
- Fardet, L.; Galicier, L.; Lambotte, O.; Marzac, C.; Aumont, C.; Chahwan, D.; Coppo, P.; Hejblum, G. Development and Validation of the HScore, a Score for the Diagnosis of Reactive Hemophagocytic Syndrome. Arthritis Rheumatol. 2014, 66, 2613–2620. [Google Scholar] [CrossRef]
- Cappanera, S.; Palumbo, M.; Kwan, S.H.; Priante, G.; Martella, L.A.; Saraca, L.M.; Sicari, F.; Vernelli, C.; Di Giuli, C.; Andreani, P.; et al. When Does the Cytokine Storm Begin in COVID-19 Patients? A Quick Score to Recognize It. J. Clin. Med. 2021, 10, 297. [Google Scholar] [CrossRef] [PubMed]
- Avrusin, I.S.; Abramova, N.N.; Belozerov, K.E.; Bregel, L.V.; Efremova, O.S.; Vilnits, A.A.; Konstantinova, J.E.; Isupova, E.A.; Kornishina, T.L.; Masalova, V.V.; et al. Using HScore for Evaluation of Hemophagocytosis in Multisystem Inflammatory Syndrome Associated with COVID-19 in Children. Biomedicines 2024, 12, 294. [Google Scholar] [CrossRef] [PubMed]
- Lucioni, F.; Caorsi, R.; Consolaro, A.; Bovis, F.; Speziani, C.; Sozeri, B.; Ulu, K.; Verdoni, L.; Simonini, G.; Gagro, A.; et al. Performance of the 2016 criteria in recognizing macrophage activation syndrome in multisistem inflammatory syndrome in children (MIS-C): Data from the hyper-PED-COVID registry. Pediatr. Rheumatol. 2024, 22, 7. [Google Scholar]
- Alekseeva, E.I.; Aronov, L.S.; Antsiferov, M.B.; Afukov, I.I.; Beleskiy, A.S.; Bulanov, A.Y.; Vasilieva, E.Y.; Gorev, V.V.; Zhuravleva, M.V.; Zagrebneva, A.I.; et al. Clinical Protocol for the Treatment of Children with a New Coronavirus Infection (COVID-19) Undergoing Inpatient Treatment in Medical Organizations of the State Healthcare System of the City of Moscow; Khripun, A.I., Ed.; GBU “NIIOZMM DZM”: Moscow, Russia, 2021. (In Russian) [Google Scholar]
- Henderson, L.A.; Canna, S.W.; Friedman, K.G.; Gorelik, M.; Lapidus, S.K.; Bassiri, H.; Behrens, E.M.; Ferris, A.; Kernan, K.F.; Schulert, G.S.; et al. American College of Rheumatology Clinical Guidance for Multisystem Inflammatory Syndrome in Children Associated With SARS–CoV-2 and Hyperinflammation in Pediatric COVID-19: Version 2. Arthritis Rheumatol. 2021, 73, e13–e29. [Google Scholar] [CrossRef]
- Harwood, R.; Allin, B.; Jones, C.; Whittaker, E.; Ramnarayan, P.; Ramanan, A.V.; Kaleem, M.; Tulloh, R.; Peters, M.J.; Almond, S.; et al. A national consensus management pathway for paediatric inflammatory multisystem syndrome temporally associated with COVID-19 (PIMS-TS): Results of a national Delphi process. Lancet Child Adolesc. Health 2021, 5, 133–141, Erratum in Lancet Child Adolesc. Health 2021, 5, e5. [Google Scholar] [CrossRef]
- Ozen, S.; Dai, A.; Coskun, E.; Oztuzcu, S.; Ergun, S.; Aktekin, E.; Yavuz, S.; Bay, A. Importance of hyperbilirubinemia in differentiation of primary and secondary hemophagocytic lymphohistiocytosis in pediatric cases. Mediterr. J. Hematol. Infect. Dis. 2014, 6, e2014067. [Google Scholar] [CrossRef]
- Strenger, V.; Merth, G.; Lackner, H.; Aberle, S.W.; Kessler, H.H.; Seidel, M.G.; Schwinger, W.; Sperl, D.; Sovinz, P.; Karastaneva, A.; et al. Malignancy and chemotherapy induced haemophagocytic lymphohistiocytosis in children and adolescents—A single centre experience of 20 years. Ann. Hematol. 2018, 97, 989–998. [Google Scholar] [CrossRef]
- Halyabar, O.; Chang, M.H.; Schoettler, M.L.; Schwartz, M.A.; Baris, E.H.; Benson, L.A.; Biggs, C.M.; Gorman, M.; Lehmann, L.; Lo, M.S.; et al. Calm in the midst of cytokine storm: A collaborative approach to the diagnosis and treatment of hemophagocytic lymphohistiocytosis and macrophage activation syndrome. Pediatr. Rheumatol. Online J. 2019, 17, 7. [Google Scholar] [CrossRef]
- Carter, M.J.; Fish, M.; Jennings, A.; Doores, K.J.; Wellman, P.; Seow, J.; Acors, S.; Graham, C.; Timms, E.; Kenny, J.; et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat. Med. 2020, 26, 1701–1707. [Google Scholar] [CrossRef]
- Lee, P.Y.; Day-Lewis, M.; Henderson, L.A.; Friedman, K.G.; Lo, J.; Roberts, J.E.; Lo, M.S.; Platt, C.D.; Chou, J.; Hoyt, K.J.; et al. Distinct clinical and immunological features of SARS-CoV-2-induced multisystem inflammatory syndrome in children. J. Clin. Investig. 2020, 130, 5942–5950. [Google Scholar] [CrossRef]
- Henter, J.I.; Elinder, G.; Söder, O.; Hansson, M.; Andersson, B.; Andersson, U. Hypercytokinemia in familial hemophagocytic lymphohistiocytosis. Blood 1991, 78, 2918–2922. [Google Scholar] [CrossRef] [PubMed]
- Ponnatt, T.S.; Lilley, C.M.; Mirza, K.M. Hemophagocytic Lymphohistiocytosis. Arch. Pathol. Lab. Med. 2022, 146, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Jordan, M.B.; Marsh, R.A.; Johnson, J.A.; Kissell, D.; Meller, J.; Villanueva, J.; Risma, K.A.; Wei, Q.; Klein, P.S.; et al. Hypomorphic mutations in PRF1, MUNC13-4, and STXBP2 are associated with adult-onset familial HLH. Blood. 2011, 118, 5794–5798. [Google Scholar] [CrossRef]
- Feldmann, J.; Callebaut, I.; Raposo, G.; Certain, S.; Bacq, D.; Dumont, C.; Lambert, N.; Ouachée-Chardin, M.; Chedeville, G.; Tamary, H.; et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 2003, 115, 461–473. [Google Scholar] [CrossRef]
- Yanagimachi, M.; Naruto, T.; Miyamae, T.; Hara, T.; Kikuchi, M.; Hara, R.; Imagawa, T.; Mori, M.; Sato, H.; Goto, H.; et al. Association of IRF5 polymorphisms with susceptibility to macrophage activation syndrome in patients with juvenile idiopathic arthritis. J. Rheumatol. 2011, 38, 769–774. [Google Scholar] [CrossRef]
- Behrens, E.M.; Canna, S.W.; Slade, K.; Rao, S.; Kreiger, P.A.; Paessler, M.; Kambayashi, T.; Koretzky, G.A. Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. J. Clin. Investig. 2011, 121, 2264–2277. [Google Scholar] [CrossRef]
- Fife, M.S.; Gutierrez, A.; Ogilvie, E.M.; Stock, C.J.; Samuel, J.M.; Thomson, W.; Mack, L.F.; Lewis, C.M.; Woo, P. Novel IL10 gene family associations with systemic juvenile idiopathic arthritis. Arthritis Res. Ther. 2006, 8, R148. [Google Scholar] [CrossRef]
- Vagrecha, A.; Zhang, M.; Acharya, S.; Lozinsky, S.; Singer, A.; Levine, C.; Al-Ghafry, M.; Fein Levy, C.; Cron, R.Q. Hemophagocytic Lymphohistiocytosis Gene Variants in Multisystem Inflammatory Syndrome in Children. Biology 2022, 11, 417. [Google Scholar] [CrossRef]
- Reiter, A.; Verweyen, E.L.; Queste, E.; Fuehner, S.; Jakob, A.; Masjosthusmann, K.; Hinze, C.; Wittkowski, H.; Foell, D.; Meinzer, U.; et al. Proteomic mapping identifies serum marker signatures associated with MIS-C specific hyperinflammation and cardiovascular manifestation. Clin. Immunol. 2024, 264, 110237. [Google Scholar] [CrossRef]
- Feikin, D.R.; Higdon, M.M.; Abu-Raddad, L.J.; Andrews, N.; Araos, R.; Goldberg, Y.; Groome, M.J.; Huppert, A.; O’Brien, K.L.; Smith, P.G.; et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: Results of a systematic review and meta-regression. Lancet 2022, 399, 924–944, Erratum in Lancet 2024, 404, e3. https://doi.org/10.1016/S0140-6736(22)00428-7. Erratum in Lancet 2023, 401, 644. [Google Scholar] [CrossRef]
- Tulimilli, S.V.; Dallavalasa, S.; Basavaraju, C.G.; Kumar Rao, V.; Chikkahonnaiah, P.; Madhunapantula, S.V.; Veeranna, R.P. Variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Vaccine Effectiveness. Vaccines 2022, 10, 1751. [Google Scholar] [CrossRef] [PubMed]
- Monge, S.; Rojas-Benedicto, A.; Olmedo, C.; Martín-Merino, E.; Mazagatos, C.; Limia, A.; Sierra, M.J.; Larrauri, A.; Hernán, M.A.; IBERCovid. Effectiveness of a Second Dose of an mRNA Vaccine Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Omicron Infection in Individuals Previously Infected by Other Variants. Clin. Infect. Dis. 2023, 76, e367–e374. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Gao, Y.; Hu, Q.; Hu, D.; Wu, X. A study on the factors influencing the intention to receive booster shots of the COVID-19 vaccine in China based on the information frame effect. Front. Public Health 2024, 12, 1258188. [Google Scholar] [CrossRef] [PubMed]
- Elsaid, M.; Nune, A.; Hesham, D.; Fouad, F.M.; Hassan, H.; Hamouda, H.; Sherif, H.; Abdelwahab, M.M.; Hegazi, N.; El-Rahman, Y.A. Multisystem Inflammatory Syndrome (MIS) following SARS-CoV-2 vaccinations; a systematic review. Trop. Dis. Travel Med. Vaccines 2023, 9, 19. [Google Scholar] [CrossRef]
- Keka-Sylaj, A.; Ramosaj, A.; Baloku, A.; Zogaj, L.; Gjaka, P. Multisystem Inflammatory Syndrome in Children (MIS-C), Possibly Due to COVID-19 mRNA Vaccination. Vaccines 2023, 11, 956. [Google Scholar] [CrossRef]
Parameter | MAS (n = 19) | No MAS (n = 78) | p-Value |
---|---|---|---|
Age, months, Me (25%; 75%) | 116 (104; 137) | 76 (36; 120) | 0.007 |
Gender, male, n (%) | 13 (68.4) | 46 (59) | 0.449 |
Clinical parameters | |||
GI symptoms, n (%) | 18 (94.7) | 54/75 (71.1) | 0.097 |
Neurological symptoms, n (%) | 15/18 (83.3) | 31/75 (40.8) | 0.005 |
Sore throat, n (%) | 15/17 (88.2) | 39/73 (52.7) | 0.027 |
Rash, n (%) | 13/18 (72.2) | 59/72 (80.8) | 0.575 |
Conjunctivitis, n (%) | 14/16 (87.5) | 58/70 (81.7) | 0.804 |
Dry cracked lips, n (%) | 8/14 (57.1) | 28/68 (40.6) | 0.492 |
Bright mucous, n (%) | 12/14 (85.7) | 34/59 (56.7) | 0.128 |
Respiratory signs, n (%) | 13 (68.4) | 39/76 (50.7) | 0.357 |
Cervical lymphadenopathy, n (%) | 13/15 (86.7) | 42/72 (57.5) | 0.104 |
Hands/feet erythema/edema, n (%) | 12/16 (75) | 34/66 (50.8) | 0.207 |
Peeling of fingers, n (%) | 6/13 (46.2) | 20/64 (30.8) | 0.526 |
Edematous syndrome, % | 13/15 (86.7) | 18/56 (31.6) | 0.0006 |
Hepatomegaly, n (%) | 15/17 (88.2) | 38/66 (56.7) | 0.055 |
Splenomegaly, n (%) | 16/17 (94.1) | 18/66 (26.9) | 0.000003 |
Shock/hypotension, n (%) | 13 (68.4) | 18 (23.1) | 0.0001 |
Duration of fever, days | 9 (6; 11) | 9 (7; 13) | 0.844 |
KD criteria fulfillment, complete, n (%) incomplete, n (%) | 8 (42.1) 4 (21.1) | 29 (37.2) 19 (24.4) | 0.692 0.761 |
Laboratory parameters | |||
Erythrocytes, 1012/L, Me (25%; 75%) | 3.7 (3.2; 3.9) | 3.9 (3.7; 4.4) | 0.016 |
Hemoglobin, g/L, Me (25%; 75%) | 98 (83; 108) | 109 (100; 115) | 0.009 |
White blood cells, 109/L, Me (25%; 75%) | 18.6 (13.1; 21.4) | 15.9 (12.9; 20.2) | 0.484 |
Platelets, 109/L, Me (25%; 75%) | 71 (51; 89) | 444 (202; 755) | 0.0000001 |
Thrombocytopenia, n (%) | 18 (94.7) | 14 (18) | 0.0000001 |
Thrombocytosis, n (%) | 0 (0) | 42 (53.9) | 0.00002 |
ESR, mm/h, Me (25%; 75%) | 40 (27; 45) | 41 (27; 54) | 0.288 |
C-reactive protein, mg/dL, Me (25%; 75%) | 23.2 (15.3; 24.5) | 9.9 (3.0; 20.1) | 0.0006 |
Ferritin, μg/L, Me (25%; 75%) | 1276.6 (801.1; 1689.8) | 194.1 (88.4; 312.0) | 0.0000001 |
Hyperferritinemia, n (%) | 15/15 (100) | 26/41 (63.4) | 0.006 |
ALT, IU/L, Me (25%; 75%) | 62.0 (43.0; 120.0) | 30.1 (18.1; 46.4) | 0.0003 |
Increased ALT, n (%) | 15 (79) | 25 (32.1) | 0.0002 |
AST, IU/L, Me (25%; 75%) | 68.7 (61.0; 164.6) | 38.0 (26.0; 53.6) | 0.00001 |
Increased AST, n (%) | 17 (89.5) | 33/67 (49.3) | 0.002 |
Bilirubin, mcmol/L, Me (25%; 75%) | 14.1 (8.3; 26.9) | 12.0 (6.4; 16.8) | 0.228 |
Serum protein, g/L, Me (25%; 75%) | 45.5 (44.0; 49.0) | 59.5 (55.1; 63.9) | 0.0000001 |
Albumin, g/L, Me (25%; 75%) | 25.0 (22.0; 28.0) | 30.2 (26.7; 34.0) | 0.0003 |
Triglycerides, mmol/L, Me (25%; 75%) | 3.6 (2.4; 3.9) | 2.0 (1.5; 2.5) | 0.006 |
Increased triglycerides, n (%) | 12/19 (63.2) | 9/10 (90) | 0.124 |
Creatinin, mmol/L, Me (25%; 75%) | 63.6 (54.0; 110.0) | 52.1 (39.2; 60.5) | 0.005 |
Increased creatinine, n (%) | 7/17 (41.2) | 7/58 (12.1) | 0.007 |
LDH, IU/L, Me (25%; 75%) | 636.9 (431.0; 800.0) | 448.2 (245.7; 644.0) | 0.177 |
Increased LDH, n (%) | 11/14 (78.6) | 22/44 (50) | 0.060 |
LDH/Ferritin, Me (25%; 75%) | 0.4 (0.2; 0.7) | 1.7 (0.9; 4.0) | 0.049 |
Fibrinogen, g/L, Me (25%; 75%) | 2.7 (1.1; 5.8) | 5.5 (4.0; 7.6) | 0.0000001 |
D-dimer, ng/mL, Me (25%; 75%) | 3460 (1890; 5569) | 944 (586; 1948) | 0.0002 |
Troponin, pg/mL, Me (25%; 75%) | 117.7 (14.0; 256.5) | 2.0 (0.2; 4.2) | 0.079 |
Hemophagocytosis evaluation | |||
Hscore | 165 (106; 204) | 75 (56; 91) | 0.0000001 |
HLH-2004, n (%) | 8 (42.1) | 0 (0) | 0.0000001 |
MAS 2005, n (%) | 18 (94.7) | 3/73 (4.1) | 0.0000001 |
MAS 2016, n (%) | 13 (68.4) | 1/73 (1.4) | 0.0000001 |
Echo findings | |||
Coronary dilatations/aneurysms, n (%) | 0/17 (0) | 20/75 (26.7) | 0.016 |
Myocardial damage, n (%) | 14/18 (77.8) | 20/76 (26.3) | 0.00004 |
Pericardial effusion, n (%) | 12/18 (66.7) | 17/76 (22.4) | 0.0003 |
Treatment and outcomes | |||
IVIG treatment, n (%) | 10/18 (55.6) | 24/75 (32) | 0.062 |
Acetylsalicylic acid, n (%) | 7/18 (38.9) | 44/68 (63.8) | 0.121 |
Corticosteroids, n (%) | 19 (100) | 54/74 (72) | 0.033 |
Biologics, n (%) | 4/13 (30.8) | 1/56 (1.8) | 0.001 |
ICU admission, n (%) | 16 (84.2) | 24 (30.8) | 0.00002 |
Stay in hospital, for days | 25 (17; 31) | 15 (11; 21) | 0.026 |
Parameter | Se | Sp | OR (95%CI) | RR (95%CI) | p-Value |
---|---|---|---|---|---|
Age > 89 months | 84.2 | 58.7 | 7.6 (2.0; 28.2) | 5.3 01.7; 17.1) | 0.0008 |
CNS involvement | 83.3 | 58.7 | 7.1 (1.9; 26.6) | 5.1 (1.6; 16.5) | 0.005 |
Sore throat | 88.2 | 53.0 | 8.5 (1.8; 39.4) | 6.4 (1.5; 26.5) | 0.027 |
Face swelling | 72.2 | 67.9 | 5.5 (1.7; 17.8) | 3.6 (1.4; 9.1) | 0.0006 |
Splenomegaly | 94.1 | 72.7 | 42.7 (5.3; 345.5) | 23.1 (3.2; 165.7) | 0.000003 |
Shock/hypotension | 68.4 | 76.9 | 7.2 (2.4; 21.7) | 4.6 (1.9; 11.0) | 0.0001 |
Hemoglobin ≤ 92 g/L | 42.1 | 91.7 | 7.3 (2.2; 24.1) | 4.3 (2.1; 8.8) | 0.0004 |
Platelets ≤ 114 × 109/L | 89.5 | 98.7 | 654.5 (56.1; 7640.1) | 37.3 (9.5; 36.3) | 0.000001 |
C-reactive protein > 119 mg/L | 94.7 | 56.2 | 32.1 (2.9; 182.1) | 15.1 (2.1; 108.6) | 0.00007 |
Ferritin > 469 ng/mL | 93.8 | 84.2 | 235.0 (22.7; 2431.5) | 14.2 (2.1; 96.0) | 0.0000001 |
LDH/Ferritin ≤ 0.7 | 80.0 | 80.0 | 16.0 (2.4; 106.7) | 6.0 (1.5; 23.5) | 0.002 |
ALT > 45 U/L | 73.7 | 73.1 | 7.6 (2.4; 23.7) | 5.0 (2.0; 16.2) | 0.0001 |
AST > 60 U/L | 78.9 | 83.1 | 18.5 (5.3; 64.7) | 9.1 (3.3; 25.1) | 0.0000001 |
Serum protein ≤ 53.4 g/L | 94.4 | 84.6 | 93.5 (11.2; 784.0) | 35.3 (5.0; 251.3) | 0.0000001 |
Albumin ≤ 26 g/L | 58.8 | 80.0 | 5.7 (1.9; 17.7) | 3.8 (1.6; 8.7) | 0.001 |
Triglycerides > 2.4 mmol/L | 81.8 | 72.7 | 12.0 (2.0; 72.4) | 5.4 (1.4; 21.3) | 0.003 |
Creatinine > 62.5 mcmol/L | 55.6 | 81.3 | 5.5 (1.8; 16.3) | 3.6 91.6; 8.0) | 0.001 |
Fibrinogen < 2.4 g/L | 50.0 | 96.9 | 25.2 (4.7; 136.2) | 5.8 (3.0; 11.2) | 0.000002 |
D-dimer > 2270 ng/mL | 70.6 | 85.2 | 13.8 (3.8; 49.9) | 6.1 (2.5; 15.2) | 0.000008 |
Troponin > 5.3 pg/m | 87.5 | 81.3 | 30.3 (2.6; 348.9) | 9.8 (1.4; 67.6) | 0.001 |
Hscore > 113 U | 73.7 | 88.7 | 22.1 (8.3; 77.6) | 8.7 (3.5; 21.3) | 0.0000001 |
Correspondence to HLH-2004 criteria | 42.1 | 100.0 | - | 8.1 (4.7; 14.1) | 0.0000001 |
Correspondence to MAS 2005 criteria | 94.7 | 95.9 | 426.0 (41.8; 4341.6) | 61.7 (8.8; 435.6) | 0.0000001 |
Correspondence to MAS 2016 criteria | 72.2 | 98.6 | 187.2 (20.2; 1735.4) | 14.3 (6.1; 33.8) | 0.0000001 |
Parameters | β | SE | p-Value |
---|---|---|---|
Intercept | 0.0066 | 0.021 | 0.756 |
Platelets ≤ 114 × 109/L | 0.69 | 0.068 | 0.0000001 |
Ferritin > 469 ng/mL | 0.33 | 0.062 | 0.000001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avrusin, I.S.; Bregel, L.V.; Efremova, O.S.; Kostik, M.M. Development of Preliminary Criteria of Macrophage Activation Syndrome in Multisystem Inflammatory Syndrome Associated with COVID-19 in Children. Biomedicines 2024, 12, 2868. https://doi.org/10.3390/biomedicines12122868
Avrusin IS, Bregel LV, Efremova OS, Kostik MM. Development of Preliminary Criteria of Macrophage Activation Syndrome in Multisystem Inflammatory Syndrome Associated with COVID-19 in Children. Biomedicines. 2024; 12(12):2868. https://doi.org/10.3390/biomedicines12122868
Chicago/Turabian StyleAvrusin, Ilia S., Liudmila V. Bregel, Olesya S. Efremova, and Mikhail M. Kostik. 2024. "Development of Preliminary Criteria of Macrophage Activation Syndrome in Multisystem Inflammatory Syndrome Associated with COVID-19 in Children" Biomedicines 12, no. 12: 2868. https://doi.org/10.3390/biomedicines12122868
APA StyleAvrusin, I. S., Bregel, L. V., Efremova, O. S., & Kostik, M. M. (2024). Development of Preliminary Criteria of Macrophage Activation Syndrome in Multisystem Inflammatory Syndrome Associated with COVID-19 in Children. Biomedicines, 12(12), 2868. https://doi.org/10.3390/biomedicines12122868