The Role of Dopamine in Gastric Cancer—A Systematic Review of the Pathogenesis Phenomena Developments
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Question and Search Strategy
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Studies Selection
2.5. Data Extractions
2.6. Risk of Bias Assessment
2.7. Strategy of Data Synthesis
3. Results
4. Discussion
4.1. The Direct Relation Between STAT-3 and DARPP-32
4.2. The Correlation Between DARPP-32, t-DARPP, mRNA, and ANGPT2
4.3. The Correlation Between CD44E, DARPP-32, and SRp20
4.4. The Correlation Between DARPP-32, CXCR-4, and CXCL-12
4.5. The Expression of DRD5 mRNA
4.6. Integrating the Existing Knowledge for Future Directions
4.7. Importance of Pathogenic Knowledge in Future Treatment Field
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gantz, S.C.; Ford, C.P.; Morikawa, H.; Williams, J.T. The Evolving Understanding of Dopamine Neurons in the Substantia Nigra and Ventral Tegmental Area. Annu. Rev. Physiol. 2018, 80, 219–241. [Google Scholar] [CrossRef] [PubMed]
- Nieoullon, A.; Coquerel, A. Dopamine: A key regulator to adapt action, emotion, motivation and cognition. Curr. Opin. Neurol. 2003, 16, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Montioli, R.; Cellini, B.; Dindo, M.; Oppici, E.; Voltattorni, C.B. Interaction of human Dopa decarboxylase with L-Dopa: Spectroscopic and kinetic studies as a function of pH. Biomed. Res. Int. 2013, 2013, 161456. [Google Scholar] [CrossRef] [PubMed]
- Grant, C.E.; Flis, A.L.; Ryan, B.M. Understanding the role of dopamine in cancer: Past, present and future. Carcinogenesis 2022, 43, 517–527. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Potcovaru, C.-G.; Salmen, T.; Bîgu, D.; Săndulescu, M.I.; Filip, P.V.; Diaconu, L.S.; Pop, C.; Ciobanu, I.; Cinteză, D.; Berteanu, M. Assessing the Effectiveness of Rehabilitation Interventions through the World Health Organization Disability Assessment Schedule 2.0 on Disability—A Systematic Review. J. Clin. Med. 2024, 13, 1252. [Google Scholar] [CrossRef]
- Channer, B.; Matt, S.M.; Nickoloff-Bybel, E.A.; Pappa, V.; Agarwal, Y.; Wickman, J.; Gaskill, P.J. Dopamine, Immunity, and Disease. Pharmacol. Rev. 2023, 75, 62–158. [Google Scholar] [CrossRef]
- Mezey, E.; Eisenhofer, G.; Hansson, S.; Harta, G.; Hoffman, B.J.; Gallatz, K.; Palkovits, M.; Hunyady, B. Non-neuronal dopamine in the gastrointestinal system. Clin. Exp. Pharmacol. Physiol. Suppl. 1999, 26, S14–S22. [Google Scholar] [PubMed]
- Moore, S.C.; Vaz de Castro, P.A.S.; Yaqub, D.; Jose, P.A.; Armando, I. Anti-Inflammatory Effects of Peripheral Dopamine. Int. J. Mol. Sci. 2023, 24, 13816. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, X.; Liu, Q.; Deng, Y.; Wu, J.; Mu, X.; Yang, X.; Zhang, T.; Luo, C.; Li, Z.; Tang, S. Research progress on the roles of dopamine and dopamine receptors in digestive system diseases. J. Cell. Mol. Med. 2024, 28, e18154. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karzai, W.; Günnicker, M.; Scharbert, G.; Vorgrimler-Karzai, U.M.; Priebe, H.J. Effects of dopamine on oxygen consumption and gastric mucosal blood flow during cardiopulmonary bypass in humans. Br. J. Anaesth. 1996, 77, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine receptors: From structure to function. Physiol. Rev. 1998, 78, 189–225. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Cruz, A.; Salinas-Jazmín, N.; Velázquez, M.A.V. Dopamine Receptors in Cancer: Are They Valid Therapeutic Targets? Technol. Cancer Res. Treat. 2021, 20, 15330338211027913. [Google Scholar] [CrossRef]
- Basu, S.; Nagy, J.A.; Pal, S.; Vasile, E.; Eckelhoefer, I.A.; Bliss, V.S.; Manseau, E.J.; Dasgupta, P.S.; Dvorak, H.F.; Mukhopadhyay, D. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat. Med. 2001, 7, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Huang, W.; Tan, Z.; Li, M.; Zhang, L.; Ding, Q.; Wu, X.; Lu, J.; Liu, Y.; Dong, Q. Dopamine receptor D2 is correlated with gastric cancer prognosis. Oncol. Lett. 2017, 13, 1223–1227. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, K.; Dan, Z.; Nie, Y.Q. Gastric cancer stem cells in gastric carcinogenesis, progression, prevention and treatment. World J. Gastroenterol. 2014, 20, 5420–5426. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Vohra, P.K.; Bhattacharya, R.; Dutta, S.; Sinha, S.; Mukhopadhyay, D. Dopamine regulates phosphorylation of VEGF receptor 2 by engaging Src-homology-2-domain-containing protein tyrosine phosphatase 2. J. Cell Sci. 2009, 122, 3385–3392. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sarkar, C.; Basu, B.; Chakroborty, D.; Dasgupta, P.S.; Basu, S. The immunoregulatory role of dopamine: An update. Brain Behav. Immun. 2010, 24, 525–528. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thomas Broome, S.; Louangaphay, K.; Keay, K.A.; Leggio, G.M.; Musumeci, G.; Castorina, A. Dopamine: An immune transmitter. Neural Regen. Res. 2020, 15, 2173–2185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhol, N.K.; Bhanjadeo, M.M.; Singh, A.K.; Dash, U.C.; Ojha, R.R.; Majhi, S.; Duttaroy, A.K.; Jena, A.B. The interplay between cytokines, inflammation, and antioxidants: Mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed. Pharmacother. 2024, 178, 117177. [Google Scholar] [CrossRef] [PubMed]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The New-castle-Ottawa Scale (N.O.S.) for Assessing the Quality of Nonrandomized Studies in MetaAnalyses; The Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2011; Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 22 March 2024).
- Zhu, S.; Soutto, M.; Chen, Z.; Blanca Piazuelo, M.; Kay Washington, M.; Belkhiri, A.; Zaika, A.; Peng, D.; El-Rifai, W. Activation of IGF1R by DARPP-32 promotes STAT3 signaling in gastric cancer cells. Oncogene 2019, 38, 5805–5816, Erratum in Oncogene 2024, 43, 224. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhu, S.; Hong, J.; Soutto, M.; Peng, D.; Belkhiri, A.; Xu, Z.; El-Rifai, W. Gastric tumour-derived ANGPT2 regulation by DARPP-32 promotes angiogenesis. Gut 2016, 65, 925–934. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, S.; Chen, Z.; Katsha, A.; Hong, J.; Belkhiri, A.; El-Rifai, W. Regulation of CD44E by DARPP-32-dependent activation of SRp20 splicing factor in gastric tumorigenesis. Oncogene 2016, 35, 1847–1856. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, S.; Hong, J.; Tripathi, M.K.; Sehdev, V.; Belkhiri, A.; El-Rifai, W. Regulation of CXCR4-mediated invasion by DARPP-32 in gastric cancer cells. Mol. Cancer Res. 2013, 11, 86–94. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, H.; Wu, K.; Ma, J.; Du, Y.; Cao, C.; Nie, Y. Dopamine D2 receptor suppresses gastric cancer cell invasion and migration via inhibition of EGFR/AKT/MMP-13 pathway. Int. Immunopharmacol. 2016, 39, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Dasgupta, P.S. Alteration of dopamine D2 receptors in human malignant stomach tissue. Dig. Dis. Sci. 1997, 42, 1260–1264. [Google Scholar] [CrossRef]
- Radoi, V.E.; Ursu, R.I.; Poenaru, E.; Arsene, C.; Bohiltea, C.L.; Bohiltea, R. Frequency of the UGT1A1* 28 polymorphism in a Romanian cohort of Gilbert syndrome individuals. J. Gastrointest. Liver Dis. 2017, 26, 25–28. [Google Scholar]
- Chakroborty, D.; Sarkar, C.; Mitra, R.B.; Banerjee, S.; Dasgupta, P.S.; Basu, S. Depleted dopamine in gastric cancer tissues: Dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Clin. Cancer Res. 2004, 10, 349–4356. [Google Scholar] [CrossRef]
- Amjadi, O.; Hedayatizadeh-Omran, A.; Zaboli, E.; Ghaffari-Hamedani, M.M.; Janbabaei, G.; Ahangari, G. Dopamine receptors gene overexpression in the microenvironment of invasive gastric cancer and its potential implications. Mol. Biol. Rep. 2023, 50, 6529–6542. [Google Scholar] [CrossRef]
- Ganguly, S.; Basu, B.; Shome, S.; Jadhav, T.; Roy, S.; Majumdar, J.; Dasgupta, P.S.; Basu, S. Dopamine, by acting through its D2 receptor, inhibits insulin-like growth factor-I (IGF-I)-induced gastric cancer cell proliferation via up-regulation of Krüppel-like factor 4 through down-regulation of IGF-IR and AKT phosphorylation. Am. J. Pathol. 2010, 177, 2701–2707. [Google Scholar] [CrossRef]
- Miricescu, D.; Balan, D.G.; Tulin, A.; Stiru, O.; Vacaroiu, I.A.; Mihai, D.A.; Popa, C.C.; Papacocea, R.I.; Myhali, E.; Nedelea, A.S.; et al. PI3K/AKT/mTOR signalling pathway involvement in renal cell carcinoma pathogenesis. Exp. Ther. Med. 2021, 21, 1–7. [Google Scholar] [CrossRef]
- Dagnell, M.; Schmidt, E.E.; Arnér, E.S.J. The A to Z of modulated cell patterning by mammalian thioredoxin reductases. Free Radic. Biol. Med. 2018, 115, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Dong, Z.; Liu, K. Unraveling the complexity of STAT3 in cancer: Molecular understanding and drug discovery. J. Exp. Clin. Cancer. Res. 2024, 43, 23. [Google Scholar] [CrossRef] [PubMed]
- Belkhiri, A.; Zhu, S.; El-Rifai, W. DARPP-32: From neurotransmission to cancer. Oncotarget 2016, 7, 17631. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Mohammad, I.S.; Liu, Z. Overview of the STAT-3 signaling pathway in cancer and the development of specific inhibitors. Oncol. Lett. 2020, 19, 2585–2594. [Google Scholar] [CrossRef]
- Schito, L.; Rey, S. Hypoxia: Turning vessels into vassals of cancer immunotolerance. Cancer Lett. 2020, 487, 74–84. [Google Scholar] [CrossRef]
- Wu, X.; Giobbie-Hurder, A.; Liao, X.; Connelly, C.; Connolly, E.M.; Li, J.; Manos, M.P.; Lawrence, D.; McDermott, D.; Severgnini, M.; et al. Angiopoietin-2 as a Biomarker and Target for Immune Checkpoint Therapy. Cancer Immunol. Res. 2017, 5, 17–28. [Google Scholar] [CrossRef]
- Martins, Á.M.D.S. The Role of Aberrant Glycosylation of CD44 in Gastrointestinal Carcinoma and Its Application for Cancer Biomarker Purposes. Ph.D. Thesis, University of Minho, Braga, Portugal, 2019. Available online: https://repositorium.sdum.uminho.pt/handle/1822/80410 (accessed on 7 November 2024).
- Moura, C.; Vale, N. The Role of Dopamine in Repurposing Drugs for Oncology. Biomedicines 2023, 11, 1917. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sok, C.; Ajay, P.S.; Tsagkalidis, V.; Kooby, D.A.; Shah, M.M. Management of Gastric Neuroendocrine Tumors: A Review. Ann. Surg. Oncol. 2024, 31, 1509–1518. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manfredi, S.; Walter, T.; Baudin, E.; Coriat, R.; Ruszniewski, P.; Lecomte, T.; Laurenty, A.P.; Goichot, B.; Rohmer, V.; Roquin, G. Management of gastric neuro-endocrine tumours in a large French national cohort (GTE). Endocrine 2017, 57, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Kulke, M.H.; Anthony, L.B.; Bushnell, D.L.; de Herder, W.W.; Goldsmith, S.J.; Klimstra, D.S.; Marx, S.J.; Pasieka, J.L.; Pommier, R.F.; Yao, J.C. NANETS treatment guidelines: Well-differentiated neuroendocrine tumors of the stomach and pancreas. Pancreas 2010, 39, 735–752. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cwikła, J.B.; Buscombe, J.R.; Caplin, M.E.; Watkinson, A.F.; Walecki, J.; Gorczyca-Wiśniewska, E.; Hilson, A.J. Diagnostic imaging of carcinoid metastases to the abdomen and pelvis. Med. Sci. Monit. 2004, 10 (Suppl. 3), 9–16. [Google Scholar] [PubMed]
- Kaltsas, G.; Rockall, A.; Papadogias, D.; Reznek, R.; Grossman, A.B. Recent advances in radiological and radionuclide imaging and therapy of neuroendocrine tumours. Eur. J. Endocrinol. 2004, 151, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Delle Fave, G.; O’Toole, D.; Sundin, A.; Taal, B.; Ferolla, P.; Ramage, J.K.; Ferone, D.; Ito, T.; Weber, W.; Zheng-Pei, Z. ENETS Consensus Guidelines Update for Gastroduodenal Neuroendocrine Neoplasms. Neuroendocrinology 2016, 103, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Badoiu, S.C.; Greabu, M.; Miricescu, D.; Stanescu-Spinu, I.-I.; Ilinca, R.; Balan, D.G.; Balcangiu-Stroescu, A.-E.; Mihai, D.-A.; Vacaroiu, I.A.; Stefani, C.; et al. PI3K/AKT/mTOR Dysregulation and Reprogramming Metabolic Pathways in Renal Cancer: Crosstalk with the VHL/HIF Axis. Int. J. Mol. Sci. 2023, 24, 8391. [Google Scholar] [CrossRef]
- Daskalakis, K.; Tsoli, M.; Karapanagioti, A.; Chrysochoou, M.; Thomas, D.; Sougioultzis, S.; Karoumpalis, I.; Kaltsas, G.A.; Alexandraki, K.I. Recurrence and metastatic potential in Type 1 gastric neuroendocrine neoplasms. Clin. Endocrinol. 2019, 91, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.T.; Yuan, W.Z.; Jin, W.L. Vagus innervation in the gastrointestinal tumor: Current understanding and challenges. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 188884. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Kim, J.W.; Jang, J.Y.; Chang, Y.W.; Park, S.H.; Kim, Y.H.; Kim, Y.W. Recurrent gastric neuroendocrine tumors treated with total gastrectomy. World J. Gastroenterol. 2015, 21, 13195–13200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, J.; Zhao, Y.; Zhou, Y.; Tian, Y.; He, Q.; Lin, J.; Hao, H.; Zou, B.; Jiang, L.; Zhao, G. Comparison of Survival and Patterns of Recurrence in Gastric Neuroendocrine Carcinoma, Mixed Adenoneuroendocrine Carcinoma, and Adenocarcinoma. JAMA Netw. Open 2021, 4, e2114180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leng, Z.G.; Lin, S.J.; Wu, Z.R.; Guo, Y.H.; Cai, L.; Shang, H.B.; Tang, H.; Xue, Y.J.; Lou, M.Q.; Zhao, W. Activation of DRD5 (dopamine receptor D5) inhibits tumor growth by autophagic cell death. Autophagy 2017, 13, 1404–1419. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Author (Reference) | Selection | Comparability | Outcome | Total Score | Quality | |||||
---|---|---|---|---|---|---|---|---|---|---|
Representativeness of the Exposed Cohort | Selection of the Non-Exposed Cohort | Ascertainment of Exposure | Demonstration That Outcome of Interest Was Not Present at Start of Study | Comparability of Cohorts Based on the Design or Analysis | Assessment of Outcome | Was Follow-Up Long Enough for Outcomes to Occur | Adequacy of Follow-up of Cohorts | |||
Zhu et al. [19], 2019 | * | * | * | * | * | * | * | - | 7 | Good |
Chen et al. [20], 2016 | - | * | * | * | * | * | * | - | 6 | Good |
Zhu et al. [21], 2016 | * | * | * | * | - | * | * | - | 6 | Good |
Zhu et al. [22], 2013 | * | * | * | * | * | * | * | - | 7 | Good |
Author | Evaluation Method | Sample | Parameters | Outcome of the Parameter | Measure of Outcome | p Value |
---|---|---|---|---|---|---|
Zhu et al. [19], 2019 | IHC | Human gastric cancer tissue (adenocarcinomas) as compared to normal tissue | p–STAT3 (Y705) | Stronger immunostaining | NR | p < 0.01 |
CES increase in gastric tumors | NR | p < 0.01 | ||||
Low expression associated with better survival | HR = 1.18 (1, 1.4) | p = 0.05 | ||||
DARPP-32 | Stronger immunostaining | NR | p < 0.01 | |||
CES increase in gastric tumors | NR | p < 0.01 | ||||
Low expression associated with better survival | HR = 1.37 (1.1, 1.7) | p = 0.04 | ||||
Chen et al. [20], 2016 | IHC | Human gastric cancer tissue (adenocarcinomas) as compared to normal tissue | DARPP-32, t-DARPP, and ANGPT2 | Higher expression in gastric cancer samples | NR | p < 0.05 |
qRT-PCR | mRNA expression levels between ANGPT2 and DARPP-32 | Positive association | r2 = 0.4 | p < 0.0001 | ||
mRNA expression levels between t-DARPP and DARPP-32 | Positive association | r2 = 0.4 | p < 0.0001 | |||
ANGPT2 | Low levels | NR | NR | |||
DARPP-32 | High levels and more blood vessels | NR | NR | |||
Zhu et al. [21], 2016 | qRT-PCR | Human gastric cancer tissue (adenocarcinomas) as compared to normal tissue | mRNA levels of DARPP-32 | Higher expression level | 65.4% | p < 0.001 |
mRNA levels of CD44E | Higher expression level | 69.2% | p < 0.001 | |||
mRNA levels of SRp20 | Higher expression level | 76.9% | p < 0.001 | |||
CD44E and DARPP-32 | Positive correlation and higher expression in gastric tissue | r2 = 0.45 | p < 0.001 | |||
SRp20 and DARPP-32 | Positive correlation and higher expression in gastric tissue | r2 = 0.70 | p < 0.001 | |||
Zhu et al. [22], 2013 | qRT-PCR | Human gastric cancer tissue (adenocarcinomas) as compared to normal tissue | DARPP-32, CXCR4 and CXCL-12 | High levels in tumors as compared to adjacent normal tissues | p < 0.01 | |
CXCR4 and DARPP-32 | Positive association | r2 = 0.636 | NR | |||
CXCL-12 and DARPP-32 | Positive association | r2 = 0.397 | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cimpeanu, R.-C.; Fortofoiu, D.; Sandu, E.; Dragne, I.-G.; Caragea, M.-E.; Dumitriu-Stan, R.-I.; Salmen, B.-M.; Boldeanu, L.; Reurean-Pintilei, D.V.; Vere, C.-C. The Role of Dopamine in Gastric Cancer—A Systematic Review of the Pathogenesis Phenomena Developments. Biomedicines 2024, 12, 2786. https://doi.org/10.3390/biomedicines12122786
Cimpeanu R-C, Fortofoiu D, Sandu E, Dragne I-G, Caragea M-E, Dumitriu-Stan R-I, Salmen B-M, Boldeanu L, Reurean-Pintilei DV, Vere C-C. The Role of Dopamine in Gastric Cancer—A Systematic Review of the Pathogenesis Phenomena Developments. Biomedicines. 2024; 12(12):2786. https://doi.org/10.3390/biomedicines12122786
Chicago/Turabian StyleCimpeanu, Radu-Cristian, Dragoș Fortofoiu, Elena Sandu, Ioana-Gabriela Dragne, Mariana-Emilia Caragea, Roxana-Ioana Dumitriu-Stan, Bianca-Margareta Salmen, Lidia Boldeanu, Delia Viola Reurean-Pintilei, and Cristin-Constantin Vere. 2024. "The Role of Dopamine in Gastric Cancer—A Systematic Review of the Pathogenesis Phenomena Developments" Biomedicines 12, no. 12: 2786. https://doi.org/10.3390/biomedicines12122786
APA StyleCimpeanu, R.-C., Fortofoiu, D., Sandu, E., Dragne, I.-G., Caragea, M.-E., Dumitriu-Stan, R.-I., Salmen, B.-M., Boldeanu, L., Reurean-Pintilei, D. V., & Vere, C.-C. (2024). The Role of Dopamine in Gastric Cancer—A Systematic Review of the Pathogenesis Phenomena Developments. Biomedicines, 12(12), 2786. https://doi.org/10.3390/biomedicines12122786