Gut Microbial Dysbiosis and Implications in Solid Organ Transplantation
Abstract
:1. Introduction
2. The Gut and the Immune System
3. Immunosuppressive Therapy and the Intestinal Microbiome
3.1. Corticosteroids
3.2. Tacrolimus
3.3. Mycophenolate Mofetil
4. The Gut Microbiome and Outcomes After Kidney Transplantation
4.1. Gut Dysbiosis in Patients with End Stage Renal Disease
4.2. Gut Dysbiosis After Transplantation and Renal Allograft Rejection
4.3. Gut Dysbiosis and Post-Transplant Mortality in Renal Allograft Recipients
5. The Gut Microbiome and Outcomes After Liver Transplantation
5.1. Gut Dysbiosis in Patients with End Stage Liver Disease
5.2. Gut Dysbiosis After Transplantation and Liver Allograft Rejection
5.3. Gut Dysbiosis and Post-Transplant Mortality in Liver Allograft Recipients
6. The Gut Microbiome and Outcomes After Lung Transplantation
6.1. Gut Dysbiosis in Patients with End Stage Lung Disease
6.2. Gut Dysbiosis After Transplantation and Lung Allograft Rejection
7. The Gut Microbiome and Outcomes After Heart Transplantation
7.1. Gut Dysbiosis in Patients with Advanced Heart Failure
7.2. Gut Dysbiosis After Transplantation and Cardiac Allograft Rejection
8. Limitations
9. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Aziz, T.; Hussain, N.; Hameed, Z.; Lin, L. Elucidating the role of diet in maintaining gut health to reduce the risk of obesity, cardiovascular and other age-related inflammatory diseases: Recent challenges and future recommendations. Gut Microbes 2024, 16, 2297864. [Google Scholar] [CrossRef]
- Motta, J.-P.; Wallace, J.L.; Buret, A.G.; Deraison, C.; Vergnolle, N. Gastrointestinal biofilms in health and disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 314–334. [Google Scholar] [CrossRef] [PubMed]
- de Vos, W.M.; de Vos, E.A.J. Role of the intestinal microbiome in health and disease: From correlation to causation. Nutr. Rev. 2012, 70 (Suppl. 1), S45–S56. [Google Scholar] [CrossRef]
- Aziz, T.; Naveed, M.; Makhdoom, S.I.; Ali, U.; Mughal, M.S.; Sarwar, A.; Khan, A.A.; Zhennai, Y.; Sameeh, M.Y.; Dablool, A.S.; et al. Genome Investigation and Functional Annotation of Lactiplantibacillus plantarum YW11 Revealing Streptin and Ruminococcin-A as Potent Nutritive Bacteriocins against Gut Symbiotic Pathogens. Molecules 2023, 28, 491. [Google Scholar] [CrossRef]
- Motta, J.-P.; Allain, T.; Green-Harrison, L.E.; Groves, R.A.; Feener, T.; Ramay, H.; Beck, P.L.; Lewis, I.A.; Wallace, J.L.; Buret, A.G. Iron Sequestration in Microbiota Biofilms As A Novel Strategy for Treating Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2018, 24, 1493–1502. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Din, A.U.; Khan, T.M.; Rehman, M.U.; Hassan, A.; Aziz, T.; Alharbi, M.; Wu, J. Lacticaseibacillusparacasei BNCC345679 revolutionizes DSS-induced colitis and modulates gut microbiota. Front. Microbiol. 2024, 15, 1343891. [Google Scholar] [CrossRef] [PubMed]
- Rajapakse, J.; Khatiwada, S.; Akon, A.C.; Yu, K.L.; Shen, S.; Zekry, A. Unveiling the complex relationship between gut microbiota and liver cancer: Opportunities for novel therapeutic interventions. Gut Microbes 2023, 15, 2240031. [Google Scholar] [CrossRef]
- Derosa, L.; Routy, B.; Fidelle, M.; Iebba, V.; Alla, L.; Pasolli, E.; Segata, N.; Desnoyer, A.; Pietrantonio, F.; Ferrere, G.; et al. Gut Bacteria Composition Drives Primary Resistance to Cancer Immunotherapy in Renal Cell Carcinoma Patients. Eur. Urol. 2020, 78, 195–206. [Google Scholar] [CrossRef]
- Oh, B.; Boyle, F.; Pavlakis, N.; Clarke, S.; Eade, T.; Hruby, G.; Lamoury, G.; Carroll, S.; Morgia, M.; Kneebone, A.; et al. The Gut Microbiome and Cancer Immunotherapy: Can We Use the Gut Microbiome as a Predictive Biomarker for Clinical Response in Cancer Immunotherapy? Cancers 2021, 13, 4824. [Google Scholar] [CrossRef]
- Lauka, L.; Reitano, E.; Carra, M.C.; Gaiani, F.; Gavriilidis, P.; Brunetti, F.; de’Angelis, G.L.; Sobhani, I.; de’Angelis, N. Role of the intestinal microbiome in colorectal cancer surgery outcomes. World J. Surg. Oncol. 2019, 17, 204. [Google Scholar] [CrossRef]
- Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef] [PubMed]
- Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature 2011, 474, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Ying, T.; Shi, B.; Kelly, P.J.; Pilmore, H.; Clayton, P.A.; Chadban, S.J. Death after Kidney Transplantation: An Analysis by Era and Time Post-Transplant. J. Am. Soc. Nephrol. 2020, 31, 2887–2899. [Google Scholar] [CrossRef] [PubMed]
- Foroutan, F.; Guyatt, G.; Friesen, E.; Lozano, L.E.C.; Sidhu, A.; Meade, M. Predictors of 1-year mortality in adult lung transplant recipients: A systematic review and meta-analysis. Syst. Rev. 2019, 8, 131. [Google Scholar] [CrossRef]
- Ley, R.E.; Peterson, D.A.; Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006, 124, 837–848. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Human gut microbiota/microbiome in health and diseases: A review. Antonie van Leeuwenhoek 2020, 113, 2019–2040. [Google Scholar] [CrossRef]
- Annavajhala, M.K.; Gomez-Simmonds, A.; Macesic, N.; Sullivan, S.B.; Kress, A.; Khan, S.D.; Giddins, M.J.; Stump, S.; Kim, G.I.; Narain, R.; et al. Colonizing multidrug-resistant bacteria and the longitudinal evolution of the intestinal microbiome after liver transplantation. Nat. Commun. 2019, 10, 4715. [Google Scholar] [CrossRef]
- Swarte, J.C.; Douwes, R.M.; Hu, S.; Vich Vila, A.; Eisenga, M.F.; van Londen, M.; Gomes-Neto, A.W.; Weersma, R.K.; Harmsen, H.J.M.; Bakker, S.J.L. Characteristics and Dysbiosis of the Gut Microbiome in Renal Transplant Recipients. J. Clin. Med. 2020, 9, 386. [Google Scholar] [CrossRef]
- Hou, Z.; Zhang, T.; Ding, Z.; Qian, T.; Wang, P.; Wu, B.; Pan, X.; Li, X. Analysis on the change of gut microbiota and metabolome in lung transplant patients. Microbiol. Spectr. 2024, 12, e0314223. [Google Scholar] [CrossRef]
- Baghai Arassi, M.; Zeller, G.; Karcher, N.; Zimmermann, M.; Toenshoff, B. The gut microbiome in solid organ transplantation. Pediatr. Transplant. 2020, 24, e13866. [Google Scholar] [CrossRef]
- Lei, Y.M.; Chen, L.; Wang, Y.; Stefka, A.T.; Molinero, L.L.; Theriault, B.; Aquino-Michaels, K.; Sivan, A.S.; Nagler, C.R.; Gajewski, T.F.; et al. The composition of the microbiota modulates allograft rejection. J. Clin. Investig. 2016, 126, 2736–2744. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, C.M.; Chen, L.; Shaiber, A.; Eren, A.M.; Alegre, M.-L. Gut microbes contribute to variation in solid organ transplant outcomes in mice. Microbiome 2018, 6, 96. [Google Scholar] [CrossRef] [PubMed]
- Swarte, J.C.; Li, Y.; Hu, S.; Björk, J.R.; Gacesa, R.; Vich Vila, A.; Douwes, R.M.; Collij, V.; Kurilshikov, A.; Post, A.; et al. Gut microbiome dysbiosis is associated with increased mortality after solid organ transplantation. Sci. Transl. Med. 2022, 14, eabn7566. [Google Scholar] [CrossRef] [PubMed]
- Swarte, J.C.; Zhang, S.; Nieuwenhuis, L.M.; Gacesa, R.; Knobbe, T.J.; TransplantLines Investigators; De Meijer, V.E.; Damman, K.; Verschuuren, E.A.M.; Gan, T.C.; et al. Multiple indicators of gut dysbiosis predict all-cause and cause-specific mortality in solid organ transplant recipients. Gut 2024, 73, 1650–1661. [Google Scholar] [CrossRef]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef]
- Flint, H.J.; Scott, K.P.; Duncan, S.H.; Louis, P.; Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012, 3, 289–306. [Google Scholar] [CrossRef]
- Macfarlane, G.T.; Macfarlane, S. Human colonic microbiota: Ecology, physiology and metabolic potential of intestinal bacteria. Scand. J. Gastroenterol. Suppl. 1997, 222, 3–9. [Google Scholar] [CrossRef]
- Vinolo, M.A.R.; Rodrigues, H.G.; Nachbar, R.T.; Curi, R. Regulation of inflammation by short chain fatty acids. Nutrients 2011, 3, 858–876. [Google Scholar] [CrossRef]
- Cummings, J.H.; Pomare, E.W.; Branch, W.J.; Naylor, C.P.; Macfarlane, G.T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987, 28, 1221–1227. [Google Scholar] [CrossRef]
- Maslowski, K.M.; Vieira, A.T.; Ng, A.; Kranich, J.; Sierro, F.; Yu, D.; Schilter, H.C.; Rolph, M.S.; Mackay, F.; Artis, D.; et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009, 461, 1282–1286. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, H.; Zhu, H.; Zhao, T.; Tu, J.; Yin, X.; Yang, S.; Zhang, W.; Zhang, F.; Zhang, M.; et al. Gut microbiota promotes macrophage M1 polarization in hepatic sinusoidal obstruction syndrome via regulating intestinal barrier function mediated by butyrate. Gut Microbes 2024, 16, 2377567. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, A.M.; Shanahan, F. The gut flora as a forgotten organ. EMBO Rep. 2006, 7, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Atarashi, K.; Tanoue, T.; Shima, T.; Imaoka, A.; Kuwahara, T.; Momose, Y.; Cheng, G.; Yamasaki, S.; Saito, T.; Ohba, Y.; et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011, 331, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly-Y, M.; Glickman, J.N.; Garrett, W.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013, 341, 569–573. [Google Scholar] [CrossRef]
- Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; Deroos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504, 451–455. [Google Scholar] [CrossRef]
- Wu, H.; Singer, J.; Kwan, T.K.; Loh, Y.W.; Wang, C.; Tan, J.; Li, Y.J.; Lai, S.W.C.; Macia, L.; Alexander, S.I.; et al. Gut Microbial Metabolites Induce Donor-Specific Tolerance of Kidney Allografts through Induction of T Regulatory Cells by Short-Chain Fatty Acids. J. Am. Soc. Nephrol. 2020, 31, 1445–1461. [Google Scholar] [CrossRef]
- Honda, K.; Littman, D.R. The microbiota in adaptive immune homeostasis and disease. Nature 2016, 535, 75–84. [Google Scholar] [CrossRef]
- Peterson, C.T.; Sharma, V.; Elmén, L.; Peterson, S.N. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin. Exp. Immunol. 2015, 179, 363–377. [Google Scholar] [CrossRef]
- Levy, M.; Kolodziejczyk, A.A.; Thaiss, C.A.; Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 2017, 17, 219–232. [Google Scholar] [CrossRef]
- Wang, B.; Yao, M.; Lv, L.; Ling, Z.; Li, L. The Human Microbiota in Health and Disease. Engineering 2017, 3, 71–82. [Google Scholar] [CrossRef]
- Ng, Q.X.; Yau, C.E.; Yaow, C.Y.L.; Chong, R.I.H.; Chong, N.Z.-Y.; Teoh, S.E.; Lim, Y.L.; Soh, A.Y.S.; Ng, W.K.; Thumboo, J. What Has Longitudinal “Omics” Studies Taught Us about Irritable Bowel Syndrome? A Systematic Review. Metabolites 2023, 13, 484. [Google Scholar] [CrossRef] [PubMed]
- Gabarre, P.; Loens, C.; Tamzali, Y.; Barrou, B.; Jaisser, F.; Tourret, J. Immunosuppressive therapy after solid organ transplantation and the gut microbiota: Bidirectional interactions with clinical consequences. Am. J. Transplant. 2022, 22, 1014–1030. [Google Scholar] [CrossRef] [PubMed]
- Gillis, C.C.; Hughes, E.R.; Spiga, L.; Winter, M.G.; Zhu, W.; Furtado de Carvalho, T.; Chanin, R.B.; Behrendt, C.L.; Hooper, L.V.; Santos, R.L.; et al. Dysbiosis-Associated Change in Host Metabolism Generates Lactate to Support Salmonella Growth. Cell Host Microbe 2018, 23, 570. [Google Scholar] [CrossRef] [PubMed]
- Lentine, K.L.; Cheungpasitporn, W.; Xiao, H.; McAdams-DeMarco, M.; Lam, N.N.; Segev, D.L.; Bae, S.; Ahn, J.B.; Hess, G.P.; Caliskan, Y.; et al. Immunosuppression Regimen Use and Outcomes in Older and Younger Adult Kidney Transplant Recipients: A National Registry Analysis. Transplantation 2021, 105, 1840–1849. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, H.; Chang, M.; Yang, Y.; Lin, J. Gut Microbiota Dysbiosis in BK Polyomavirus-Infected Renal Transplant Recipients: A Case-Control Study. Front. Cell. Infect. Microbiol. 2022, 12, 860201. [Google Scholar] [CrossRef]
- Kriss, M.; Verna, E.C.; Rosen, H.R.; Lozupone, C.A. Functional Microbiomics in Liver Transplantation: Identifying Novel Targets for Improving Allograft Outcomes. Transplantation 2019, 103, 668–678. [Google Scholar] [CrossRef]
- Fricke, W.F.; Maddox, C.; Song, Y.; Bromberg, J.S. Human microbiota characterization in the course of renal transplantation. Am. J. Transplant. 2014, 14, 416–427. [Google Scholar] [CrossRef]
- Wu, Z.-W.; Ling, Z.-X.; Lu, H.-F.; Zuo, J.; Sheng, J.-F.; Zheng, S.-S.; Li, L.-J. Changes of gut bacteria and immune parameters in liver transplant recipients. Hepatobiliary Pancreat. Dis. Int. 2012, 11, 40–50. [Google Scholar] [CrossRef]
- Zhao, H.; Jiang, X.; Chu, W. Shifts in the gut microbiota of mice in response to dexamethasone administration. Int. Microbiol. 2020, 23, 565–573. [Google Scholar] [CrossRef]
- Li, S.; Han, X.; Liu, N.; Chang, J.; Liu, G.; Hu, S. Lactobacillus plantarum attenuates glucocorticoid-induced osteoporosis by altering the composition of rat gut microbiota and serum metabolic profile. Front. Immunol. 2023, 14, 1285442. [Google Scholar] [CrossRef]
- Tourret, J.; Willing, B.P.; Dion, S.; MacPherson, J.; Denamur, E.; Finlay, B.B. Immunosuppressive Treatment Alters Secretion of Ileal Antimicrobial Peptides and Gut Microbiota, and Favors Subsequent Colonization by Uropathogenic Escherichia coli. Transplantation 2017, 101, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Yang, L.; Jiang, J.; Ni, Y.; Zhu, J.; Zheng, X.; Wang, Q.; Lu, X.; Fu, Z. Chronic glucocorticoid treatment induced circadian clock disorder leads to lipid metabolism and gut microbiota alterations in rats. Life Sci. 2018, 192, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.Y.; Inoue, T.; Leone, V.A.; Dalal, S.; Touw, K.; Wang, Y.; Musch, M.W.; Theriault, B.; Higuchi, K.; Donovan, S.; et al. Using corticosteroids to reshape the gut microbiome: Implications for inflammatory bowel diseases. Inflamm. Bowel Dis. 2015, 21, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.; Zimmermann-Kogadeeva, M.; Wegmann, R.; Goodman, A.L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 2019, 570, 462–467. [Google Scholar] [CrossRef]
- Guo, X.-J.; Yao, M.-D.; Xiao, W.-H.; Wang, Y.; Zhao, G.-R.; Yuan, Y.-J. Compartmentalized Reconstitution of Post-squalene Pathway for 7-Dehydrocholesterol Overproduction in Saccharomyces cerevisiae. Front. Microbiol. 2021, 12, 663973. [Google Scholar] [CrossRef]
- Boivin, M.A.; Ye, D.; Kennedy, J.C.; Al-Sadi, R.; Shepela, C.; Ma, T.Y. Mechanism of glucocorticoid regulation of the intestinal tight junction barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G590–G598. [Google Scholar] [CrossRef]
- Thomson, A.W.; Bonham, C.A.; Zeevi, A. Mode of action of tacrolimus (FK506): Molecular and cellular mechanisms. Ther. Drug Monit. 1995, 17, 584–591. [Google Scholar] [CrossRef]
- Bhat, M.; Pasini, E.; Copeland, J.; Angeli, M.; Husain, S.; Kumar, D.; Renner, E.; Teterina, A.; Allard, J.; Guttman, D.S.; et al. Impact of Immunosuppression on the Metagenomic Composition of the Intestinal Microbiome: A Systems Biology Approach to Post-Transplant Diabetes. Sci. Rep. 2017, 7, 10277. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, L.; Tang, H.; Jiao, W.; Zeng, S.; Xu, Y.; Zhang, Q.; Sun, Z.; Mukherjee, A.; Zhang, X.; et al. Immunosuppressive effect of the gut microbiome altered by high-dose tacrolimus in mice. Am. J. Transplant. 2018, 18, 1646–1656. [Google Scholar] [CrossRef]
- Toral, M.; Romero, M.; Rodríguez-Nogales, A.; Jiménez, R.; Robles-Vera, I.; Algieri, F.; Chueca-Porcuna, N.; Sánchez, M.; de la Visitación, N.; Olivares, M.; et al. Lactobacillus fermentum Improves Tacrolimus-Induced Hypertension by Restoring Vascular Redox State and Improving eNOS Coupling. Mol. Nutr. Food Res. 2018, 62, e1800033. [Google Scholar] [CrossRef]
- Degraeve, A.L.; Haufroid, V.; Loriot, A.; Gatto, L.; Andries, V.; Vereecke, L.; Elens, L.; Bindels, L.B. Gut microbiome modulates tacrolimus pharmacokinetics through the transcriptional regulation of ABCB1. Microbiome 2023, 11, 138. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.R.; Muthukumar, T.; Dadhania, D.; Taur, Y.; Jenq, R.R.; Toussaint, N.C.; Ling, L.; Pamer, E.; Suthanthiran, M. Gut microbiota and tacrolimus dosing in kidney transplantation. PLoS ONE 2015, 10, e0122399. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Lee, H.; Edusei, E.; Albakry, S.; Jeong, H.; Lee, J.R. Blood Profiles of Gut Bacterial Tacrolimus Metabolite in Kidney Transplant Recipients. Transplant. Direct 2020, 6, e601. [Google Scholar] [CrossRef]
- Jiang, J.-W.; Ren, Z.-G.; Lu, H.-F.; Zhang, H.; Li, A.; Cui, G.-Y.; Jia, J.-J.; Xie, H.-Y.; Chen, X.-H.; He, Y.; et al. Optimal immunosuppressor induces stable gut microbiota after liver transplantation. World J. Gastroenterol. 2018, 24, 3871–3883. [Google Scholar] [CrossRef]
- Lamba, V.; Sangkuhl, K.; Sanghavi, K.; Fish, A.; Altman, R.B.; Klein, T.E. PharmGKB summary: Mycophenolic acid pathway. Pharmacogenet. Genom. 2014, 24, 73–79. [Google Scholar] [CrossRef]
- Behrend, M. Adverse gastrointestinal effects of mycophenolate mofetil: Aetiology, incidence and management. Drug Saf. 2001, 24, 645–663. [Google Scholar] [CrossRef]
- Flannigan, K.L.; Taylor, M.R.; Pereira, S.K.; Rodriguez-Arguello, J.; Moffat, A.W.; Alston, L.; Wang, X.; Poon, K.K.; Beck, P.L.; Rioux, K.P.; et al. An intact microbiota is required for the gastrointestinal toxicity of the immunosuppressant mycophenolate mofetil. J. Heart Lung Transplant. 2018, 37, 1047–1059. [Google Scholar] [CrossRef]
- Taylor, M.R.; Flannigan, K.L.; Rahim, H.; Mohamud, A.; Lewis, I.A.; Hirota, S.A.; Greenway, S.C. Vancomycin relieves mycophenolate mofetil-induced gastrointestinal toxicity by eliminating gut bacterial β-glucuronidase activity. Sci. Adv. 2019, 5, eaax2358. [Google Scholar] [CrossRef]
- Khan, M.H.; Onyeaghala, G.C.; Rashidi, A.; Holtan, S.G.; Khoruts, A.; Israni, A.; Jacobson, P.A.; Staley, C. Fecal β-glucuronidase activity differs between hematopoietic cell and kidney transplantation and a possible mechanism for disparate dose requirements. Gut Microbes 2022, 14, 2108279. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Wong, J.; Pahl, M.; Piceno, Y.M.; Yuan, J.; DeSantis, T.Z.; Ni, Z.; Nguyen, T.-H.; Andersen, G.L. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013, 83, 308–315. [Google Scholar] [CrossRef]
- Wang, X.; Yang, S.; Li, S.; Zhao, L.; Hao, Y.; Qin, J.; Zhang, L.; Zhang, C.; Bian, W.; Zuo, L.; et al. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut 2020, 69, 2131–2142. [Google Scholar] [CrossRef] [PubMed]
- Sampaio-Maia, B.; Simões-Silva, L.; Pestana, M.; Araujo, R.; Soares-Silva, I.J. The Role of the Gut Microbiome on Chronic Kidney Disease. Adv. Appl. Microbiol. 2016, 96, 65–94. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Fan, Y.; Li, A.; Shen, Q.; Wu, J.; Ren, L.; Lu, H.; Ding, S.; Ren, H.; Liu, C.; et al. Alterations of the Human Gut Microbiome in Chronic Kidney Disease. Adv. Sci. 2020, 7, 2001936. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Kim, H.-E.; Cho, H.; Park, J.I.; Kwak, M.-J.; Kim, B.-Y.; Yang, S.H.; Lee, J.P.; Kim, D.K.; Joo, K.W.; et al. Effect of the similarity of gut microbiota composition between donor and recipient on graft function after living donor kidney transplantation. Sci. Rep. 2020, 10, 18881. [Google Scholar] [CrossRef]
- Cani, P.D. Metabolism in 2013: The gut microbiota manages host metabolism. Nat. Rev. Endocrinol. 2014, 10, 74–76. [Google Scholar] [CrossRef]
- Baldwin, W.M.; Valujskikh, A.; Fairchild, R.L. Mechanisms of antibody-mediated acute and chronic rejection of kidney allografts. Curr. Opin. Organ. Transplant. 2016, 21, 7–14. [Google Scholar] [CrossRef]
- Lee, J.R.; Muthukumar, T.; Dadhania, D.; Toussaint, N.C.; Ling, L.; Pamer, E.; Suthanthiran, M. Gut microbial community structure and complications after kidney transplantation: A pilot study. Transplantation 2014, 98, 697–705. [Google Scholar] [CrossRef]
- Mendes, V.; Galvão, I.; Vieira, A.T. Mechanisms by Which the Gut Microbiota Influences Cytokine Production and Modulates Host Inflammatory Responses. J. Interferon Cytokine Res. 2019, 39, 393–409. [Google Scholar] [CrossRef]
- Sepulveda, M.; Pirozzolo, I.; Alegre, M.-L. Impact of the microbiota on solid organ transplant rejection. Curr. Opin. Organ. Transplant. 2019, 24, 679–686. [Google Scholar] [CrossRef]
- Tabibian, J.H.; Kenderian, S.S. The Microbiome and Immune Regulation After Transplantation. Transplantation 2017, 101, 56–62. [Google Scholar] [CrossRef]
- Round, J.L.; Mazmanian, S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. USA 2010, 107, 12204–12209. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Poradosu, R.; McLoughlin, R.M.; Lee, J.C.; Kasper, D.L. Bacteroides fragilis-stimulated interleukin-10 contains expanding disease. J. Infect. Dis. 2011, 204, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Wood, K.J.; Bushell, A.; Hester, J. Regulatory immune cells in transplantation. Nat. Rev. Immunol. 2012, 12, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, R.; Ji, B.; Zhao, L.; Wang, J.; Yan, T. Integrative metagenomic and metabolomic analyses reveal the role of gut microbiota in antibody-mediated renal allograft rejection. J. Transl. Med. 2022, 20, 614. [Google Scholar] [CrossRef]
- Yu, D.H.; Ying, N.; Lian, Z.H.; Fa, Y.Q. The Alteration human of gut microbiota and metabolites before and after renal transplantation. Microb. Pathog. 2021, 160, 105191. [Google Scholar] [CrossRef]
- Visconti, V.; Wirtz, S.; Schiffer, M.; Müller-Deile, J. Distinct Changes in Gut Microbiota of Patients With Kidney Graft Rejection. Transplant. Direct 2024, 10, e1582. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Wu, X.; Wang, Z.; Zhang, C.; Cao, G.; Liu, S.; Yan, T. Gut microbiota alterations associated with antibody-mediated rejection after kidney transplantation. Appl. Microbiol. Biotechnol. 2021, 105, 2473–2484. [Google Scholar] [CrossRef]
- Yan, P.; Luo, S.; Guo, L.; Wang, X.; Ren, X.; Lv, J.; Chen, Y.; Lin, X.; Chen, J.; Wang, R. Unraveling Intestinal Microbial Shifts in ESRD and Kidney Transplantation: Implications for Disease-Related Dysbiosis. Microorganisms 2023, 11, 2747. [Google Scholar] [CrossRef]
- Ye, G.; Zhou, M.; Yu, L.; Ye, G.; Yao, L.; Shi, L. Gut microbiota in renal transplant recipients, patients with chronic kidney disease and healthy subjects. Nan Fang Yi Ke Da Xue Xue Bao 2018, 38, 1401–1408. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, X.; Chen, F. A cross-sectional study on gut microbiota in patients with chronic kidney disease undergoing kidney transplant or hemodialysis. Am. J. Transl. Res. 2023, 15, 1756–1765. [Google Scholar]
- Zhang, X.; Wang, Y.; Yin, Y.; Sun, B.; Chen, G.; Chen, F. Changes of Gut Microbiota in Maintenance Hemodialysis Patients and Their Impact on Patient’s Microinflammation Status. Cell. Mol. Biol. 2023, 69, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.; Morrison, M.; Hawley, C.M.; Campbell, S.B.; Francis, R.S.; Isbel, N.M.; Pascoe, E.M.; Johnson, D.W. Characteristics of the gastrointestinal microbiota in paired live kidney donors and recipients. Nephrology 2021, 26, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Souai, N.; Zidi, O.; Mosbah, A.; Kosai, I.; Manaa, J.E.; Mokhtar, N.B.; Asimakis, E.; Stathopoulou, P.; Cherif, A.; Tsiamis, G.; et al. Impact of the Post-Transplant Period and Lifestyle Diseases on Human Gut Microbiota in Kidney Graft Recipients. Microorganisms 2020, 8, 1724. [Google Scholar] [CrossRef] [PubMed]
- Leentjens, J.; Kox, M.; van der Hoeven, J.G.; Netea, M.G.; Pickkers, P. Immunotherapy for the adjunctive treatment of sepsis: From immunosuppression to immunostimulation. Time for a paradigm change? Am. J. Respir. Crit. Care Med. 2013, 187, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.K.; Lopez-Collazo, E. Endotoxin tolerance: New mechanisms, molecules and clinical significance. Trends Immunol. 2009, 30, 475–487. [Google Scholar] [CrossRef]
- Carron, C.; Pais de Barros, J.-P.; Gaiffe, E.; Deckert, V.; Adda-Rezig, H.; Roubiou, C.; Laheurte, C.; Masson, D.; Simula-Faivre, D.; Louvat, P.; et al. End-Stage Renal Disease-Associated Gut Bacterial Translocation: Evolution and Impact on Chronic Inflammation and Acute Rejection After Renal Transplantation. Front. Immunol. 2019, 10, 1630. [Google Scholar] [CrossRef]
- Peled, J.U.; Gomes, A.L.C.; Devlin, S.M.; Littmann, E.R.; Taur, Y.; Sung, A.D.; Weber, D.; Hashimoto, D.; Slingerland, A.E.; Slingerland, J.B.; et al. Microbiota as Predictor of Mortality in Allogeneic Hematopoietic-Cell Transplantation. N. Engl. J. Med. 2020, 382, 822–834. [Google Scholar] [CrossRef]
- Salosensaari, A.; Laitinen, V.; Havulinna, A.S.; Meric, G.; Cheng, S.; Perola, M.; Valsta, L.; Alfthan, G.; Inouye, M.; Watrous, J.D.; et al. Taxonomic signatures of cause-specific mortality risk in human gut microbiome. Nat. Commun. 2021, 12, 2671. [Google Scholar] [CrossRef]
- Acharya, C.; Bajaj, J.S. Chronic Liver Diseases and the Microbiome-Translating Our Knowledge of Gut Microbiota to Management of Chronic Liver Disease. Gastroenterology 2021, 160, 556–572. [Google Scholar] [CrossRef]
- Lee, S.; Son, S.-C.; Han, M.-J.; Kim, W.-J.; Kim, S.-H.; Kim, H.-R.; Jeon, W.-K.; Park, K.-H.; Shin, M.-G. Increased intestinal macromolecular permeability and urine nitrite excretion associated with liver cirrhosis with ascites. World J. Gastroenterol. 2008, 14, 3884–3890. [Google Scholar] [CrossRef]
- Cariello, R.; Federico, A.; Sapone, A.; Tuccillo, C.; Scialdone, V.R.; Tiso, A.; Miranda, A.; Portincasa, P.; Carbonara, V.; Palasciano, G.; et al. Intestinal permeability in patients with chronic liver diseases: Its relationship with the aetiology and the entity of liver damage. Dig. Liver Dis. 2010, 42, 200–204. [Google Scholar] [CrossRef]
- Guarner, C.; Soriano, G. Bacterial translocation and its consequences in patients with cirrhosis. Eur. J. Gastroenterol. Hepatol. 2005, 17, 27–31. [Google Scholar] [CrossRef]
- Kato, K.; Nagao, M.; Miyamoto, K.; Oka, K.; Takahashi, M.; Yamamoto, M.; Matsumura, Y.; Kaido, T.; Uemoto, S.; Ichiyama, S. Longitudinal Analysis of the Intestinal Microbiota in Liver Transplantation. Transplant. Direct 2017, 3, e144. [Google Scholar] [CrossRef]
- Assimakopoulos, S.F.; Bhagani, S.; Aggeletopoulou, I.; Tsounis, E.P.; Tsochatzis, E.A. The role of gut barrier dysfunction in postoperative complications in liver transplantation: Pathophysiological and therapeutic considerations. Infection 2024, 52, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Ponziani, F.R.; Valenza, V.; Nure, E.; Bianco, G.; Marrone, G.; Grieco, A.; Pompili, M.; Gasbarrini, A.; Agnes, S.; Sganga, G. Effect of liver transplantation on intestinal permeability and correlation with infection episodes. PLoS ONE 2020, 15, e0235359. [Google Scholar] [CrossRef]
- Albillos, A.; de Gottardi, A.; Rescigno, M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J. Hepatol. 2020, 72, 558–577. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Gao, Y.; Yang, R. Gut microbiota derived bile acid metabolites maintain the homeostasis of gut and systemic immunity. Front. Immunol. 2023, 14, 1127743. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.; Chen, Z.; Zhang, A.; Niu, Z.; Cheng, M.; Huo, C.; Xu, J. The Gut Microbiota in Liver Transplantation Recipients During the Perioperative Period. Front. Physiol. 2022, 13, 854017. [Google Scholar] [CrossRef]
- Hole, M.J.; Jørgensen, K.K.; Holm, K.; Braadland, P.R.; Meyer-Myklestad, M.H.; Medhus, A.W.; Reikvam, D.H.; Götz, A.; Grzyb, K.; Boberg, K.M.; et al. A shared mucosal gut microbiota signature in primary sclerosing cholangitis before and after liver transplantation. Hepatology 2023, 77, 715–728. [Google Scholar] [CrossRef]
- Salimov, U.R.; Olegovich, S.I.; Aliakseevich, K.A.; Nikolaevna, H.T.; Mikhailovich, F.A.; Eugenievich, S.A.; Rummo, O.O. Gut microbiota might influence the risk of rejection after liver transplantation. J. Liver Transplant. 2023, 9, 100140. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Kakiyama, G.; Cox, I.J.; Nittono, H.; Takei, H.; White, M.; Fagan, A.; Gavis, E.A.; Heuman, D.M.; Gilles, H.C.; et al. Alterations in gut microbial function following liver transplant. Liver Transpl. 2018, 24, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Fagan, A.; Sikaroodi, M.; White, M.B.; Sterling, R.K.; Gilles, H.; Heuman, D.; Stravitz, R.T.; Matherly, S.C.; Siddiqui, M.S.; et al. Liver transplant modulates gut microbial dysbiosis and cognitive function in cirrhosis. Liver Transpl. 2017, 23, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Jhun, J.; Lee, S.Y.; Choi, S.; Choi, S.S.; Park, M.S.; Lee, S.-Y.; Cho, K.-H.; Lee, A.R.; Ahn, J.; et al. A decrease in functional microbiomes represented as Faecalibacterium affects immune homeostasis in long-term stable liver transplant patients. Gut Microbes 2022, 14, 2102885. [Google Scholar] [CrossRef]
- Lathrop, S.K.; Bloom, S.M.; Rao, S.M.; Nutsch, K.; Lio, C.-W.; Santacruz, N.; Peterson, D.A.; Stappenbeck, T.S.; Hsieh, C.-S. Peripheral education of the immune system by colonic commensal microbiota. Nature 2011, 478, 250–254. [Google Scholar] [CrossRef]
- Su, L.; Wu, Z.; Chi, Y.; Song, Y.; Xu, J.; Tan, J.; Cong, X.; Liu, Y. Mesenteric lymph node CD4+ T lymphocytes migrate to liver and contribute to non-alcoholic fatty liver disease. Cell Immunol. 2019, 337, 33–41. [Google Scholar] [CrossRef]
- Wong, H.J.; Lim, W.H.; Ng, C.H.; Tan, D.J.H.; Bonney, G.K.; Kow, A.W.C.; Huang, D.Q.; Siddiqui, M.S.; Noureddin, M.; Syn, N.; et al. Predictive and Prognostic Roles of Gut Microbial Variation in Liver Transplant. Front. Med. 2022, 9, 873523. [Google Scholar] [CrossRef]
- Schurich, A.; Berg, M.; Stabenow, D.; Böttcher, J.; Kern, M.; Schild, H.-J.; Kurts, C.; Schuette, V.; Burgdorf, S.; Diehl, L.; et al. Dynamic regulation of CD8 T cell tolerance induction by liver sinusoidal endothelial cells. J. Immunol. 2010, 184, 4107–4114. [Google Scholar] [CrossRef]
- Schirmer, M.; Smeekens, S.P.; Vlamakis, H.; Jaeger, M.; Oosting, M.; Franzosa, E.A.; Ter Horst, R.; Jansen, T.; Jacobs, L.; Bonder, M.J.; et al. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell 2016, 167, 1125–1136.e8. [Google Scholar] [CrossRef]
- Ren, Z.; Jiang, J.; Lu, H.; Chen, X.; He, Y.; Zhang, H.; Xie, H.; Wang, W.; Zheng, S.; Zhou, L. Intestinal microbial variation may predict early acute rejection after liver transplantation in rats. Transplantation 2014, 98, 844–852. [Google Scholar] [CrossRef]
- Alameddine, J.; Godefroy, E.; Papargyris, L.; Sarrabayrouse, G.; Tabiasco, J.; Bridonneau, C.; Yazdanbakhsh, K.; Sokol, H.; Altare, F.; Jotereau, F. Faecalibacterium prausnitzii Skews Human DC to Prime IL10-Producing T Cells Through TLR2/6/JNK Signaling and IL-10, IL-27, CD39, and IDO-1 Induction. Front. Immunol. 2019, 10, 143. [Google Scholar] [CrossRef]
- Bor, B.; Bedree, J.K.; Shi, W.; McLean, J.S.; He, X. Saccharibacteria (TM7) in the Human Oral Microbiome. J. Dent. Res. 2019, 98, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Swarte, J.C.; Gacesa, R.; Knobbe, T.J.; Kremer, D.; Jansen, B.H.; de Borst, M.H.; TransplantLines Investigators; Harmsen, H.J.M.; Erasmus, M.E.; et al. The gut microbiome in end-stage lung disease and lung transplantation. mSystems 2024, 9, e0131223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, S.; Wang, N.; Tan, H.-Y.; Zhang, Z.; Feng, Y. The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases. Front. Microbiol. 2020, 11, 301. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Yan, Z.-Z.; Luo, S.-D.; Hu, J.-J.; Wu, M.; Zhao, J.; Liu, W.-F.; Li, C.; Liu, K.-X. Gut microbiota-derived succinate aggravates acute lung injury after intestinal ischaemia/reperfusion in mice. Eur. Respir. J. 2023, 61, 2200840. [Google Scholar] [CrossRef]
- Katada, Y.; Nakagawa, S.; Itohara, K.; Suzuki, T.; Kato, R.; Endo, H.; Sugimoto, M.; Yonezawa, A.; Nakagawa, T.; Ohsumi, A.; et al. Association between time in therapeutic range of tacrolimus blood concentration and acute rejection within the first three months after lung transplantation. J. Pharm. Health Care Sci. 2022, 8, 25. [Google Scholar] [CrossRef]
- van den Bogaart, L.; Manuel, O. Antibiotic Therapy for Difficult-to-Treat Infections in Lung Transplant Recipients: A Practical Approach. Antibiotics 2022, 11, 612. [Google Scholar] [CrossRef]
- Thabut, G.; Mal, H. Outcomes after lung transplantation. J. Thorac. Dis. 2017, 9, 2684–2691. [Google Scholar] [CrossRef]
- Watzenboeck, M.L.; Gorki, A.-D.; Quattrone, F.; Gawish, R.; Schwarz, S.; Lambers, C.; Jaksch, P.; Lakovits, K.; Zahalka, S.; Rahimi, N.; et al. Multi-omics profiling predicts allograft function after lung transplantation. Eur. Respir. J. 2022, 59, 2003292. [Google Scholar] [CrossRef]
- McGinniss, J.E.; Whiteside, S.A.; Simon-Soro, A.; Diamond, J.M.; Christie, J.D.; Bushman, F.D.; Collman, R.G. The lung microbiome in lung transplantation. J. Heart Lung Transplant. 2021, 40, 733–744. [Google Scholar] [CrossRef]
- Wu, Q.; Turturice, B.; Wagner, S.; Huang, Y.; Gupta, P.K.; Schott, C.; Metwally, A.; Ranjan, R.; Perkins, D.; Alegre, M.-L.; et al. Gut Microbiota Can Impact Chronic Murine Lung Allograft Rejection. Am. J. Respir. Cell Mol. Biol. 2019, 60, 131–134. [Google Scholar] [CrossRef]
- Wu, J.; Li, C.; Gao, P.; Zhang, C.; Zhang, P.; Zhang, L.; Dai, C.; Zhang, K.; Shi, B.; Liu, M.; et al. Intestinal microbiota links to allograft stability after lung transplantation: A prospective cohort study. Signal Transduct. Target. Ther. 2023, 8, 326. [Google Scholar] [CrossRef]
- Cui, X.; Ye, L.; Li, J.; Jin, L.; Wang, W.; Li, S.; Bao, M.; Wu, S.; Li, L.; Geng, B.; et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci. Rep. 2018, 8, 635. [Google Scholar] [CrossRef] [PubMed]
- Yuzefpolskaya, M.; Bohn, B.; Nasiri, M.; Zuver, A.M.; Onat, D.D.; Royzman, E.A.; Nwokocha, J.; Mabasa, M.; Pinsino, A.; Brunjes, D.; et al. Gut microbiota, endotoxemia, inflammation, and oxidative stress in patients with heart failure, left ventricular assist device, and transplant. J. Heart Lung Transplant. 2020, 39, 880–890. [Google Scholar] [CrossRef] [PubMed]
- Spehlmann, M.E.; Rangrez, A.Y.; Dhotre, D.P.; Schmiedel, N.; Chavan, N.; Bang, C.; Müller, O.J.; Shouche, Y.S.; Franke, A.; Frank, D.; et al. Heart Failure Severity Closely Correlates with Intestinal Dysbiosis and Subsequent Metabolomic Alterations. Biomedicines 2022, 10, 809. [Google Scholar] [CrossRef]
- Leonel, A.J.; Alvarez-Leite, J.I. Butyrate: Implications for intestinal function. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Nagatomo, Y.; Tang, W.H.W. Intersections Between Microbiome and Heart Failure: Revisiting the Gut Hypothesis. J. Card. Fail. 2015, 21, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Luedde, M.; Winkler, T.; Heinsen, F.-A.; Rühlemann, M.C.; Spehlmann, M.E.; Bajrovic, A.; Lieb, W.; Franke, A.; Ott, S.J.; Frey, N. Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail. 2017, 4, 282–290. [Google Scholar] [CrossRef]
- Pasini, E.; Aquilani, R.; Testa, C.; Baiardi, P.; Angioletti, S.; Boschi, F.; Verri, M.; Dioguardi, F. Pathogenic Gut Flora in Patients With Chronic Heart Failure. JACC Heart Fail. 2016, 4, 220–227. [Google Scholar] [CrossRef]
- Wang, T.; Ahmed, E.B.; Chen, L.; Xu, J.; Tao, J.; Wang, C.-R.; Alegre, M.-L.; Chong, A.S. Infection with the intracellular bacterium, Listeria monocytogenes, overrides established tolerance in a mouse cardiac allograft model. Am. J. Transplant. 2010, 10, 1524–1533. [Google Scholar] [CrossRef]
- Bromberg, J.S.; Hittle, L.; Xiong, Y.; Saxena, V.; Smyth, E.M.; Li, L.; Zhang, T.; Wagner, C.; Fricke, W.F.; Simon, T.; et al. Gut microbiota-dependent modulation of innate immunity and lymph node remodeling affects cardiac allograft outcomes. JCI Insight 2018, 3, e121045. [Google Scholar] [CrossRef]
- Gavzy, S.J.; Kensiski, A.; Saxena, V.; Lakhan, R.; Hittle, L.; Wu, L.; Iyyathurai, J.; Dhakal, H.; Lee, Z.L.; Li, L.; et al. Early Immunomodulatory Program Triggered by Protolerogenic Bifidobacterium pseudolongum Drives Cardiac Transplant Outcomes. Transplantation 2024, 108, e91–e105. [Google Scholar] [CrossRef] [PubMed]
- Olek, K.; Kuczaj, A.A.; Warwas, S.; Hrapkowicz, T.; Przybyłowski, P.; Tanasiewicz, M. Gut Microbiome in Patients after Heart Transplantation-Current State of Knowledge. Biomedicines 2023, 11, 1588. [Google Scholar] [CrossRef] [PubMed]
- Trøseid, M.; Mayerhofer, C.C.K.; Broch, K.; Arora, S.; Svardal, A.; Hov, J.R.; Andreassen, A.K.; Gude, E.; Karason, K.; Dellgren, G.; et al. The carnitine-butyrobetaine-TMAO pathway after cardiac transplant: Impact on cardiac allograft vasculopathy and acute rejection. J. Heart Lung Transplant. 2019, 38, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Dela Cruz, M.; Lin, H.; Han, J.; Adler, E.; Boissiere, J.; Khalid, M.; Sidebottom, A.; Sundararajan, A.; Lehmann, C.; Moran, A.; et al. Reduced immunomodulatory metabolite concentrations in peri-transplant fecal samples from heart allograft recipients. Front. Transplant. 2023, 2, 1182534. [Google Scholar] [CrossRef]
Manuscript | Author | Association | Comparison | Study Design | Microbes | Statistical Significance |
---|---|---|---|---|---|---|
Human Microbiota Characterization in the Course of Renal Transplantation | Fricke et al. [47] | Rejection | Pretransplant rectal samples compared between patients who experienced later rejection events compared to those without post-transplant adverse events | Prospective cohort | ↓ Anaerotruncus ↓ Coprobacillus ↓ Coprococcus ↓ Peptostreptococcaceae (unknown member) | p < 0.05 * p < 0.05 * p < 0.05 * p < 0.05 * |
Gut Microbial Community Structure and Complications Following Kidney Transplantation: A Pilot Study | Lee et al. [77] | Rejection | Fecal specimens from acute rejection recipients to time-matched control samples from the recipients without acute rejection | Prospective cohort | ↑ Lactobacillales ↓ Bacteroidales ↓ Clostridiales | p = 0.04 p = 0.03 p = 0.01 |
Distinct Changes in Gut Microbiota of Patients with Kidney Graft Rejection | Visconti et al. [86] | Rejection | Fecal specimens between transplant recipients who experienced acute rejection vs not | Cross-sectional case-control | ↑ Bacteroides (acute T-cell mediated rejection) ↑ Eubacterium (acute T-cell mediated rejection) ↓ Alloprevotella (borderline rejection) ↓ Faecalibacterium (chronic T-cell mediated rejection) ↓ Tannerellaceae (chronic T-cell mediated rejection) ↑ Lachnoclostridium (chronic T-cell mediated rejection) ↑ Escherichia shigella (antibody mediated rejection) ↓ Bacteroides (antibody mediated rejection) | p = 0.02 p = 0.03 p = 0.04 p < 0.001 p < 0.001 p = 0.003 p = 0.002 p < 0.001 |
Gut Microbiota Alterations Associated with Antibody-Mediated Rejection After Kidney Transplantation | Wang et al. [87] | Rejection | Fecal specimens between transplant recipients who experienced antibody-mediated rejection vs not | Case-control | ↑ Erysipelotrichi ↑ Lactobacillales ↑ Erysipelotrichales ↑ Erysipelotrichaceae ↑ Bacilli ↓ Clostridia ↓ Clostridiales ↓ Roseburia | p = 0.0068 p = 0.0022 p = 0.0068 p = 0.0068 p = 0.0031 p = 0.0009 p = 0.0009 p = 0.0025 |
Integrative Metagenomic and Metabolic Analyses Reveal the Role of Gut Microbiota in Antibody-Mediated Renal Allograft Rejection | Li et al. [84] | Rejection | Fecal specimens between transplant recipients who experienced antibody-mediated rejection vs not | Case-control | ↑ Klebsiella phage KP8 ↑ Lactobacillus fermentum ↑ Enterococcus phage IME-EFm1 ↑ Streptococcus sp. I-P16 ↓ Roseburia intestinalis ↓ Eubacterium rectale ↓ Blautia obeum | AUC = 0.5411 AUC = 0.6716 AUC = 0.4526 AUC = 0.6316 AUC = 0.6232 AUC = 0.7916 AUC = 0.6779 |
Unraveling Intestinal Microbial Shifts in ESRD and Kidney Transplantation: Implications for Disease-Related Dysbiosis | Yan et al. [88] | Rejection | Fecal specimens between transplant recipients experiencing borderline rejection vs not | Prospective cohort; Sub-cohort | ↑ Curtobacterium ↑ Flexilinea ↑ Enorma ↑ Coprococcus ↑ Muribaculum ↑ Planctopirus | BH adjusted p = 0.04 BH adjusted p = 0.04 BH adjusted p = 0.04 BH adjusted p = 0.04 BH adjusted p = 0.04 BH adjusted p = 0.04 |
Manuscript | Author | Association | Comparison | Study Design | Microbes | Statistical Significance |
---|---|---|---|---|---|---|
Longitudinal Analysis of the Intestinal Microbiota in Liver Transplantation | Kato et al. [103] | Rejection | Fecal specimens from transplant recipients before transplantation compared to their same specimens during a rejection episode | Prospective cohort study | ↑ Bacteroides ↑ Enterobacteriaceae ↑ Streptococcaceae ↑ Bifidobacteriaceae ↓ Clostridiaceae ↓ Ruminococcaceae ↓ Peptostreptococcaceae | p = 0.4 p = 0.02 p = 0.02 p = 0.03 p = 0.02 p = 0.03 p = 0.0 |
Gut Microbiota Might Influence the Risk of Rejection After Liver Transplantation | Salimov et al. [110] | Rejection | Fecal specimens between transplant recipients experiencing acute rejection vs not | Prospective cohort study | ↑ Protobacteria ↑ Enterobacteriaceae ↑ Chloroflexia ↑ Chlamydiia ↑ Gammaproteobacteria ↓ Candidatus Saccharibacteria | p = 0.001 p = 0.001 p = 0.004 p = 0.01 p = 0.01 p = 0.04 |
Gut Microbiome Dysbiosis is Associated with Increased Mortality After Solid Organ Transplantation | Swarte et al. [23] | Mortality | Relative abundance of microbe between patients prior to transplant compared to after transplant and associated risk of mortality | Cross-sectional; Longitudinal analysis | ↑ Atopobium ↑ Coprobacillus ↑ Megamonas ↑ Subdoligranulum * | Adjusted HR: 1.50; 95% CI 1.18–1.92 Adjusted HR: 1.78; 95% CI 1.22–2.60 Adjusted HR: 1.50; 95% CI 1.16–1.94 Adjusted HR: 0.67; 95% CI 0.52–0.87 |
Manuscript | Author | Association | Comparison | Study Design | Microbes | Statistical Significance |
---|---|---|---|---|---|---|
Intestinal Microbiota Links to Allograft Stability After Lung Transplantation: A Prospective Cohort Study | Wu et al. [131] | Rejection | Fecal specimens between transplant recipients experiencing acute rejection vs. not | Prospective cohort | ↓ Bacteroides uniformis | p = 0.000854175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina, C.K.; Aykut, B. Gut Microbial Dysbiosis and Implications in Solid Organ Transplantation. Biomedicines 2024, 12, 2792. https://doi.org/10.3390/biomedicines12122792
Medina CK, Aykut B. Gut Microbial Dysbiosis and Implications in Solid Organ Transplantation. Biomedicines. 2024; 12(12):2792. https://doi.org/10.3390/biomedicines12122792
Chicago/Turabian StyleMedina, Cathlyn K., and Berk Aykut. 2024. "Gut Microbial Dysbiosis and Implications in Solid Organ Transplantation" Biomedicines 12, no. 12: 2792. https://doi.org/10.3390/biomedicines12122792
APA StyleMedina, C. K., & Aykut, B. (2024). Gut Microbial Dysbiosis and Implications in Solid Organ Transplantation. Biomedicines, 12(12), 2792. https://doi.org/10.3390/biomedicines12122792