Diagnostic Potential of Cytokine Biomarkers in Endometriosis: Challenges and Insights
Abstract
:1. Introduction
2. Literature Review
2.1. Pro-Inflammatory Cytokines in the Diagnosis of Endometriosis
2.1.1. Interleukin 1 (IL-1)
2.1.2. Interleukin 2 (IL-2)
2.1.3. Interleukin 6 (IL-6)
2.1.4. Interleukin 15 (IL-15)
2.1.5. Interleukin 16 (IL-16)
2.1.6. Interleukin 17 (IL-17)
2.1.7. Interleukin 18 (IL-18)
2.1.8. Interleukin 33 (IL-33)
2.1.9. Monocyte Chemotactic Protein 1 (MCP-1)
2.1.10. Tumor Necrosis Factor Alpha (TNF-α)
2.1.11. Interferon Gamma (IFNγ)
2.2. The Role of Anti-Inflammatory Cytokines
2.2.1. Interleukin 4 (IL-4)
2.2.2. Interleukin-1 Receptor Antagonist (IL-1RA)
2.2.3. Interleukin 10 (IL-10)
2.2.4. Interleukin 13 (IL-13)
2.2.5. Interleukin 37 (IL-37)
2.3. The Role of Dual-Action Cytokines in Endometriosis
2.3.1. Interleukin 25 (IL-25) and Thymic Stromal Lymphopoietin (TSLP)
2.3.2. Interleukin 27 (IL-27)
2.3.3. Transforming Growth Factor Beta (TGF-β)
2.3.4. Vascular Endothelial Growth Factor (VEGF)
2.4. Limitations of Using Cytokines in the Diagnosis of Endometriosis
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Ca-125 | Cancer antigen 125 |
Ca-19.9 | Cancer antigen 19.9 |
IL-1 | Interleukin-1 |
IL-1α | Interleukin-1 alfa |
IL-1β | Interleukin-1 beta |
IL-2 | Interleukin-2 |
IL-4 | Interleukin-4 |
IL-6 | Interleukin-6 |
IL-10 | Interleukin-10 |
IL-13 | Interleukin-13 |
IL-15 | Interleukin-15 |
IL-16 | Interleukin-16 |
IL-17 | Interleukin-17 |
IL-18 | Interleukin-18 |
IL-25 | Interleukin-25 |
IL-27 | Interleukin-27 |
IL-33 | Interleukin-33 |
IL-37 | Interleukin-37 |
IL-1RA | Interleukin-1 receptor antagonist |
IFNα | Interferon alpha |
IFNβ | Interferon beta |
IFNε | Interferon epsilon |
IFNδ | Interferon delta |
IFNτ | Interferon tau |
IFNγ | Interferon gamma |
IFNλ | Interferon lambda |
LAKs | lymphokine-activated killers |
MCP-1 | Monocyte chemotactic protein 1 |
mRNA | Messenger ribonucleic acid |
miRNAs | Micro ribonucleic acid |
MMPs | matrix metalloproteinases |
NF-κB | nuclear factor kappa B |
NK | Natural killer |
PBMCs | Peripheral blood mononuclear cells |
rASRM | American Society of Reproductive Medicine |
rhIL-16 | Recombinant human Interleukin-16 |
sTNFR | TNF-alpha soluble transmembrane receptors |
Th1 | T-helper 1 |
Th2 | T-helper 2 |
TGF-β | Transforming growth factor beta |
TNF-α | Tumor necrosis factor alpha |
TSLP | Thymic stromal lymphopoietin |
VEGF | Vascular endothelial growth factor |
References
- Zhou, W.-J.; Yang, H.-L.; Shao, J.; Mei, J.; Chang, K.-K.; Zhu, R.; Li, M.-Q. Anti-inflammatory cytokines in endometriosis. Cell Mol. Life Sci. 2019, 76, 2111–2132. [Google Scholar] [CrossRef] [PubMed]
- Smolarz, B.; Szyłło, K.; Romanowicz, H. Endometriosis: Epidemiology, classification, pathogenesis, treatment and genetics (Review of Literature). Int. J. Mol. Sci. 2021, 22, 10554. [Google Scholar] [CrossRef] [PubMed]
- Sampson, J.A. Metastatic or embolic endometriosis, due to the menstrual dissemination of endometrial tissue into the venous circulation. Am. J. Pathol. 1927, 3, 93. [Google Scholar] [PubMed]
- Sampson, J.A. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am. J. Obstet. Gynecol. 1927, 14, 422–469. [Google Scholar] [CrossRef]
- Matarese, G.; De Placido, G.; Nikas, Y.; Alviggi, C. Pathogenesis of endometriosis: Natural immunity dysfunction or autoimmune disease? Trends Mol. Med. 2003, 9, 223–228. [Google Scholar] [CrossRef]
- Dmowski, W.; Steele, R.; Baker, G. Deficient cellular immunity in endometriosis. Am. J. Obstet. Gynecol. 1981, 141, 377–388. [Google Scholar] [CrossRef]
- Asghari, S.; Valizadeh, A.; Aghebati-Maleki, L.; Nouri, M.; Yousefi, M. Endometriosis: Perspective, lights, and shadows of etiology. Biomed. Pharmacother. 2018, 106, 163–174. [Google Scholar] [CrossRef]
- Mahini, S.M.; Younesi, M.; Mortazavi, G.; Samare-Najaf, M.; Azadbakht, M.K.; Jamali, N. Non-invasive diagnosis of endometriosis: Immunologic and genetic markers. Clin. Chim. Acta 2023, 538, 70–86. [Google Scholar] [CrossRef]
- Rolla, E. Endometriosis: Advances and controversies in classification, pathogenesis, diagnosis, and treatment. F1000Research 2019, 8, F1000 Faculty Rev-529. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anastasiu, C.V.; Moga, M.A.; Neculau, A.E.; Bălan, A.; Scârneciu, I.; Dragomir, R.M.; Dull, A.M.; Chicea, L.M. Biomarkers for the noninvasive diagnosis of endometriosis: State of the art and future perspectives. Int. J. Mol. Sci. 2020, 21, 1750. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oală, I.E.; Mitranovici, M.I.; Chiorean, D.M.; Irimia, T.; Crișan, A.I.; Melinte, I.M.; Cotruș, T.; Tudorache, V.; Moraru, L.; Moraru, R.; et al. Endometriosis and the role of pro-inflammatory and anti-inflammatory cytokines in pathophysiology: A narrative review of the literature. Diagnostics 2024, 14, 312. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.Y.; Ho, H.N. The role of cytokines in endometriosis. Am. J. Reprod. Immunol. 2003, 49, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Hudelist, G.; Lass, H.; Keckstein, J.; Walter, I.; Wieser, F.; Wenzl, R.; Mueller, R.; Czerwenka, K.; Kubista, E.; Singer, C.F. Interleukin 1alpha and tissue-lytic matrix metalloproteinase-1 are elevated in ectopic endometrium of patients with endometriosis. Hum. Reprod. 2005, 20, 1695–1701. [Google Scholar] [CrossRef] [PubMed]
- Abramiuk, M.; Grywalska, E.; Małkowska, P.; Sierawska, O.; Hrynkiewicz, R.; Niedźwiedzka-Rystwej, P. The role of the immune system in the development of endometriosis. Cells 2022, 11, 2028. [Google Scholar] [CrossRef]
- Gajbhiye, R.; McKinnon, B.; Mortlock, S.; Mueller, M.; Montgomery, G. Genetic variation at chromosome 2q13 and its potential influence on endometriosis susceptibility through effects on the IL-1 family. Reprod. Sci. 2018, 25, 1307–1317. [Google Scholar] [CrossRef]
- Mardanian, F.; Sheikh-Soleimani, Z. The diagnostic role of cervico-vaginal fluid interleukins-1α in endometriosis: A case-control study. J. Res. Med. Sci. 2014, 19, 1145–1149. [Google Scholar] [PubMed] [PubMed Central]
- Kondera-Anasz, Z.; Sikora, J.; Mielczarek-Palacz, A.; Jońca, M. Concentrations of interleukin (IL)-1alpha, IL-1 soluble receptor type II (IL-1 sRII) and IL-1 receptor antagonist (IL-1 Ra) in the peritoneal fluid and serum of infertile women with endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005, 123, 198–203. [Google Scholar] [CrossRef]
- Măluțan, A.M.; Drugan, T.; Ciortea, R.; Mocan-Hognogi, R.F.; Bucuri, C.; Rada, M.P.; Mihu, D. Serum anti-inflammatory cytokines for the evaluation of inflammatory status in endometriosis. J. Res. Med. Sci. 2015, 20, 668–674. [Google Scholar]
- Anderson, T.D.; Hayes, T.J.; Powers, G.D.; Gately, M.K.; Tudor, R.; Rushton, A. Comparative toxicity and pathology associated with administration of recombinant IL-2 to animals. Int. Rev. Exp. Pathol. 1993, 34 Pt A, 57–77. [Google Scholar]
- Hsu, C.C.; Yang, B.C.; Wu, M.H.; Huang, K.E. Enhanced interleukin-4 expression in patients with endometriosis. Fertil. Steril. 1997, 67, 1059–1064. [Google Scholar] [CrossRef]
- Gogacz, M.; Winkler, I.; Bojarska-Junak, A.; Tabarkiewicz, J.; Semczuk, A.; Rechberger, T.; Adamiak, A. Increased percentage of Th17 cells in peritoneal fluid is associated with severity of endometriosis. J. Reprod. Immunol. 2016, 117, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Hu, M.; Chen, J.M.; Sun, W.; Zhu, M.B. Effects of gene polymorphism and serum levels of IL-2 and IL-6 on endometriosis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 4635–4641. [Google Scholar] [CrossRef] [PubMed]
- Velasco, I.; Rueda, J.; Acién, P. Aromatase expression in endometriotic tissues and cell cultures of patients with endometriosis. Mol. Hum. Reprod. 2006, 12, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Lebovic, D.I.; Mueller, M.D.; Taylor, R.N. Immunobiology of endometriosis. Fertil. Steril. 2001, 75, 1–10. [Google Scholar] [CrossRef]
- Zarmakoupis, P.N.; Rier, S.E.; Maroulis, G.B.; Becker, J.L. Uterus and endometrium: Inhibition of human endometrial stromal cell proliferation by interleukin 6. Hum. Reprod. 1995, 10, 2395–2399. [Google Scholar] [CrossRef]
- Gruber, T.M.; Mechsner, S. Pathogenesis of endometriosis: The origin of pain and subfertility. Cells 2021, 10, 1381. [Google Scholar] [CrossRef]
- Buyalos, R.P.; Funari, V.A.; Azziz, R.; Watson, J.M.; Martinez-Maza, O. Elevated interleukin-6 levels in peritoneal fluid of patients with pelvic pathology. Fertil. Steril. 1992, 58, 302–306. [Google Scholar] [CrossRef]
- Koyama, N.; Matsuura, K.; Okamura, H. Cytokines in the peritoneal fluid of patients with endometriosis. Int. J. Gynecol. Obstet. 1993, 43, 45–50. [Google Scholar] [CrossRef]
- Rier, S.E.; Zarmakoupis, P.N.; Hu, X.; Becker, J.L. Dysregulation of interleukin-6 responses in ectopic endometrial stromal cells: Correlation with decreased soluble receptor levels in peritoneal fluid of women with endometriosis. J. Clin. Endocrinol. Metab. 1995, 80, 1431–1437. [Google Scholar]
- Mosbah, A.; Nabiel, Y.; Khashaba, E. Interleukin-6, intracellular adhesion molecule-1, and glycodelin A levels in serum and peritoneal fluid as biomarkers for endometriosis. Int. J. Gynecol. Obstet. 2016, 134, 247–251. [Google Scholar] [CrossRef]
- Jiang, J.; Jiang, Z.; Xue, M. Serum and peritoneal fluid levels of interleukin-6 and interleukin-37 as biomarkers for endometriosis. Gynecol. Endocrinol. 2019, 35, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Bedaiwy, M.A.; Falcone, T.; Sharma, R.K.; Goldberg, J.M.; Attaran, M.; Nelson, D.R.; Agarwal, A. Prediction of endometriosis with serum and peritoneal fluid markers: A prospective controlled trial. Hum. Reprod. 2002, 17, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Nisenblat, V.; Bossuyt, P.M.; Shaikh, R.; Farquhar, C.; Jordan, V.; Scheffers, C.S.; Mol, B.W.J.; Johnson, N.; Hull, M.L. Blood biomarkers for the non-invasive diagnosis of endometriosis. Cochrane Database Syst. Rev. 2016, 2016, CD012179. [Google Scholar] [CrossRef] [PubMed]
- Mihalyi, A.; Gevaert, O.; Kyama, C.M.; Simsa, P.; Pochet, N.; De Smet, F.; De Moor, B.; Meuleman, C.; Billen, J.; Blanckaert, N.; et al. Non-invasive diagnosis of endometriosis based on a combined analysis of six plasma biomarkers. Hum. Reprod. 2010, 25, 654–664. [Google Scholar] [CrossRef]
- Vodolazkaia, A.; El-Aalamat, Y.; Popovic, D.; Mihalyi, A.; Bossuyt, X.; Kyama, C.M.; Fassbender, A.; Bokor, A.; Schols, D.; Huskens, D.; et al. Evaluation of a panel of 28 biomarkers for the non-invasive diagnosis of endometriosis. Hum. Reprod. 2012, 27, 2698–2711. [Google Scholar] [CrossRef]
- Zhong, S.; Liang, Y.; Wu, Z.; Wei, L. Association between polymorphisms of cytokine genes and endometriosis: A comprehensive systematic review and meta-analysis. J. Reprod. Immunol. 2023, 158, 103969. [Google Scholar] [CrossRef] [PubMed]
- Machairiotis, N.; Vasilakaki, S.; Thomakos, N. Inflammatory mediators and pain in endometriosis: A systematic review. Biomedicines 2021, 9, 54. [Google Scholar] [CrossRef]
- Yen, C.F.; Kim, S.; Murk, W.; Atabekoglu, C.; Kayisli, U.; Arici, A. Interleukin-15 enhances the proliferation of human endometrial endothelial cells. Fertil. Steril. 2007, 88 (Suppl. 1), S104. [Google Scholar] [CrossRef]
- Angiolillo, A.L.; Kanegane, H.; Sgadari, C.; Reaman, G.H.; Tosato, G. Interleukin-15 promotes angiogenesis in vivo. Biochem. Biophys. Res. Commun. 1997, 233, 231–237. [Google Scholar] [CrossRef]
- Chegini, N.; Roberts, M.; Ripps, B. Differential expression of interleukins (IL)-13 and IL-15 in ectopic and eutopic endometrium of women with endometriosis and normal fertile women. Am. J. Reprod. Immunol. 2003, 49, 75–83. [Google Scholar] [CrossRef]
- Arici, A.; Matalliotakis, I.; Goumenou, A.; Koumantakis, G.; Vassiliadis, S.; Selam, B.; Mahutte, N.G. Increased levels of interleukin-15 in the peritoneal fluid of women with endometriosis: Inverse correlation with stage and depth of invasion. Hum. Reprod. 2003, 18, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhang, X.; Lin, D.; Fang, Q.; Qian, Y. Decreased peritoneal concentrations of interleukin-15 in women with advanced stage endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2006, 129, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Mathy, N.L.; Scheuer, W.; Lanzendörfer, M.; Honold, K.; Ambrosius, D.; Norley, S.; Kurth, R. Interleukin-16 stimulates the expression and production of pro-inflammatory cytokines by human monocytes. Immunology 2000, 100, 63–69. [Google Scholar] [CrossRef]
- Matalliotakis, M.; Zervou, M.I.; Eliopoulos, E.; Matalliotaki, C.; Rahmioglu, N.; Kalogiannidis, I.; Zondervan, K.; Spandidos, D.A.; Matalliotakis, I.; Goulielmos, G.N. The role of IL-16 gene polymorphisms in endometriosis. Int. J. Mol. Med. 2018, 41, 1469–1476. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koga, K.; Osuga, Y.; Yoshino, O.; Hirota, Y.; Yano, T.; Tsutsumi, O.; Taketani, Y. Elevated interleukin-16 levels in the peritoneal fluid of women with endometriosis may be a mechanism for inflammatory reactions associated with endometriosis. Fertil. Steril. 2005, 83, 1730. [Google Scholar] [CrossRef] [PubMed]
- Babah, O.A.; Ojewunmi, O.O.; Onwuamah, C.K.; Udenze, I.C.; Osuntoki, A.A.; Afolabi, B.B. Serum concentrations of IL-16 and its genetic polymorphism rs4778889 affect the susceptibility and severity of endometriosis in Nigerian women. BMC Womens Health 2023, 23, 253. [Google Scholar] [CrossRef]
- Johansen, C.; Usher, P.A.; Kjellerup, R.B.; Lundsgaard, D.; Iversen, L.; Kragballe, K. Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br. J. Dermatol. 2009, 160, 319–324. [Google Scholar] [CrossRef]
- Sikora, J.; Smycz-Kubańska, M.; Mielczarek-Palacz, A.; Bednarek, I.; Kondera-Anasz, Z. The involvement of multifunctional TGF-β and related cytokines in pathogenesis of endometriosis. Immunol. Lett. 2018, 201, 31–37. [Google Scholar] [CrossRef]
- Bungum, H.F.; Nygaard, U.; Vestergaard, C.; Martensen, P.M.; Knudsen, U.B. Increased IL-25 levels in the peritoneal fluid of patients with endometriosis. J. Reprod. Immunol. 2016, 114, 6–9. [Google Scholar] [CrossRef]
- Miller, J.E.; Ahn, S.H.; Marks, R.M.; Monsanto, S.P.; Fazleabas, A.T.; Koti, M.; Tayade, C. IL-17A modulates peritoneal macrophage recruitment and M2 polarization in endometriosis. Front. Immunol. 2020, 11, 108. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, H.; Lin, J.; Qian, Y.; Deng, L. Peritoneal fluid concentrations of interleukin-17 correlate with the severity of endometriosis and infertility of this disorder. BJOG Int. J. Obstet. Gynaecol. 2005, 112, 1153–1155. [Google Scholar] [CrossRef] [PubMed]
- Tarokh, M.; Ghaffari Novin, M.; Poordast, T.; Tavana, Z.; Nazarian, H.; Norouzian, M.; Gharesi-Fard, B. Serum and peritoneal fluid cytokine profiles in infertile women with endometriosis. Iranian J. Immunol. 2019, 16, 151–162. [Google Scholar]
- Andreoli, C.G.; Genro, V.K.; Souza, C.A.; Michelon, T.; Bilibio, J.P.; Scheffel, C.; Cunha-Filho, J.S. T helper (Th) 1, Th2, and Th17 interleukin pathways in infertile patients with minimal/mild endometriosis. Fertil. Steril. 2011, 95, 2477–2480. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, G.M.; Carvalho, K.; Kallas, E.G.; Mechsner, S.; Baracat, E.C.; Abrão, M.S. Chemokines in the pathogenesis of endometriosis and infertility. J. Reprod. Immunol. 2013, 98, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Arici, A.; Matalliotakis, I.; Goumenou, A.; Koumantakis, G.; Vassiliadis, S.; Mahutte, N.G. Altered expression of interleukin-18 in the peritoneal fluid of women with endometriosis. Fertil. Steril. 2003, 80, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Fairbanks, F.; Abrão, M.S.; Podgaec, S.; Dias, J.A., Jr.; de Oliveira, R.M.; Rizzo, L.V. Interleukin-12 but not interleukin-18 is associated with severe endometriosis. Fertil. Steril. 2009, 91, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Glitz, C.; Souza, C.A.; Rodini, G.P.; Genro, V.; Bilibio, J.P.; Senger, M.; Cunha-Filho, J.S. Peritoneal and serum interleukin-18 levels are not increased in women with minimum or mild endometriosis. Braz. J. Med. Biol. Res. 2009, 42, 1039–1043. [Google Scholar] [CrossRef] [PubMed]
- Balunathan, N.; Rani, U.G.; Perumal, V.; Kumarasamy, P. Single nucleotide polymorphisms of Interleukin-4, Interleukin-18, FCRL3 and sPLA2IIa genes and their association in pathogenesis of endometriosis. Mol. Biol. Rep. 2023, 50, 4239–4252. [Google Scholar] [CrossRef]
- Miller, J.E.; Monsanto, S.P.; Ahn, S.H.; Khalaj, K.; Fazleabas, A.T.; Young, S.L.; Lessey, B.A.; Koti, M.; Tayade, C. Interleukin-33 modulates inflammation in endometriosis. Sci. Rep. 2017, 7, 17903. [Google Scholar] [CrossRef]
- Mbarik, M.; Kaabachi, W.; Henidi, B.; Sassi, F.H.; Hamzaoui, K. Soluble ST2 and IL-33: Potential markers of endometriosis in the Tunisian population. Immunol. Lett. 2015, 166, 1–5. [Google Scholar] [CrossRef]
- Jaeger-Lansky, A.; Schmidthaler, K.; Kuessel, L.; Gstöttner, M.; Waidhofer-Söllner, P.; Zlabinger, G.J.; Wenzl, R.; Eiwegger, T. Local and systemic levels of cytokines and danger signals in endometriosis-affected women. J. Reprod. Immunol. 2018, 130, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Albertsen, H.M.; Chettier, R.; Farrington, P.; Ward, K. Genome-Wide Association Study Links Novel Loci to Endometriosis. PLoS ONE 2013, 8, e58257. [Google Scholar] [CrossRef] [PubMed]
- Olive, D.; Weinberg, J.; Haney, A. Peritoneal macrophages and infertility: The association between cell number and pelvic pathology. Fertil. Steril. 1985, 44, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Akoum, A.; Lemay, A.; McColl, S.R.; Paradis, I.; Maheux, R. Increased monocyte chemotactic protein-1 level and activity in the peripheral blood of women with endometriosis. Le Groupe d’Investigation en Gynecologie. Am. J. Obstet. Gynecol. 1996, 175, 1620–1625. [Google Scholar] [CrossRef]
- Pizzo, A.; Salmeri, F.M.; Ardita, F.V.; Sofo, V.; Tripepi, M.; Marsico, S. Behaviour of cytokine levels in serum and peritoneal fluid of women with endometriosis. Gynecol. Obstet. Investig. 2002, 54, 82–87. [Google Scholar] [CrossRef]
- Gmyrek, G.B.; Sozanski, R.; Jerzak, M.; Chrobak, A.; Wickiewicz, D.; Skupnik, A.; Sieradzka, U.; Fortuna, W.; Gabrys, M.; Chelmonska-Soyta, A. Evaluation of monocyte chemotactic protein-1 levels in peripheral blood of infertile women with endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005, 122, 199–205. [Google Scholar] [CrossRef]
- Toczek, J.; Jastrzębska-Stojko, Z.; Stojko, R.; Drosdzol-Cop, A. Endometriosis: New perspective for the diagnosis of certain cytokines in women and adolescent girls, as well as the progression of disease outgrowth: A systematic review. Int. J. Environ. Res. Public. Health 2021, 18, 4726. [Google Scholar] [CrossRef]
- Othman, E.R.; Hornung, D.; Hussein, M.; Abdelaal, I.I.; Sayed, A.A.; Fetih, A.N.; Al-Hendy, A. Soluble tumor necrosis factor-alpha receptors in the serum of endometriosis patients. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 200, 1–5. [Google Scholar] [CrossRef]
- Park, Y.; Han, S.J. Interferon signaling in the endometrium and in endometriosis. Biomolecules 2022, 12, 1554. [Google Scholar] [CrossRef]
- Dicitore, A.; Castiglioni, S.; Saronni, D.; Gentilini, D.; Borghi, M.O.; Stabile, S.; Vignali, M.; Di Blasio, A.M.; Persani, L.; Vitale, G. Effects of human recombinant type I IFNs (IFN-alpha2b and IFN-beta1a) on growth and migration of primary endometrial stromal cells from women with deeply infiltrating endometriosis: A preliminary study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 230, 192–198. [Google Scholar] [CrossRef]
- Saito, S.; Nishikawa, K.; Morii, T.; Enomoto, M.; Narita, N.; Motoyoshi, K.; Ichijo, M. Cytokine production by CD16-CD56 bright natural killer cells in the human early pregnancy decidua. Int. Immunol. 1993, 5, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.-N.; Wu, M.-Y.; Chao, K.-H.; Chen, C.-D.; Chen, S.-U.; Chen, H.-F.; Yang, Y.-S. Decrease in interferon gamma production and impairment of T-lymphocyte proliferation in peritoneal fluid of women with endometriosis. Am. J. Obstet. Gynecol. 1996, 175, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Podgaec, S.; Dias Junior, J.A.; Chapron, C.; Oliveira, R.M.; Baracat, E.C.; Abrão, M.S. Th1 and Th2 immune responses related to pelvic endometriosis. Rev. Assoc. Med. Bras. 2010, 56, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Gadani, S.P.; Cronk, J.C.; Norris, G.T.; Kipnis, J. IL-4 in the brain: A cytokine to remember. J. Immunol. 2012, 189, 4213–4219. [Google Scholar] [CrossRef]
- Seder, R.A.; Paul, W.E.; Davis, M.M.; Fazekas de St Groth, B. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J. Exp. Med. 1992, 176, 1091–1098. [Google Scholar] [CrossRef]
- Hsieh, C.S.; Heimberger, A.B.; Gold, J.S.; O’Garra, A.; Murphy, K.M. Differential regulation of T helper phenotype development by interleukins 4 and 10 in an alpha beta T-cell-receptor transgenic system. Proc. Natl. Acad. Sci. USA 1992, 89, 6065–6069. [Google Scholar] [CrossRef]
- Podgaec, S.; Abrao, M.S.; Dias, J.A., Jr.; Rizzo, L.V.; de Oliveira, R.M.; Baracat, E.C. Endometriosis: An inflammatory disease with a Th2 immune response component. Hum. Reprod. 2007, 22, 1373–1379. [Google Scholar] [CrossRef]
- Antsiferova, Y.S.; Sotnikova, N.Y.; Posiseeva, L.V.; Shor, A.L. Changes in the T-helper cytokine profile and in lymphocyte activation at the systemic and local levels in women with endometriosis. Fertil. Steril. 2005, 84, 1705–1711. [Google Scholar] [CrossRef]
- Cameron, M.J.; Kelvin, D.J. Cytokines and chemokines–their receptors and their genes: An overview. Adv. Exp. Med. Biol. 2003, 520, 8–32. [Google Scholar]
- Viganò, P.; Vercellini, P.; Di Blasio, A.M.; Colombo, A.; Candiani, G.B.; Vignali, M. “Killer cells” and endometriosis. Fertil. Steril. 1993, 60, 928. [Google Scholar] [CrossRef]
- Sinaii, N.; Cleary, S.D.; Ballweg, M.; Nieman, L.K.; Stratton, P. High rates of autoimmune and endocrine disorders, fibromyalgia, chronic fatigue syndrome and atopic diseases among women with endometriosis: A survey analysis. Hum. Reprod. 2002, 17, 2715–2724. [Google Scholar] [CrossRef] [PubMed]
- OuYang, Z.; Hirota, Y.; Osuga, Y.; Hamasaki, K.; Hasegawa, A.; Tajima, T.; Hirata, T.; Koga, K.; Yoshino, O.; Harada, M.; et al. Interleukin-4 stimulates proliferation of endometriotic stromal cells. Am. J. Pathol. 2008, 173, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Drosdzol-Cop, A.; Skrzypulec-Plinta, V.; Stojko, R. Serum and peritoneal fluid immunological markers in adolescent girls with chronic pelvic pain. Obstet. Gynecol. Surv. 2012, 67, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Mălutan, A.M.; Drugan, C.; Drugan, T.; Ciortea, R.; Mihu, D. The association between interleukin-4 -590C/T genetic polymorphism, IL-4 serum level, and advanced endometriosis. Cent. Eur. J. Immunol. 2016, 41, 176–181. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, J.; Deng, L.; Lin, J. Decreased levels of peritoneal interleukin-1 receptor antagonist in patients with endometriosis and disease-related dysmenorrhea. Fertil. Steril. 2007, 88, 594–599. [Google Scholar] [CrossRef]
- Mier-Cabrera, J.; Cruz-Orozco, O.; de la Jara-Díaz, J.; Galicia-Castillo, O.; Buenrostro-Jáuregui, M.; Parra-Carriedo, A.; Hernández-Guerrero, C. Polymorphisms of TNF-alpha (−308), IL-1beta (+3954) and IL1-Ra (VNTR) are associated to severe stage of endometriosis in Mexican women: A case control study. BMC Womens Health 2022, 22, 356. [Google Scholar] [CrossRef]
- Chang, K.K.; Liu, L.B.; Jin, L.P.; Zhang, B.; Mei, J.; Li, H.; Wei, C.Y.; Zhou, W.J.; Zhu, X.Y.; Shao, J.; et al. IL-27 triggers IL-10 production in Th17 cells via a c-Maf/RORγt/Blimp-1 signal to promote the progression of endometriosis. Cell Death Dis. 2017, 8, e2666. [Google Scholar] [CrossRef]
- Wickiewicz, D.; Chrobak, A.; Gmyrek, G.B.; Halbersztadt, A.; Gabryś, M.S.; Goluda, M.; Chełmońska-Soyta, A. Diagnostic accuracy of interleukin-6 levels in peritoneal fluid for detection of endometriosis. Arch. Gynecol. Obstet. 2013, 288, 805–814. [Google Scholar] [CrossRef]
- Mier-Cabrera, J.; Jiménez-Zamudio, L.; García-Latorre, E.; Cruz-Orozco, O.; Hernández-Guerrero, C. Quantitative and qualitative peritoneal immune profiles, T-cell apoptosis and oxidative stress-associated characteristics in women with minimal and mild endometriosis. BJOG 2011, 118, 6–16. [Google Scholar] [CrossRef]
- Tabibzadeh, S.; Becker, J.L.; Parsons, A.K. Endometriosis is associated with alterations in the relative abundance of proteins and IL-10 in the peritoneal fluid. Front. Biosci. Landmark 2003, 8, 70–78. [Google Scholar] [CrossRef]
- Zhang, X.; Hei, P.; Deng, L.; Lin, J. Interleukin-10 gene promoter polymorphisms and their protein production in peritoneal fluid in patients with endometriosis. Mol. Hum. Reprod. 2007, 13, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Q.; Wang, Y.; Chang, K.K.; Meng, Y.H.; Liu, L.; Mei, J.; Wang, X.; Jin, L.; Li, D. CD4+ Foxp3+ regulatory T cell differentiation mediated by endometrial stromal cell-derived TECK promotes the growth and invasion of endometriotic lesions. Cell Death Dis. 2014, 5, e1436. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.H.; Monsanto, S.P.; Miller, C.; Singh, S.S.; Thomas, R.; Tayade, C. Pathophysiology and immune dysfunction in endometriosis. Biomed. Res. Int. 2015, 2015, 795976. [Google Scholar] [CrossRef] [PubMed]
- Suen, J.L.; Chang, Y.; Chiu, P.R.; Hsieh, T.H.; Hsi, E.; Chen, Y.C.; Chen, Y.F.; Tsai, E.M. Serum level of IL-10 is increased in patients with endometriosis, and IL-10 promotes the growth of lesions in a murine model. Am. J. Pathol. 2014, 184, 464–471. [Google Scholar] [CrossRef]
- Minty, A.; Chalon, P.; Derocq, J.M.; Dumont, X.; Guillemot, J.C.; Kaghad, M.; Labit, C.; Leplatois, P.; Liauzun, P.; Miloux, B.; et al. Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature 1993, 362, 248–250. [Google Scholar] [CrossRef]
- Wang, X.; Ma, Z.; Song, N. Inflammatory cytokines IL-6, IL-10, IL-13, TNF-α, and peritoneal fluid flora were associated with infertility in patients with endometriosis. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 2513–2518. [Google Scholar]
- Lee, Y.H.; Cui, L.; Fang, J.; Chern, B.S.; Tan, H.H.; Chan, J.K. Limited value of proinflammatory oxylipins and cytokines as circulating biomarkers in endometriosis—A targeted ’omics study. Sci. Rep. 2016, 6, 26117. [Google Scholar]
- Jørgensen, H.; Hill, A.S.; Beste, M.T.; Kumar, M.P.; Chiswick, E.; Fedorcsak, P.; Isaacson, K.B.; Lauffenburger, D.A.; Griffith, L.G.; Qvigstad, E. Peritoneal fluid cytokines related to endometriosis in patients evaluated for infertility. Fertil. Steril. 2017, 107, 1191–1199.e2. [Google Scholar] [CrossRef]
- Wang, L.; Quan, Y.; Yue, Y.; Heng, X.; Che, F. Interleukin-37: A crucial cytokine with multiple roles in disease and potentially clinical therapy. Oncol. Lett. 2018, 15, 4711–4719. [Google Scholar] [CrossRef]
- González-Ramos, R.; Donnez, J.; Defrère, S.; Leclercq, I.; Squifflet, J.; Lousse, J.C.; Van Langendonckt, A. Nuclear factor-kappa B is constitutively activated in peritoneal endometriosis. Mol. Hum. Reprod. 2007, 13, 503–509. [Google Scholar] [CrossRef]
- Fan, Y.-Y.; Chen, H.-Y.; Chen, W.; Liu, Y.-N.; Fu, Y.; Wang, L.-N. Expression of inflammatory cytokines in serum and peritoneal fluid from patients with different stages of endometriosis. Gynecol. Endocrinol. 2018, 34, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Rajput, C.; Hong, J.Y.; Lei, J.; Hinde, J.L.; Wu, Q.; Bentley, J.K.; Hershenson, M.B. The innate cytokines IL-25, IL-33, and TSLP cooperate in the induction of type 2 innate lymphoid cell expansion and mucous metaplasia in rhinovirus-infected immature mice. J. Immunol. 2017, 199, 1308–1318. [Google Scholar] [CrossRef] [PubMed]
- Santulli, P.; Borghese, B.; Chouzenoux, S.; Vaiman, D.; Borderie, D.; Streuli, I.; Goffinet, F.; de Ziegler, D.; Weill, B.; Batteux, F.; et al. Serum and peritoneal interleukin-33 levels are elevated in deeply infiltrating endometriosis. Hum. Reprod. 2012, 27, 2001–2009. [Google Scholar] [CrossRef]
- Urata, Y.; Osuga, Y.; Izumi, G.; Takamura, M.; Koga, K.; Nagai, M.; Harada, M.; Hirata, T.; Hirota, Y.; Yoshino, O.; et al. Interleukin-1β stimulates the secretion of thymic stromal lymphopoietin (TSLP) from endometrioma stromal cells: Possible involvement of TSLP in endometriosis. Hum. Reprod. 2012, 27, 3028–3035. [Google Scholar] [CrossRef]
- Qiu, X.M.; Lai, Z.Z.; Ha, S.Y.; Yang, H.L.; Liu, L.B.; Wang, Y.; Shi, J.W.; Ruan, L.Y.; Ye, J.F.; Wu, J.N.; et al. IL-2 and IL-27 synergistically promote growth and invasion of endometriotic stromal cells by maintaining the balance of IFN-γ and IL-10 in endometriosis. Reproduction 2020, 159, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Oosterlynck, D.J.; Meuleman, C.; Waer, M.; Koninckx, P.R. Transforming growth factor-beta activity is increased in peritoneal fluid from women with endometriosis. Obstet. Gynecol. 1994, 83, 287–292. [Google Scholar]
- Wilson, T.J.; Hertzog, P.J.; Angus, D.; Munnery, L.; Wood, E.C.; Kola, I. Decreased natural killer cell activity in endometriosis patients: Relationship to disease pathogenesis. Fertil. Steril. 1994, 62, 1086–1088. [Google Scholar] [CrossRef]
- Kanzaki, H.; Wang, H.S.; Kariya, M.; Mori, T. Suppression of natural killer cell activity by sera from patients with endometriosis. Am. J. Obstet. Gynecol. 1992, 167, 257–261. [Google Scholar] [CrossRef]
- Oosterlynck, D.J.; Cornillie, F.J.; Waer, M.; Vandeputte, M.; Koninckx, P.R. Women with endometriosis show a defect in natural killer activity resulting in a decreased cytotoxicity to autologous endometrium. Fertil. Steril. 1991, 56, 45–51. [Google Scholar] [CrossRef]
- Young, V.J.; Ahmad, S.F.; Duncan, W.C.; Horne, A.W. The role of TGF-β in the pathophysiology of peritoneal endometriosis. Hum. Reprod. Update 2017, 23, 548–559. [Google Scholar] [CrossRef]
- McLaren, J.; Prentice, A.; Charnock-Jones, D.S.; Millican, S.A.; Müller, K.H.; Sharkey, A.M.; Smith, S.K. Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J. Clin. Investig. 1996, 98, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Foda, A.A.; Aal, I.A.A. Role of some biomarkers in chronic pelvic pain for early detection of endometriosis in infertile women. Middle East. Fertil. Soc. J. 2012, 17, 187–194. [Google Scholar] [CrossRef]
- Mohamed, M.L.; El Behery, M.M.; Mansour, S.A. Comparative study between VEGF-A and CA-125 in diagnosis and follow-up of advanced endometriosis after conservative laparoscopic surgery. Arch Gynecol. Obstet. 2013, 287, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Bhanoori, M.; Arvind Babu, K.; Pavankumar Reddy, N.G.; Lakshmi Rao, K.; Zondervan, K.; Deenadayal, M.; Kennedy, S.; Shivaji, S. The vascular endothelial growth factor (VEGF) +405G>C 5′-untranslated region polymorphism and increased risk of endometriosis in South Indian women: A case control study. Hum. Reprod. 2005, 20, 1844–1849. [Google Scholar] [CrossRef] [PubMed]
Cytokine | Origin | Function | Expression in Endometriosis | Regulation (Genetic Polymorphisms) |
---|---|---|---|---|
Interleukin-1 (IL-1) | Peritoneal macrophages | Pro-inflammatory Promotes cell growth, differentiation, and angiogenesis | ↑ Cervico-vaginal, peritoneal fluid, serum, and plasma | rs1143634 in IL1: no significant association with endometriosis |
Interleukin-2 (IL-2) | T and NK cells | Pro-inflammatory Enhances T-cell proliferation and NK cells | Mixed findings | rs2069762 in IL2: associated with predisposition of endometriosis |
Interleukin-6 (IL-6) | Macrophages | Pro-inflammatory Involved in B-cell differentiation and T-cell activation | ↑ Serum and peritoneal fluid | rs1800795 and rs1800796 in IL6: no significant association with endometriosis |
Interleukin-15 (IL-15) | Epithelial cells and macrophages | Pro-inflammatory Promotes growth of T-cell types; involved in chemotaxis and angiogenesis | ↑ Peritoneal fluid and ectopic endometrium (some studies show decreased levels in advanced stages) | No reliable information |
Interleukin-16 (IL-16) | Immune (T cells, eosinophils, neutrophils, and dendritic cells) and non-immune (fibroblast, epithelial, and neuronal) cells | Pro-inflammatory; Crucial role in immune and inflammatory responses | ↑ Peritoneal fluid in advanced stages | rs4778889 in IL16: associated with higher risk of endometriosis |
Interleukin-17 (IL-17) | Th17 cells | Pro-inflammatory Involved in immune responses | Mixed findings | No reliable information |
Interleukin-18 (IL-18) | Hematopoietic and non-hematopoietic cells, including monocytes, macrophages, keratinocytes, and mesenchymal cells | Pro-inflammatory Modulates expression of adhesion molecules; promotes angiogenesis | Mixed findings | rs1946518 in IL18: associated with higher risk of endometriosis |
Interleukin-33 (IL-33) | Endothelial cells, fibroblasts, and macrophages | Pro-inflammatory Interacts with innate and adaptive immune systems | Mixed findings | rs10975519 in IL33: associated with higher risk of endometriosis |
Monocyte Chemotactic Protein-1 (MCP-1) | Produced by monocytes/macrophages | Pro-inflammatory Promotes monocyte migration and differentiation into macrophages | ↑ Peritoneal fluid | No reliable information |
Tumor Necrosis Factor Alpha (TNF-α) | Produced by activated macrophages, T lymphocytes, and NK cells | Pro-inflammatory Involved in inflammatory responses | ↑ Peritoneal fluid | rs1799964 in TNF: associated with higher risk of endometriosis |
Interferon Gamma (IFNγ) | Produced by T cells and NK cells | Pro-inflammatory Key role in innate and adaptive immunity | Mixed findings | IFNγ a13 allele: associated with higher risk of endometriosis |
Interleukin-4 (IL-4) | CD4+ T cells | Anti-inflammatory Promotes Th2 immune response; aids in T-cell differentiation | ↑ Serum and peritoneal fluid | rs2243250 in IL4: no significant association with endometriosis |
Interleukin-1 Receptor Antagonist (IL-1RA) | Hepatic cells, immune cells, epithelial cells, and adipocytes | Anti-inflammatory Regulates IL-1 activity by acting as a receptor antagonist | ↑ Serum and peritoneal fluid (some studies show decreased levels in peritoneal fluid) | VNTR in IL1RN: associated with higher risk of endometriosis |
Interleukin-10 (IL-10) | Macrophages and Th cells | Anti-inflammatory Suppresses production of various cytokines | ↑ Serum and peritoneal fluid | rs1800872 in IL10: associated with higher risk of endometriosis |
Interleukin-13 (IL-13) | T cells, mast cells, and eosinophils | Anti-inflammatory Promotes Th2 responses; stimulates collagen production; induces TGF-β formation | Mixed findings | No reliable information |
Interleukin-37 (IL-37) | Monocytes and macrophages | Anti-inflammatory Suppresses release of pro-inflammatory cytokines | ↑ Serum and plasma and peritoneal fluid | No reliable information |
Interleukin-25 (IL-25) | T cells, NK cells, and dendritic cells | Pro- and anti-inflammatory Promotes Th2 responses | ↑ Peritoneal fluid | No reliable information |
Thymic Stromal Lymphopoietin (TSLP) | Epithelial cells, fibroblasts, stromal cells, and keratinocytes | Pro-inflammatory Promotes Th2 responses and inflammation | ↑ Serum and plasma, endometrium, and peritoneal fluid | No reliable information |
Interleukin-27 (IL-27) | Monocytes, macrophages, and dendritic cells | Pro- and anti-inflammatory Enhances growth and invasion of endometriotic stromal cells; regulates balance between IFNγ and IL-10 | Not widely investigated | No reliable information |
Transforming Growth Factor Beta (TGF-β) | T cells, platelets | Pro- and anti-inflammatory Regulates cell differentiation, proliferation, and angiogenesis; inhibits NK cell activity | ↑ Serum and peritoneal fluid | rs1800469 in TGFB: no significant association with endometriosis |
Vascular Endothelial Growth Factor (VEGF) | Macrophages, endothelial cells, fibroblasts, and platelets | Pro- and anti-inflammatory Promotes angiogenesis; essential for blood vessel development | ↑ Serum and peritoneal fluid | +405G>C in VEGF: associated with higher risk of endometriosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krygere, L.; Jukna, P.; Jariene, K.; Drejeriene, E. Diagnostic Potential of Cytokine Biomarkers in Endometriosis: Challenges and Insights. Biomedicines 2024, 12, 2867. https://doi.org/10.3390/biomedicines12122867
Krygere L, Jukna P, Jariene K, Drejeriene E. Diagnostic Potential of Cytokine Biomarkers in Endometriosis: Challenges and Insights. Biomedicines. 2024; 12(12):2867. https://doi.org/10.3390/biomedicines12122867
Chicago/Turabian StyleKrygere, Laura, Povilas Jukna, Kristina Jariene, and Egle Drejeriene. 2024. "Diagnostic Potential of Cytokine Biomarkers in Endometriosis: Challenges and Insights" Biomedicines 12, no. 12: 2867. https://doi.org/10.3390/biomedicines12122867
APA StyleKrygere, L., Jukna, P., Jariene, K., & Drejeriene, E. (2024). Diagnostic Potential of Cytokine Biomarkers in Endometriosis: Challenges and Insights. Biomedicines, 12(12), 2867. https://doi.org/10.3390/biomedicines12122867