Phosphorylated FAT10 Is More Efficiently Conjugated to Substrates, Does Not Bind to NUB1L, and Does Not Alter Degradation by the Proteasome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Cell Lines
2.2. Plasmid Constructs
2.3. Transient Transfection of Plasmids
2.4. Cycloheximide Chase (CHX) Experiments
2.5. Immunoprecipitation and Immunoblotting
2.6. Radiolabeling and Pulse–Chase Experiments
2.7. Statistical Analysis
3. Results
3.1. Phospho-Mimetic FAT10 Is More Efficiently Conjugated than Wild-Type FAT10
3.2. TRIM25 Contributes to FAT10 Conjugation, Without Changing the Degradation
3.3. The Phospho-Mimetic FAT10 Alleviates the Binding of NUB1L
3.4. The Phospho-Mimetic FAT10 Does Not Change the Binding of RPN10
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, W.; Cai, W.; Parimoo, S.; Schwarz, D.C.; Lennon, G.G.; Weissman, S.M. Identification of seven new human MHC class I region genes around the HLA-F locus. Immunogenetics 1996, 44, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Theng, S.S.; Wang, W.; Mah, W.C.; Chan, C.; Zhuo, J.; Gao, Y.; Qin, H.; Lim, L.; Chong, S.S.; Song, J.; et al. Disruption of FAT10-MAD2 binding inhibits tumor progression. Proc. Natl. Acad. Sci. USA 2014, 111, E5282–E5291. [Google Scholar] [CrossRef]
- Aichem, A.; Boehm, A.N.; Catone, N.; Schmidtke, G.; Groettrup, M. Analysis of modification and proteolytic targeting by the ubiquitin-like modifier FAT10. Methods Enzymol. 2019, 618, 229–256. [Google Scholar]
- Bates, E.E.; Ravel, O.; Dieu, M.C.; Ho, S.; Guret, C.; Bridon, J.M.; Ait-Yahia, S.; Briere, F.; Caux, C.; Banchereau, J.; et al. Identification and analysis of a novel member of the ubiquitin family expressed in dendritic cells and mature B cells. Eur. J. Immunol. 1997, 27, 2471–2477. [Google Scholar] [CrossRef] [PubMed]
- Hipp, M.S.; Raasi, S.; Groettrup, M.; Schmidtke, G. FAT10, a ubiquitin-independent signal for proteasomal degradation. Mol. Cell. Biol. 2005, 25, 3483–3491. [Google Scholar] [CrossRef] [PubMed]
- Buchsbaum, S.; Bercovich, B.; Ciechanover, A. FAT10 is a proteasomal degradation signal that is itself regulated by ubiquitination. Mol. Biol. Cell 2012, 23, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jiang, J.; Zhang, X.; Ke, X.; Qu, Y. Ubiquitin-like modification dependent proteasomal degradation and disease therapy. Trends Mol. Med. 2024, 30, 1061–1075. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Sun, Q.; Chen, Z.J. E1-L2 activates both ubiquitin and FAT10. Mol. Cell 2007, 27, 1014–1023. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, B. UBA6 and Its Bispecific Pathways for Ubiquitin and FAT10. Int. J. Mol. Sci. 2019, 20, 2250. [Google Scholar] [CrossRef]
- Truongvan, N.; Li, S.; Misra, M.; Kuhn, M.; Schindelin, H. Structures of UBA6 explain its dual specificity for ubiquitin and FAT10. Nat. Commun. 2022, 13, 4789. [Google Scholar] [CrossRef]
- Aichem, A.; Pelzer, C.; Lukasiak, S.; Kalveram, B.; Sheppard, P.W.; Rani, N.; Schmidtke, G.; Groettrup, M. USE1 is a bispecific conjugating enzyme for ubiquitin and FAT10, which FAT10ylates itself in cis. Nat. Commun. 2010, 1, 13. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Liu, Y.; Gu, X.; Zhu, T.; Yang, S.; Sun, W. LMO2 blocks the UBA6-USE1 interaction and downstream FAT10ylation by targeting the ubiquitin fold domain of UBA6. Biochem. Biophys. Res. Commun. 2016, 478, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Roverato, N.D.; Sailer, C.; Catone, N.; Aichem, A.; Stengel, F.; Groettrup, M. Parkin is an E3 ligase for the ubiquitin-like modifier FAT10, which inhibits Parkin activation and mitophagy. Cell Rep. 2021, 34, 108857. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Feng, S.T.; Wang, Z.Z.; Yuan, Y.H.; Chen, N.H.; Zhang, Y. Parkin, an E3 Ubiquitin Ligase, Plays an Essential Role in Mitochondrial Quality Control in Parkinson’s Disease. Cell. Mol. Neurobiol. 2021, 41, 1395–1411. [Google Scholar] [CrossRef]
- Caulfield, T.R.; Fiesel, F.C.; Springer, W. Activation of the E3 ubiquitin ligase Parkin. Biochem. Soc. Trans. 2015, 43, 269–274. [Google Scholar] [CrossRef]
- Mueller, S.; Bialas, J.; Ryu, S.; Catone, N.; Aichem, A. The ubiquitin-like modifier FAT10 covalently modifies HUWE1 and strengthens the interaction of AMBRA1 and HUWE1. PLoS ONE 2023, 18, e0290002. [Google Scholar] [CrossRef]
- Negi, H.; Ravichandran, A.; Dasgupta, P.; Reddy, S.; Das, R. Plasticity of the proteasome-targeting signal Fat10 enhances substrate degradation. Elife 2024, 13, e91122. [Google Scholar] [CrossRef]
- Dominguez-Brauer, C.; Khatun, R.; Elia, A.J.; Thu, K.L.; Ramachandran, P.; Baniasadi, S.P.; Hao, Z.; Jones, L.D.; Haight, J.; Sheng, Y.; et al. E3 ubiquitin ligase Mule targets beta-catenin under conditions of hyperactive Wnt signaling. Proc. Natl. Acad. Sci. USA 2017, 114, E1148–E1157. [Google Scholar] [CrossRef]
- Yuan, R.; Wang, K.; Hu, J.; Yan, C.; Li, M.; Yu, X.; Liu, X.; Lei, J.; Guo, W.; Wu, L.; et al. Ubiquitin-like protein FAT10 promotes the invasion and metastasis of hepatocellular carcinoma by modifying beta-catenin degradation. Cancer Res. 2014, 74, 5287–5300. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, W.; Yun, Z.; Zhang, X.; Gong, F.; Wang, Y.; Ji, S.; Leng, L. Ubiquitin-like protein FAT10 regulates DNA damage repair via modification of proliferating cell nuclear antigen. Mol. Med. Rep. 2018, 17, 7487–7496. [Google Scholar] [CrossRef]
- Gao, Y.; Theng, S.S.; Zhuo, J.; Teo, W.B.; Ren, J.; Lee, C.G. FAT10, an ubiquitin-like protein, confers malignant properties in non-tumorigenic and tumorigenic cells. Carcinogenesis 2014, 35, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; Jin, X.; Jiao, C.H.; Xu, Q.W.; Wang, Z.W.; Chen, Y.L. FAT10 level in human gastric cancer and its relation with mutant p53 level, lymph node metastasis and TNM staging. World J. Gastroenterol. 2009, 15, 2228–2233. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhang, Z.; Cui, Y.; Yuan, H.; Wang, F. Silencing FAT10 inhibits metastasis of osteosarcoma. Int. J. Oncol. 2016, 49, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Zhu, L.; Meng, Q.W.; Wang, L.; Chen, X.S.; Zhao, Y.B.; Xing, Y.; Wang, X.Y.; Cai, L. FAT10 is associated with the malignancy and drug resistance of non-small-cell lung cancer. Onco Targets Ther. 2016, 9, 4397–4409. [Google Scholar]
- Xiang, S.; Shao, X.; Cao, J.; Yang, B.; He, Q.; Ying, M. FAT10: Function and Relationship with Cancer. Curr. Mol. Pharmacol. 2020, 13, 182–191. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, L.; Zhang, Z.; Cao, J.; He, L.; Li, L. Ubiquitin-like protein FAT10: A potential cardioprotective factor and novel therapeutic target in cancer. Clin. Chim. Acta 2020, 510, 802–811. [Google Scholar] [CrossRef]
- Zou, Y.; Du, Y.; Cheng, C.; Deng, X.; Shi, Z.; Lu, X.; Hu, H.; Qiu, J.; Jiang, W. FAT10 promotes the progression of bladder cancer by upregulating HK2 through the EGFR/AKT pathway. Exp. Cell Res. 2021, 398, 112401. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H. FAT10 is a Prognostic Biomarker and Correlated with Immune Infiltrates in Skin Cutaneous Melanoma. Front. Mol. Biosci. 2022, 9, 805887. [Google Scholar] [CrossRef]
- Zhu, J.; Zhao, J.; Luo, C.; Zhu, Z.; Peng, X.; Zhu, X.; Lin, K.; Bu, F.; Zhang, W.; Li, Q.; et al. FAT10 promotes chemotherapeutic resistance in pancreatic cancer by inducing epithelial-mesenchymal transition via stabilization of FOXM1 expression. Cell Death Dis. 2022, 13, 497. [Google Scholar] [CrossRef]
- Cheng, F.; Yuan, L.; Wu, Z.; Li, X.; Xia, W.; Huang, Z.; Li, Z.; Mao, S.; Shen, W. Ubiquitin-Like Protein FAT10 Promote Colorectal Cancer Progression by Affecting the Ubiquitination of Capn4. Dig. Dis. Sci. 2023, 68, 3312–3323. [Google Scholar] [CrossRef]
- Chen, X.; Wu, W.; Jeong, J.H.; Rokavec, M.; Wei, R.; Feng, S.; Schroth, W.; Brauch, H.; Zhong, S.; Luo, J.L. Cytokines-activated nuclear IKKalpha-FAT10 pathway induces breast cancer tamoxifen-resistance. Sci. China Life Sci. 2024, 67, 1413–1426. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Tan, W.; Zhang, Z.; Chen, Q.; Xie, Z.; Yang, L.; Tang, C.; Zhuang, H.; Wang, B.; Jiang, J.; et al. FAT10 induces immune suppression by upregulating PD-L1 expression in hepatocellular carcinoma. Apoptosis 2024, 29, 1529–1545. [Google Scholar] [CrossRef] [PubMed]
- Canaan, A.; Yu, X.; Booth, C.J.; Lian, J.; Lazar, I.; Gamfi, S.L.; Castille, K.; Kohya, N.; Nakayama, Y.; Liu, Y.C.; et al. FAT10/diubiquitin-like protein-deficient mice exhibit minimal phenotypic differences. Mol. Cell. Biol. 2006, 26, 5180–5189. [Google Scholar] [CrossRef] [PubMed]
- Mah, M.M.; Roverato, N.; Groettrup, M. Regulation of Interferon Induction by the Ubiquitin-Like Modifier FAT10. Biomolecules 2020, 10, 951. [Google Scholar] [CrossRef]
- Nakamura, N. Ubiquitin System. Int. J. Mol. Sci. 2018, 19, 1080. [Google Scholar] [CrossRef]
- Akutsu, M.; Dikic, I.; Bremm, A. Ubiquitin chain diversity at a glance. J. Cell Sci. 2016, 129, 875–880. [Google Scholar] [CrossRef]
- Thoresen, D.; Wang, W.; Galls, D.; Guo, R.; Xu, L.; Pyle, A.M. The molecular mechanism of RIG-I activation and signaling. Immunol. Rev. 2021, 304, 154–168. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Now, H.; Kim, W.J.; Kim, N.; Yoo, J.Y. Ubiquitin-like modifier FAT10 attenuates RIG-I mediated antiviral signaling by segregating activated RIG-I from its signaling platform. Sci. Rep. 2016, 6, 23377. [Google Scholar] [CrossRef]
- Saxena, K.; Roverato, N.D.; Reithmann, M.; Mah, M.M.; Schregle, R.; Schmidtke, G.; Silbern, I.; Urlaub, H.; Aichem, A. FAT10 is phosphorylated by IKKbeta to inhibit the antiviral type-I interferon response. Life Sci. Alliance 2024, 7, e202101282. [Google Scholar] [CrossRef]
- Brockmann, F.; Catone, N.; Wunsch, C.; Offensperger, F.; Scheffner, M.; Schmidtke, G.; Aichem, A. FAT10 and NUB1L cooperate to activate the 26S proteasome. Life Sci. Alliance 2023, 6, e202201463. [Google Scholar] [CrossRef]
- Wehmer, M.; Rudack, T.; Beck, F.; Aufderheide, A.; Pfeifer, G.; Plitzko, J.M.; Forster, F.; Schulten, K.; Baumeister, W.; Sakata, E. Structural insights into the functional cycle of the ATPase module of the 26S proteasome. Proc. Natl. Acad. Sci. USA 2017, 114, 1305–1310. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Kawashima, H.; Yeh, E.T.; Kamitani, T. Regulation of the NEDD8 conjugation system by a splicing variant, NUB1L. J. Biol. Chem. 2003, 278, 32905–32913. [Google Scholar] [CrossRef] [PubMed]
- Vodicka, P.; Chase, K.; Iuliano, M.; Valentine, D.T.; Sapp, E.; Lu, B.; Kegel-Gleason, K.B.; Sena-Esteves, M.; Aronin, N.; DiFiglia, M. Effects of Exogenous NUB1 Expression in the Striatum of HDQ175/Q7 Mice. J. Huntingt. Dis. 2016, 5, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Schmidtke, G.; Aichem, A.; Groettrup, M. FAT10ylation as a signal for proteasomal degradation. Biochim. Biophys. Acta 2014, 1843, 97–102. [Google Scholar] [CrossRef]
- Schmidtke, G.; Kalveram, B.; Weber, E.; Bochtler, P.; Lukasiak, S.; Hipp, M.S.; Groettrup, M. The UBA domains of NUB1L are required for binding but not for accelerated degradation of the ubiquitin-like modifier FAT10. J. Biol. Chem. 2006, 281, 20045–20054. [Google Scholar] [CrossRef]
- Arkinson, C.; Dong, K.C.; Gee, C.L.; Costello, S.M.; Marqusee, S.; Martin, A. Nub1 traps unfolded FAT10 for ubiquitin-independent degradation by the 26S proteasome. bioRxiv 2024. [Google Scholar] [CrossRef]
- Verma, R.; Oania, R.; Graumann, J.; Deshaies, R.J. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 2004, 118, 99–110. [Google Scholar] [CrossRef]
- Tanji, K.; Tanaka, T.; Kamitani, T. Interaction of NUB1 with the proteasome subunit S5a. Biochem. Biophys. Res. Commun. 2005, 337, 116–120. [Google Scholar] [CrossRef]
- Deveraux, Q.; Ustrell, V.; Pickart, C.; Rechsteiner, M. A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 1994, 269, 7059–7061. [Google Scholar] [CrossRef]
- Kawahara, H. Structures and functions of the 26S proteasome Rpn10 family. Yakugaku Zasshi 2002, 122, 615–624. [Google Scholar] [CrossRef]
- Saeki, Y.; Saitoh, A.; Toh-e, A.; Yokosawa, H. Ubiquitin-like proteins and Rpn10 play cooperative roles in ubiquitin-dependent proteolysis. Biochem. Biophys. Res. Commun. 2002, 293, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Rani, N.; Aichem, A.; Schmidtke, G.; Kreft, S.G.; Groettrup, M. FAT10 and NUB1L bind to the VWA domain of Rpn10 and Rpn1 to enable proteasome-mediated proteolysis. Nat. Commun. 2012, 3, 749. [Google Scholar] [CrossRef] [PubMed]
- Shockett, P.; Difilippantonio, M.; Hellman, N.; Schatz, D.G. A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc. Natl. Acad. Sci. USA 1995, 92, 6522–6526. [Google Scholar] [CrossRef] [PubMed]
- Hipp, M.S.; Kalveram, B.; Raasi, S.; Groettrup, M.; Schmidtke, G. NEDD8 ultimate buster-1L interacts with the ubiquitin-like protein FAT10 and accelerates its degradation. J. Biol. Chem. 2004, 279, 16503–16510. [Google Scholar] [CrossRef]
- Koyano, F.; Okatsu, K.; Kosako, H.; Tamura, Y.; Go, E.; Kimura, M.; Kimura, Y.; Tsuchiya, H.; Yoshihara, H.; Hirokawa, T.; et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 2014, 510, 162–166. [Google Scholar] [CrossRef]
- Stuber, K.; Schneider, T.; Werner, J.; Kovermann, M.; Marx, A.; Scheffner, M. Structural and functional consequences of NEDD8 phosphorylation. Nat. Commun. 2021, 12, 5939. [Google Scholar] [CrossRef]
- Kane, L.A.; Lazarou, M.; Fogel, A.I.; Li, Y.; Yamano, K.; Sarraf, S.A.; Banerjee, S.; Youle, R.J. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 2014, 205, 143–153. [Google Scholar] [CrossRef]
- Matic, I.; Macek, B.; Hilger, M.; Walther, T.C.; Mann, M. Phosphorylation of SUMO-1 occurs in vivo and is conserved through evolution. J. Proteome Res. 2008, 7, 4050–4057. [Google Scholar] [CrossRef]
- Lowe, E.D.; Hasan, N.; Trempe, J.F.; Fonso, L.; Noble, M.E.; Endicott, J.A.; Johnson, L.N.; Brown, N.R. Structures of the Dsk2 UBL and UBA domains and their complex. Acta Crystallogr. D Biol. Crystallogr. 2006, 62, 177–188. [Google Scholar] [CrossRef]
- Liang, R.Y.; Chen, L.; Ko, B.T.; Shen, Y.H.; Li, Y.T.; Chen, B.R.; Lin, K.T.; Madura, K.; Chuang, S.M. Rad23 interaction with the proteasome is regulated by phosphorylation of its ubiquitin-like (UbL) domain. J. Mol. Biol. 2014, 426, 4049–4060. [Google Scholar] [CrossRef]
- Raasi, S.; Schmidtke, G.; Groettrup, M. The ubiquitin-like protein FAT10 forms covalent conjugates and induces apoptosis. J. Biol. Chem. 2001, 276, 35334–35343. [Google Scholar] [CrossRef] [PubMed]
- Um, H.; Jeong, H.; Lee, B.; Kim, Y.; Lee, J.; Roh, J.S.; Lee, S.G.; Park, H.R.; Robinson, W.H.; Sohn, D.H. FAT10 Induces cancer cell migration by stabilizing phosphorylated ABI3/NESH. Anim. Cells Syst. 2023, 27, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Jiang, W.; Lei, J.; Chen, L.; Liu, X.; Ge, J.; Che, B.; Xi, X.; Shao, J. Ubiquitin-like protein FAT10 promotes bladder cancer progression by stabilizing survivin. Oncotarget 2016, 7, 81463–81473. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Aichem, A.; Basler, M.; Alvarez Salinas, G.O.; Schmidtke, G. Phosphorylated FAT10 Is More Efficiently Conjugated to Substrates, Does Not Bind to NUB1L, and Does Not Alter Degradation by the Proteasome. Biomedicines 2024, 12, 2795. https://doi.org/10.3390/biomedicines12122795
Cao J, Aichem A, Basler M, Alvarez Salinas GO, Schmidtke G. Phosphorylated FAT10 Is More Efficiently Conjugated to Substrates, Does Not Bind to NUB1L, and Does Not Alter Degradation by the Proteasome. Biomedicines. 2024; 12(12):2795. https://doi.org/10.3390/biomedicines12122795
Chicago/Turabian StyleCao, Jinjing, Annette Aichem, Michael Basler, Gerardo Omar Alvarez Salinas, and Gunter Schmidtke. 2024. "Phosphorylated FAT10 Is More Efficiently Conjugated to Substrates, Does Not Bind to NUB1L, and Does Not Alter Degradation by the Proteasome" Biomedicines 12, no. 12: 2795. https://doi.org/10.3390/biomedicines12122795
APA StyleCao, J., Aichem, A., Basler, M., Alvarez Salinas, G. O., & Schmidtke, G. (2024). Phosphorylated FAT10 Is More Efficiently Conjugated to Substrates, Does Not Bind to NUB1L, and Does Not Alter Degradation by the Proteasome. Biomedicines, 12(12), 2795. https://doi.org/10.3390/biomedicines12122795