Could CH3-M6P Be a Potential Dual-Functioning Candidate for Bone Regeneration?
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Methyl 6-O-phosphate-α-D-mannopyranoside (CH3-M6P)
2.3. Cell Culture
2.4. Flow Cytometric Surface Marker Expression Analysis
2.5. Osteodifferentiation
2.6. Cell Viability Assay
2.7. Alkaline Phosphatase Activity
2.8. SEM/EDS
2.9. Immunofluorescence
2.10. mRNA Quantification
2.11. Rat Aortic Ring Model
2.12. Statistical Analysis
3. Results
3.1. Characterization of Synthesized CH3-M6P
3.2. Flow Cytometry
3.3. Osteodifferentiation
3.4. Cell Viability Test
3.5. CH3-M6P Effect on Osteodifferentiation
3.6. Inorganic Matrix Formation: SEM/EDS Spectroscopy
3.7. CH3-M6P Effect on Organic Matrix Formation
3.8. mRNA Quantification
3.9. Rat Aortic Ring Assay
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butera, A.; Pascadopoli, M.; Pellegrini, M.; Gallo, S.; Zampetti, P.; Scribante, A. Oral Microbiota in Patients with Peri-Implant Disease: A Narrative Review. Appl. Sci. 2022, 12, 3250. [Google Scholar] [CrossRef]
- Munakata, M.; Kataoka, Y.; Yamaguchi, K.; Sanda, M. Risk Factors for Early Implant Failure and Selection of Bone Grafting Materials for Various Bone Augmentation Procedures: A Narrative Review. Bioengineering 2024, 11, 192. [Google Scholar] [CrossRef] [PubMed]
- Bekes, I.; Friedl, T.W.P.; Köhler, T.; Mobus, V.; Janni, W.; Wöckel, A.; Wulff, C. Does VEGF facilitate local tumor growth and spread into the abdominal cavity by suppressing endothelial cell adhesion, thus increasing vascular peritoneal permeability followed by ascites production in ovarian cancer? Mol. Cancer 2016, 15, 13. [Google Scholar] [CrossRef] [PubMed]
- Zisch, A.H.; Lutolf, M.P.; Hubbell, J.A. Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc. Pathol. 2003, 12, 295–310. [Google Scholar] [CrossRef]
- Scimeca, J.-C.; Verron, E. The multiple therapeutic applications of miRNAs for bone regenerative medicine. Drug discovery today. 2017, 22, 1084–1091. [Google Scholar] [CrossRef]
- Borowiak, M.; Maehr, R.; Chen, S.; Chen, A.E.; Tang, W.; Fox, J.L.; Schreiber, S.L.; Melton, D.A. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 2009, 4, 348–358. [Google Scholar] [CrossRef]
- Zhu, S.; Wei, W.; Ding, S. Chemical strategies for stem cell biology and regenerative medicine. Annu. Rev. Biomed. Eng. 2011, 13, 73–90. [Google Scholar] [CrossRef]
- Jennings, J.C.; Mohan, S. Heterogeneity of latent transforming growth factor-beta isolated from bone matrix proteins. Endocrinology 1990, 126, 1014–1021. [Google Scholar] [CrossRef]
- Sowa, H.; Kaji, H.; Yamaguchi, T.; Sugimoto, T.; Chihara, K. Smad3 promotes alkaline phosphatase activity and mineralization of osteoblastic MC3T3-E1 cells. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2002, 17, 1190–1199. [Google Scholar] [CrossRef]
- Rather, H.A.; Jhala, D.; Vasita, R. Dual functional approaches for osteogenesis coupled angiogenesis in bone tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109761. [Google Scholar] [CrossRef]
- Noda, M. Transcriptional regulation of osteocalcin production by transforming growth factor-beta in rat osteoblast-like cells. Endocrinology 1989, 124, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, E.; Ochiai-Shino, H.; Aoki, H.; Onodera, S.; Saito, A.; Azuma, T. Akt activation is required for TGF-β1-induced osteoblast differentiation of MC3T3-E1 pre-osteoblasts. PLoS ONE 2014, 9, e112566. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.S.; Alliston, T.; Delston, R.; Derynck, R. Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. EMBO J. 2005, 24, 2543–2555. [Google Scholar] [CrossRef]
- Xu, J.; Liu, J.; Gan, Y.; Dai, K.; Zhao, J.; Huang, M.; Huang, Y.; Zhuang, Y.; Zhang, X. High-Dose TGF-β1 Impairs Mesenchymal Stem Cell-Mediated Bone Regeneration via Bmp2 Inhibition. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2020, 35, 167–180. [Google Scholar] [CrossRef]
- Gary-Bobo, M.; Nirdé, P.; Jeanjean, A.; Morère, A.; Garcia, M. Mannose 6-phosphate receptor targeting and its applications in human diseases. Curr. Med. Chem. 2007, 14, 2945–2953. [Google Scholar] [CrossRef]
- Barragan-Montero, V.; Awwad, A.; Combemale, S.; Snata Barbara, P.; Jower, B.; Mols, J.P.; Montero, J.L. Synthesis of mannose-6-phosphate analogues and their utility as angiogenesis regulators. ChemMedChem 2011, 6, 1771–1774. [Google Scholar] [CrossRef]
- Ionescu, C.; Oprea, B.; Ciobanu, G.; Georgescu, M.; Bică, R.; Mateescu, G.-O.; Huseynova, F.; Barragan-Montero, V. The Angiogenic Balance and Its Implications in Cancer and Cardiovascular Diseases: An Overview. Medicina 2022, 58, 903. [Google Scholar] [CrossRef]
- Ghosh, P.; Dahms, N.M.; Kornfeld, S. Mannose 6-phosphate receptors: New twists in the tale. Nature reviews. Mol. Cell Biol. 2003, 4, 202–212. [Google Scholar]
- Yang, L.; Tredget, E.E.; Ghary, P.A. Activation of latent transforming growth factor-β1 is induced by mannose 6-phosphate/insulin-like growth factor-II receptor. Int. J. Tissue Repair. 2000, 8, 538–546. [Google Scholar] [CrossRef]
- Dennis, P.A.; Rifkin, D.B. Cellular activation of latent transforming growth factor beta requires binding to the cation-independent mannose 6-phosphate/insulin-like growth factor type II receptor. Proc. Natl. Acad. Sci. USA 1991, 88, 580–584. [Google Scholar] [CrossRef]
- Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 2003, 9, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Kiess, W.; Thomas, C.L.; Sklar, M.M.; Nissley, S.P. Beta-galactosidase decreases the binding affinity of the insulin-like-growth-factor-II/mannose-6-phosphate receptor for insulin-like-growth-factor II. Eur. J. Biochem. 1990, 190, 71–77. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, R.G. Mannose-6-phosphate enhances cross-linking efficiency between insulin-like growth factor-II (IGF-II) and IGF-II/mannose-6-phosphate receptors in membranes. Endocrinology 1991, 128, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Linkhart, T.A.; Mohan, S.; Baylink, D.J. Growth factors for bone growth and repair: IGF, TGFβ and BMP. Bone 1996, 19, S1–S12. [Google Scholar] [CrossRef]
- Lee, O.H.; Bae, S.K.; Bae, M.H.; Lee, Y.M.; Moon, E.; Cha, H.J.; Kwon, Y.G.; Kim, K.W. Identification of angiogenic properties of insulin-like growth factor II in in vitro angiogenesis models. Br. J. Cancer 2000, 82, 385–391. [Google Scholar] [CrossRef]
- Seong, J.M.; Kim, B.C.; Park, J.H.; Kwon, I.K.; Mantalaris, A.; Hwang, Y.S. Stem cells in bone tissue engineering. Biomed. Mater. 2010, 5, 062001. [Google Scholar] [CrossRef]
- Bernlind, C.; Oscarson, S.; Widmalm, G. Synthesis, NMR, and conformational studies of methyl α-d-mannopyranoside 2-, 3-, 4-, and 6-monophosphates. Carbohydr. Res. 1994, 263, 173–180. [Google Scholar] [CrossRef]
- Ionescu, C.; Sippelli, S.; Toupet, L.; Barragan-Montero, V. New mannose derivatives: The tetrazole analogue of mannose-6-phosphate as angiogenesis inhibitor. Bioorganic Med. Chem. Lett. 2016, 26, 636–639. [Google Scholar] [CrossRef]
- Montero, J.-L.; Montero, V.; Moles, J.-P.; De Santa Barbara, P.; Jover, B. Novel Uses of D-Mannopyranose Derivatives Activating Angiogenesis. WO-2009138600-A2, 19 November 2009. [Google Scholar]
- Langenbach, F.; Handschel, J. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res. Ther. 2013, 4, 117. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of Cell Viability by the MTT Assay. Cold. Spring Harb. Protoc. 2018, pdb-prot095505. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, N. Characterisation of dental pulp stem cells: A new horizon for tissue regeneration? Arch. Oral Biol. 2012, 57, 1439–1458. [Google Scholar] [CrossRef] [PubMed]
- Bonjour, J.-P. Calcium and phosphate: A duet of ions playing for bone health. J. Am. Coll. Nutr. 2011, 30, 438S–448S. [Google Scholar] [CrossRef]
- Zaichick, V.; Tzaphlidou, M. Determination of calcium, phosphorus, and the calcium/phosphorus ratio in cortical bone from the human femoral neck by neutron activation analysis. Appl. Radiat. Isot. 2002, 56, 781–786. [Google Scholar] [CrossRef]
- Bohner, M.; Le Santoni, B.G.; Döbelin, N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater. 2020, 113, 23–41. [Google Scholar] [CrossRef]
- Arpornmaeklong, P.; Pressler, M.J. Effects of ß-TCP scaffolds on neurogenic and osteogenic differentiation of human embryonic stem cells. Ann. Anat. Anat. Anz. Off. Organ Anat. Ges. 2018, 215, 52–62. [Google Scholar] [CrossRef]
- Shih, Y.-R.V.; Hwang, Y.; Phadke, A.; Kang, H.; Hwang, N.S.; Caro, E.J.; Nguyen, S.; Siu, M.; Theodorakis, E.A.; Gianneschi, N.C.; et al. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proc. Natl. Acad. Sci. USA 2014, 111, 990–995. [Google Scholar] [CrossRef]
- d’Aquino, R.; Rosa, A.; de Laino, G.; Caruso, F.; Guida, L.; Rullo, R.; Checchi, V.; Laino, L.; Tirino, V.; Papaccio, G. Human dental pulp stem cells: From biology to clinical applications. J. Exp. Zool. 2009, 312B, 408–415. [Google Scholar] [CrossRef]
- Bronckaers, A.; Hilkens, P.; Fanton, Y.; Stryus, T.; Gervois, P.; Politis, C.; Martens, W.; Lambrichts, I. Angiogenic properties of human dental pulp stem cells. PLoS ONE 2013, 8, e71104. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, L.; Han, X.; Pan, J.; Deng, J.; Zhu, L.; Lu, Y.; Huang, W.; Liu, S.; Li, Q.; et al. The secretome of human dental pulp stem cells protects myoblasts from hypoxia-induced injury via the Wnt/β-catenin pathway. Int. J. Mol. Med. 2020, 45, 1501–1513. [Google Scholar] [CrossRef]
- Arnold, M.A.; Kim, Y.; Czubryt, M.P.; Phan, D.; McAnally, J.; Qi, X.; Shelton, J.M.; Richardson, J.A.; Bassel-Duby, R.; Olson, E.N. MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev. Cell 2007, 12, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Stephens, A.S.; Stephens, S.R.; Hobbs, C.; Hutmacher, D.W.; Bacic-Welsh, D.; Woodruff, M.A.; Morrison, N.A. Myocyte enhancer factor 2c, an osteoblast transcription factor identified by dimethyl sulfoxide (DMSO)-enhanced mineralization. J. Biol. Chem. 2011, 286, 30071–30086. [Google Scholar] [CrossRef]
- Lin, Q.; Lu, J.; Yanagisawa, H.; Webb, R.; Lyons, G.E.; Richardson, J.A.; Olson, E.N. Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 1998, 125, 4565–4574. [Google Scholar] [CrossRef]
- Mayer, H.; Bertram, H.; Lindenmaier, W.; Korff, T.; Weber, H.; Weich, H. Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: Autocrine and paracrine role on osteoblastic and endothelial differentiation. J. Cell. Biochem. 2005, 95, 827–839. [Google Scholar] [CrossRef]
- Sherbina, N.V.; Bornstein, P. Modulation of thrombospondin gene expression during osteoblast differentiation in MC3T3-E1 cells. Bone 1992, 13, 197–201. [Google Scholar] [CrossRef]
- Shi, X.; Deepak, V.; Wang, L.; Ba, X.; Komori, T.; Zeng, X.; Liu, W. Thrombospondin-1 is a putative target gene of Runx2 and Runx3. Int. J. Mol. Sci. 2013, 14, 14321–14332. [Google Scholar] [CrossRef]
- Bailey Dubose, K.; Zayzafoon, M.; Murphy-Ullrich, J.E. Thrombospondin-1 inhibits osteogenic differentiation of human mesenchymal stem cells through latent TGF-β activation. Biochem. Biophys. Res. Commun. 2012, 422, 488–493. [Google Scholar] [CrossRef]
- Borton, A.J.; Frederick, J.P.; Datto, M.B.; Wang, X.F.; Weinstein, R.S. The loss of Smad3 results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and apoptosis. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2001, 16, 1754–1764. [Google Scholar] [CrossRef]
- Kaji, H.; Naito, J.; Sowa, H.; Sugimoto, T.; Chihara, K. Smad3 differently affects osteoblast differentiation depending upon its differentiation stage. Horm. Metab. Res. 2006, 38, 740–745. [Google Scholar] [CrossRef]
- Ielo, I.; Calabrese, G.; De Luca, G.; Conoci, S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int. J. Mol. Sci. 2022, 23, 9721. [Google Scholar] [CrossRef]
- Hwang, H.S.; Lee, C.-S. Recent Progress in Hyaluronic-Acid-Based Hydrogels for Bone Tissue Engineering. Gels 2023, 9, 588. [Google Scholar] [CrossRef] [PubMed]
- Fendi, F.; Abdullah, B.; Suryani, S.; Raya, I.; Tahir, D.; Iswahyudi, I. Hydroxyapatite based for bone tissue engineering: Innovation and new insights in 3D printing technology. Polym. Bull. 2024, 81, 1097–1116. [Google Scholar] [CrossRef]
- Patel, H.; Pundkar, A.; Shrivastava, S.; Chandanwale, R.; Jaiswal, A.M. A Comprehensive Review on Platelet-Rich Plasma Activation: A Key Player in Accelerating Skin Wound Healing. Cureus 2023, 15, e48943. [Google Scholar] [CrossRef] [PubMed]
- Vladulescu, D.; Scurtu, L.G.; Simionescu, A.A.; Scurtu, F.; Popescu, M.I.; Simionescu, O. Platelet-Rich Plasma (PRP) in Dermatology: Cellular and Molecular Mechanisms of Action. Biomedicines 2024, 12, 7. [Google Scholar] [CrossRef]
- Ionescu, C.; Huseynova, F.; Barragan-Montero, V. Pathways in the synthesis of functionalized glycolipids for liposomal preparations. Chem. Phys. Lipids 2022, 242, 105161. [Google Scholar] [CrossRef]
Gene | Sequence |
---|---|
Col 1 | (F) AGAACTGGTACATCAGCAAG |
(R) GAGTTTACAGGAAGCAGACA | |
ALP | (F) CCAACGTGGCTAGAATGTCATC |
(R) TGGGCATTGGTGTTGTACGTC | |
RunX2 | (F) TGGTTAATCTCCGCAGGTCAC |
(R) ACTGTGCTGAAGAGGCTGTTTG | |
Smad 3 | (F) AAGTGCATCACCATCCCCAG |
(R) GGGTCAACTGGTAGACAGCC | |
TSP 1 | (F) AAGACCTGGTGGATGCTGTG |
(R) GAAGACGCTTTGGATGGGGA | |
VEGF A | (F) CCATCCAATCGAGACCCTGG |
(R) TATGTGCTGGCCTTGGTGAG | |
Mef2C | (F) GCACCAACAAGCTGTTCCAG |
(R) TGTCTGAGTTTGTCCGGCTC | |
TGF-b1 | (F) TGAACCGGCCTTTCCTGCTTCTCATG |
(R) GCGGAAGTCAATGTACAGCTGCCGC | |
TGF-b2 | (F) GGCTCAACCACCAGGGCATCCAGAT |
(R) CTCCCCGAGAGCCTGTCCAGATGCT | |
GAPDH | (F) ATGGGGAAGATAAAGGTCG |
(R) TAAAAGCAGCCCTGGTGACC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huseynova, F.; Ionescu, C.; Cuisinier, F.; Huseynova, I.; Mammadov, A.; Barragan-Montero, V. Could CH3-M6P Be a Potential Dual-Functioning Candidate for Bone Regeneration? Biomedicines 2024, 12, 2697. https://doi.org/10.3390/biomedicines12122697
Huseynova F, Ionescu C, Cuisinier F, Huseynova I, Mammadov A, Barragan-Montero V. Could CH3-M6P Be a Potential Dual-Functioning Candidate for Bone Regeneration? Biomedicines. 2024; 12(12):2697. https://doi.org/10.3390/biomedicines12122697
Chicago/Turabian StyleHuseynova, Fidan, Cătălina Ionescu, Frederic Cuisinier, Irada Huseynova, Alamdar Mammadov, and Véronique Barragan-Montero. 2024. "Could CH3-M6P Be a Potential Dual-Functioning Candidate for Bone Regeneration?" Biomedicines 12, no. 12: 2697. https://doi.org/10.3390/biomedicines12122697
APA StyleHuseynova, F., Ionescu, C., Cuisinier, F., Huseynova, I., Mammadov, A., & Barragan-Montero, V. (2024). Could CH3-M6P Be a Potential Dual-Functioning Candidate for Bone Regeneration? Biomedicines, 12(12), 2697. https://doi.org/10.3390/biomedicines12122697