Comparison of Biocompatibility of 3D-Printed Ceramic and Titanium in Micropig Ankle Hemiarthroplasty
Abstract
:1. Background
2. Materials and Methods
2.1. Materials and Equipment
2.2. Three-Dimensionally Printed Artificial Joint Implantation to Talus Defect in Micropigs
2.3. Visual Inspection and Blood Test
2.4. Radiographic Analysis
2.5. Histological Analysis
2.6. Statistical Analysis
3. Results
3.1. Weight Measurement and Visual Inspection
3.2. Blood Test
3.3. Autopsy and Radiographic Analysis
3.4. Histological Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilusz, R.E.; Zauscher, S.; Guilak, F. Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage. Osteoarthr. Cartil. 2013, 21, 1895–1903. [Google Scholar] [CrossRef] [PubMed]
- Mazzocchi, T.; Guarnera, D.; Trucco, D.; Restaino, F.R.; Vannozzi, L.; Siliberto, A.; Lisignoli, G.; Zaffagnini, S.; Russo, A.; Ricotti, L. A Novel Approach for Multiple Material Extrusion in Arthroscopic Knee Surgery. Ann. Biomed. Eng. 2023, 5, 550–565. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Li, H.; Yu, K.; Ma, K.; Wang, Q.; Tang, J.; Liu, G.; Lim, K.; Hooper, G.; Woodfield, T.; et al. The potential role of synovial cells in the progression and treatment of osteoarthritis. Exploration 2023, 3, 20220132. [Google Scholar] [CrossRef]
- Yoon, Y.K.; Park, K.H.; Shim, D.W.; Lee, W.; Han, S.H.; Lee, J.W. A Novel Approach to Total Ankle Arthroplasty with Simultaneous Structural Tibial Cut Autograft for Anterior Tibial Bone Defects. Clin. Orthop. Surg. 2024, 16, 674–678. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, G.-W.; Song, J.-E.; Han, J.-E.; Kim, N.-S.; Lee, K.-B. The Role of Receptor Activator of Nuclear Factor-κB Ligand/Osteoprotegerin Ratio in Synovial Fluid as a Potential Marker for Periprosthetic Osteolysis Following Total Ankle Arthroplasty. Clin. Orthop. Surg. 2024, 16, 661–668. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, S.; Wang, Y.; Zhang, M.; Wei, P.; Li, Y.; Wang, T.; Meng, Q. A comparative study of modern total ankle replacement and ankle arthrodesis for ankle osteoarthritis at different follow-up times: A systematic review and meta-analysis. Int. Orthop. 2023, 47, 1493–1510. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.A.; Achten, J.; Parsons, N.; Griffin, X.L.; Png, M.-E.; Gould, J.; McGibbon, A.; Costa, M.L. Cemented or Uncemented Hemiarthroplasty for Intracapsular Hip Fracture. N. Engl. J. Med. 2022, 386, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.B. Hemiarthroplasty for proximal humeral fractures. Indications, pitfalls, and technique. Bull. Hosp. Jt. Dis. 2013, 71 (Suppl. S2), 60–63. [Google Scholar] [PubMed]
- Herzberg, G.; Burnier, M.; Ly, L. Role for Wrist Hemiarthroplasty in Acute Irreparable Distal Radius Fracture in the Elderly. Hand Clin. 2023, 39, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Faldini, C.; Mazzotti, A.; Belvedere, C.; Durastanti, G.; Panciera, A.; Geraci, G.; Leardini, A. A new ligament-compatible patient-specific 3D-printed implant and instrumentation for total ankle arthroplasty: From biomechanical studies to clinical cases. J. Orthop. Traumatol. 2020, 21, 16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shnol, H.; LaPorta, G.A. 3D Printed Total Talar Replacement: A Promising Treatment Option for Advanced Arthritis, Avascular Osteonecrosis, and Osteomyelitis of the Ankle. Clin. Podiatr. Med. Surg. 2018, 35, 403–422. [Google Scholar] [CrossRef] [PubMed]
- Cashman, J.D.; Jackson, J.K.; Mugabe, C.; Gilchrist, S.; Burt, H.M.; Ball, K.; Tredwell, S. The use of tissue sealants to deliver antibiotics to an orthopaedic surgical site with a titanium implant. J. Orthop. Sci. 2013, 18, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-H.; Shim, H.-W.; Lee, H.-H.; Ahn, J.-S.; Kim, Y.-J.; Shin, S.-Y.; Lee, J.-H.; Choi, Y.-S. Effects of ultraviolet weathering aging on the color stability and biocompatibility of various computer-aided design and computer-aided manufacturing glass-ceramic materials. J. Dent. 2023, 139, 104746. [Google Scholar] [CrossRef]
- Fan, L.; Chen, S.; Yang, M.; Liu, Y.; Liu, J. Metallic Materials for Bone Repair. Adv. Healthc. Mater. 2023, 13, e2302132. [Google Scholar] [CrossRef]
- Wong, K.-K.; Hsu, H.-C.; Wu, S.-C.; Ho, W.-F. A Review: Design from Beta Titanium Alloys to Medium-Entropy Alloys for Biomedical Applications. Materials 2023, 16, 7046. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chen, X.; Kong, L.; Liu, P. Mechanical and Biological Properties of Titanium and Its Alloys for Oral Implant with Preparation Techniques: A Review. Materials 2023, 16, 6860. [Google Scholar] [CrossRef]
- Morita, M.; Yang, J.; Jiang, Z. Advances in Endovascular Intervention Using Biomaterials: Study on Heat Efficiency of Scissor-Type Ultrasonic Catheter Device. Biomed Res. Int. 2021, 9, 5543520. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nabiyouni, M.; Brückner, T.; Zhou, H.; Gbureck, U.; Bhaduri, S.B. Magnesium-based bioceramics in orthopedic applications. Acta Biomater. 2018, 66, 23–43. [Google Scholar] [CrossRef] [PubMed]
- Pivec, R.; Johnson, A.J.; Mears, S.C.; Mont, M.A. Hip Arthroplasty. Lancet 2012, 380, 1768–1777. [Google Scholar] [CrossRef]
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef]
- Chevalier, J.; Gremillard, L. Ceramics for Medical Applications: A Picture for the Next 20 Years. J. Eur. Ceram. Soc. 2009, 29, 1245–1255. [Google Scholar] [CrossRef]
- Carr, A.J.; Robertsson, O.; Graves, S.; Price, A.J.; Arden, N.K.; Judge, A.; Beard, D.J. Knee Replacement. Lancet 2012, 379, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Sun, Q.; He, Y.; Peng, L.; Zhang, Y.; Zhang, L.; Lu, W.; Deng, J.; Zhuang, Z.; Yu, T.; et al. Ceramic Toughening Strategies for Biomedical Applications. Front. Bioeng. Biotechnol. 2022, 10, 840372. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katsui, R.; Takakura, Y.; Taniguchi, A.; Tanaka, Y. Ceramic Artificial Talus as the Initial Treatment for Comminuted Talar Fractures. Foot Ankle Int. 2020, 41, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Chacun, D.; Lafon, A.; Courtois, N.; Reveron, H.; Chevalier, J.; Margossian, P.; Alves, A.; Gritsch, K.; Grosgogeat, B. Histologic and histomorphometric evaluation of new zirconia-based ceramic dental implants: A preclinical study in dogs. Dent. Mater. 2021, 37, 1377–1389. [Google Scholar] [CrossRef] [PubMed]
- Ellegaard, L.; Cunningham, A.; Edwards, S.; Grand, N.; Nevalainen, T.; Prescott, M.; Schuurman, T. Welfare of the minipig with special reference to use in regulatory toxicology studies. J. Pharmacol. Toxicol. Methods 2010, 62, 167–183. [Google Scholar] [CrossRef] [PubMed]
- Prestat, M.; Thierry, D. Corrosion of titanium under simulated inflammation conditions: Clinical context and in vitro investigations. Acta Biomater. 2021, 136, 72–87. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Lu, X.; Zheng, X.; Li, Y.R.; Geng, X.; Sun, K.; Cai, H.; Jia, Q.; Jiang, H.B.; Liu, K. Modification of titanium orthopedic implants with bioactive glass: A systematic review of in vivo and in vitro studies. Front. Bioeng. Biotechnol. 2023, 11, 1269223. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vaska, K.R.; Nakka, C.; Reddy, K.M.; Chintalapudi, S.K. Comparative evaluation of shear bond strength between titanium-ceramic and cobalt-chromium-ceramic: An in vitro study. J. Indian Prosthodont. Soc. 2021, 21, 276–280. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hartjen, P.; Hoffmann, A.; Henningsen, A.; Barbeck, M.; Kopp, A.; Kluwe, L.; Precht, C.; Quatela, O.; Gaudin, R.; Heiland, M.; et al. Plasma Electrolytic Oxidation of Titanium Implant Surfaces: Microgroove-Structures Improve Cellular Adhesion and Viability. Vivo 2018, 32, 241–247. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Babhulkar, A.; Pawaskar, A. Acromioclavicular joint dislocations. Curr. Rev. Musculoskelet. Med. 2014, 7, 33–39. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jones, A.C.; Milthorpe, B.; Averdunk, H.; Limaye, A.; Senden, T.J.; Sakellariou, A.; Sheppard, A.P.; Sok, R.M.; Knackstedt, M.A.; Brandwood, A.; et al. Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging. Biomaterials 2004, 25, 4947–4954. [Google Scholar] [CrossRef] [PubMed]
Group | ||||||||||||
Animal ID | C1-1 | C1-2 | C1-3 | C1-4 | C2-1 | C2-2 | C2-3 | C2-4 | C3-1 | C3-2 | C3-3 | C3-4 |
Presence of the test material | P | P | P | P | N | P | N | N | P | P | P | P |
Inflammatory cell infiltration, overall * | 0 | 0 | 0 | 2+ | 2+ | 2+ | 3+ | 3+ | 3+ | 3+ | 4+ | 2+ |
Mean ± SD | 2.0 ± 1.35 | |||||||||||
Cell type/response ** | ||||||||||||
PMN cells | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Lymphocytes | 0 | 0 | 1 | 1 | 2 | 1 | 3 | 3 | 1 | 1 | 2 | 1 |
Plasma cells | 0 | 0 | 0 | 0 | 2 | 3 | 3 | 3 | 0 | 0 | 1 | 0 |
Macrophages | 1 | 1 | 1 | 3 | 2 | 1 | 2 | 2 | 4 | 4 | 4 | 3 |
Giant cells | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 2 | 3 | 1 | 0 |
Necrosis | 0 | 0 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 4 | 3 | 2 |
Sub-total (*2) | 2 | 2 | 6 | 14 | 18 | 16 | 18 | 18 | 18 | 24 | 22 | 12 |
Mean ± SD | 14.2 ± 7.31 | |||||||||||
Response ** | ||||||||||||
Neovascularization | 0 | 0 | 2 | 3 | 2 | 2 | 3 | 3 | 3 | 2 | 3 | 2 |
Fibrosis | 1 | 1 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 2 |
Fatty infiltration | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sub-total | 1 | 1 | 5 | 6 | 4 | 4 | 5 | 5 | 5 | 5 | 6 | 4 |
Mean ± SD | 4.25 ± 1.66 | |||||||||||
Total | 3 | 3 | 11 | 20 | 22 | 20 | 23 | 23 | 23 | 29 | 28 | 16 |
Mean ± SD | 18.4 ± 8.64 |
Group | ||||||||||||
Animal ID | T1-1 | T1-2 | T1-3 | T1-4 | T2-1 | T2-2 | T2-3 | T2-4 | T3-1 | T3-2 | T3-3 | T3-4 |
Presence of the test material | P | P | N | N | N | N | N | P | P | N | N | N |
Inflammatory cell infiltration, overall * | 0 | 3+ | 2+ | 2+ | 0.5 | 0 | 0 | 2+ | 4+ | 1+ | 0 | 0 |
Mean ± SD | 1.21 ± 1.37 | |||||||||||
Cell type/response ** | ||||||||||||
PMN cells | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Lymphocytes | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 |
Plasma cells | 0 | 1 | 1 | 1 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Macrophages | 0 | 3 | 3 | 2 | 1 | 1 | 0 | 2 | 3 | 2 | 0 | 0 |
Giant cells | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 |
Necrosis | 3 | 3 | 2 | 2 | 0 | 0 | 0 | 1 | 3 | 1 | 1 | 1 |
Sub-total (*2) | 6 | 18 | 14 | 12 | 5 | 2 | 0 | 10 | 18 | 10 | 2 | 2 |
Mean ± SD | 8.25 ± 6.36 | |||||||||||
Response ** | ||||||||||||
Neocascularization | 0 | 3 | 3 | 2 | 1 | 4 | 2 | 2 | 4 | 3 | 2 | 0 |
Fibrosis | 1 | 2 | 2 | 2 | 1 | 4 | 1 | 3 | 4 | 2 | 1 | 0 |
Fatty infiltration | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sub-total | 1 | 5 | 5 | 4 | 2 | 8 | 3 | 5 | 8 | 5 | 3 | 0 |
Mean ± SD | 4.08 ± 2.47 | |||||||||||
Total | 7 | 23 | 19 | 16 | 7 | 10 | 3 | 15 | 26 | 15 | 5 | 2 |
Mean ± SD | 12.3 ± 7.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-W.; Lee, D.; Kim, J.; An, S.; Park, C.-H.; Lee, J.-M.; Yon, C.-J.; Heo, Y.-R. Comparison of Biocompatibility of 3D-Printed Ceramic and Titanium in Micropig Ankle Hemiarthroplasty. Biomedicines 2024, 12, 2696. https://doi.org/10.3390/biomedicines12122696
Lee S-W, Lee D, Kim J, An S, Park C-H, Lee J-M, Yon C-J, Heo Y-R. Comparison of Biocompatibility of 3D-Printed Ceramic and Titanium in Micropig Ankle Hemiarthroplasty. Biomedicines. 2024; 12(12):2696. https://doi.org/10.3390/biomedicines12122696
Chicago/Turabian StyleLee, Si-Wook, Donghyun Lee, Junsik Kim, Sanghyun An, Chul-Hyun Park, Jung-Min Lee, Chang-Jin Yon, and Yu-Ran Heo. 2024. "Comparison of Biocompatibility of 3D-Printed Ceramic and Titanium in Micropig Ankle Hemiarthroplasty" Biomedicines 12, no. 12: 2696. https://doi.org/10.3390/biomedicines12122696
APA StyleLee, S.-W., Lee, D., Kim, J., An, S., Park, C.-H., Lee, J.-M., Yon, C.-J., & Heo, Y.-R. (2024). Comparison of Biocompatibility of 3D-Printed Ceramic and Titanium in Micropig Ankle Hemiarthroplasty. Biomedicines, 12(12), 2696. https://doi.org/10.3390/biomedicines12122696