Efficacy of High-Definition Transcranial Alternating Current Stimulation (HD-tACS) at the M1 Hotspot Versus C3 Site in Modulating Corticospinal Tract Excitability
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, A.; Voroslakos, M.; Kronberg, G.; Henin, S.; Krause, M.R.; Huang, Y.; Opitz, A.; Mehta, A.; Pack, C.C.; Krekelberg, B.; et al. Immediate neurophysiological effects of transcranial electrical stimulation. Nat. Commun. 2018, 9, 5092. [Google Scholar] [CrossRef]
- Battleday, R.M.; Muller, T.; Clayton, M.S.; Cohen Kadosh, R. Mapping the mechanisms of transcranial alternating current stimulation: A pathway from network effects to cognition. Front. Psychiatry 2014, 5, 162. [Google Scholar] [CrossRef]
- Elyamany, O.; Leicht, G.; Herrmann, C.S.; Mulert, C. Transcranial alternating current stimulation (tACS): From basic mechanisms towards first applications in psychiatry. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 135–156. [Google Scholar] [CrossRef]
- Meng, H.; Houston, M.; Zhang, Y.; Li, S. Exploring the Prospects of Transcranial Electrical Stimulation (tES) as a Therapeutic Intervention for Post-Stroke Motor Recovery: A Narrative Review. Brain Sci. 2024, 14, 322. [Google Scholar] [CrossRef]
- Wischnewski, M.; Schutter, D.; Nitsche, M.A. Effects of beta-tACS on corticospinal excitability: A meta-analysis. Brain Stimul. 2019, 12, 1381–1389. [Google Scholar] [CrossRef]
- Wu, L.; Liu, T.; Wang, J. Improving the Effect of Transcranial Alternating Current Stimulation (tACS): A Systematic Review. Front. Hum. Neurosci. 2021, 15, 652393. [Google Scholar] [CrossRef]
- Pellegrini, M.; Zoghi, M.; Jaberzadeh, S. The effects of transcranial direct current stimulation on corticospinal and cortico-cortical excitability and response variability: Conventional versus high-definition montages. Neurosci. Res. 2021, 166, 12–25. [Google Scholar] [CrossRef]
- Masina, F.; Arcara, G.; Galletti, E.; Cinque, I.; Gamberini, L.; Mapelli, D. Neurophysiological and behavioural effects of conventional and high definition tDCS. Sci. Rep. 2021, 11, 7659. [Google Scholar] [CrossRef]
- Heise, K.F.; Kortzorg, N.; Saturnino, G.B.; Fujiyama, H.; Cuypers, K.; Thielscher, A.; Swinnen, S.P. Evaluation of a Modified High-Definition Electrode Montage for Transcranial Alternating Current Stimulation (tACS) of Pre-Central Areas. Brain Stimul. 2016, 9, 700–704. [Google Scholar] [CrossRef]
- Rong, D.; Zhang, M.; Ma, Q.; Lu, J.; Li, K. Corticospinal tract change during motor recovery in patients with medulla infarct: A diffusion tensor imaging study. BioMed Res. Int. 2014, 2014, 524096. [Google Scholar] [CrossRef]
- Natali, A.L.; Reddy, V.; Bordoni, B. Neuroanatomy, Corticospinal Cord Tract; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Kuo, H.I.; Bikson, M.; Datta, A.; Minhas, P.; Paulus, W.; Kuo, M.F.; Nitsche, M.A. Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: A neurophysiological study. Brain Stimul. 2013, 6, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Betti, S.; Fedele, M.; Castiello, U.; Sartori, L.; Budisavljevic, S. Corticospinal excitability and conductivity are related to the anatomy of the corticospinal tract. Brain Struct. Funct. 2022, 227, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Lockyer, E.J.; Compton, C.T.; Forman, D.A.; Pearcey, G.E.; Button, D.C.; Power, K.E. Moving forward: Methodological considerations for assessing corticospinal excitability during rhythmic motor output in humans. J. Neurophysiol. 2021, 126, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Houston, M.; Francisco, G.E.; Zhang, Y.; Li, S. Scalp acupuncture guidance for identifying the optimal site for transcranial electrical stimulation of the hand. Exp. Brain Res. 2024, 242, 2083–2091. [Google Scholar] [CrossRef]
- Wach, C.; Krause, V.; Moliadze, V.; Paulus, W.; Schnitzler, A.; Pollok, B. Effects of 10 Hz and 20 Hz transcranial alternating current stimulation (tACS) on motor functions and motor cortical excitability. Behav. Brain Res. 2013, 241, 1–6. [Google Scholar] [CrossRef]
- Nakazono, H.; Ogata, K.; Kuroda, T.; Tobimatsu, S. Phase and Frequency-Dependent Effects of Transcranial Alternating Current Stimulation on Motor Cortical Excitability. PLoS ONE 2016, 11, e0162521. [Google Scholar] [CrossRef]
- Schilberg, L.; Engelen, T.; Ten Oever, S.; Schuhmann, T.; de Gelder, B.; de Graaf, T.A.; Sack, A.T. Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability. Cortex 2018, 103, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Fresnoza, S.; Christova, M.; Feil, T.; Gallasch, E.; Korner, C.; Zimmer, U.; Ischebeck, A. The effects of transcranial alternating current stimulation (tACS) at individual alpha peak frequency (iAPF) on motor cortex excitability in young and elderly adults. Exp. Brain Res. 2018, 236, 2573–2588. [Google Scholar] [CrossRef]
- Ibanez, J.; Zicher, B.; Brown, K.E.; Rocchi, L.; Casolo, A.; Del Vecchio, A.; Spampinato, D.; Vollette, C.A.; Rothwell, J.C.; Baker, S.N.; et al. Standard intensities of transcranial alternating current stimulation over the motor cortex do not entrain corticospinal inputs to motor neurons. J. Physiol. 2023, 601, 3187–3199. [Google Scholar] [CrossRef]
- Liu, Y.; Ning, Y.; Li, S.; Zhou, P.; Rymer, W.Z.; Zhang, Y. Three-Dimensional Innervation Zone Imaging from Multi-Channel Surface EMG Recordings. Int. J. Neural. Syst. 2015, 25, 1550024. [Google Scholar] [CrossRef]
- Ning, Y.; Zhu, X.; Zhu, S.; Zhang, Y. Surface EMG decomposition based on K-means clustering and convolution kernel compensation. IEEE J. Biomed. Health Inform. 2015, 19, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Schwab, B.C.; Misselhorn, J.; Engel, A.K. Modulation of large-scale cortical coupling by transcranial alternating current stimulation. Brain Stimul. 2019, 12, 1187–1196. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Lee, H.J.; Lee, J.; Na, Y.; Chang, W.H.; Kim, Y.H. Optimal stimulation site for rTMS to improve motor function: Anatomical hand knob vs. hand motor hotspot. Neurosci. Lett. 2021, 740, 135424. [Google Scholar] [CrossRef]
- Kim, H.; Wright, D.L.; Rhee, J.; Kim, T. C3 in the 10–20 system may not be the best target for the motor hand area. Brain Res. 2023, 1807, 148311. [Google Scholar] [CrossRef]
- Antal, A.; Boros, K.; Poreisz, C.; Chaieb, L.; Terney, D.; Paulus, W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008, 1, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Liebetanz, D.; Antal, A.; Lang, N.; Tergau, F.; Paulus, W. Modulation of cortical excitability by weak direct current stimulation-technical, safety and functional aspects. Suppl. Clin. Neurophysiol. 2003, 56, 255–276. [Google Scholar] [CrossRef]
- Antal, A.; Herrmann, C.S. Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms. Neural. Plast. 2016, 2016, 3616807. [Google Scholar] [CrossRef] [PubMed]
- Krause, M.R.; Vieira, P.G.; Csorba, B.A.; Pilly, P.K.; Pack, C.C. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc. Natl. Acad. Sci. USA 2019, 116, 5747–5755. [Google Scholar] [CrossRef] [PubMed]
- Reato, D.; Rahman, A.; Bikson, M.; Parra, L.C. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J. Neurosci. 2010, 30, 15067–15079. [Google Scholar] [CrossRef]
- Christou, E.A. Aging and variability of voluntary contractions. Exerc. Sport Sci. Rev. 2011, 39, 77–84. [Google Scholar] [CrossRef]
- Sarkar, A.; Dipani, A.; Leodori, G.; Popa, T.; Kassavetis, P.; Hallett, M.; Thirugnanasambandam, N. Inter-Individual Variability in Motor Output Is Driven by Recruitment Gain in the Corticospinal Tract Rather Than Motor Threshold. Brain Sci. 2022, 12, 1401. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.M.; Christou, E.A.; Enoka, R.M. Multiple features of motor-unit activity influence force fluctuations during isometric contractions. J. Neurophysiol. 2003, 90, 1350–1361. [Google Scholar] [CrossRef] [PubMed]
- Moritz, C.T.; Barry, B.K.; Pascoe, M.A.; Enoka, R.M. Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. J. Neurophysiol. 2005, 93, 2449–2459. [Google Scholar] [CrossRef] [PubMed]
- Kortuem, V.; Kadish, N.E.; Siniatchkin, M.; Moliadze, V. Efficacy of tRNS and 140 Hz tACS on motor cortex excitability seemingly dependent on sensitivity to sham stimulation. Exp. Brain Res. 2019, 237, 2885–2895. [Google Scholar] [CrossRef]
- Kudo, D.; Koseki, T.; Katagiri, N.; Yoshida, K.; Takano, K.; Jin, M.; Nito, M.; Tanabe, S.; Yamaguchi, T. Individualized beta-band oscillatory transcranial direct current stimulation over the primary motor cortex enhances corticomuscular coherence and corticospinal excitability in healthy individuals. Brain Stimul. 2022, 15, 46–52. [Google Scholar] [CrossRef]
Hotspot | C3 | |||||
---|---|---|---|---|---|---|
Pre | Post | %Change | Pre | Post | %Change | |
# of MUs (n) | 18.5 (6.5) | 18.7 (6.5) | 1.08% | 19.7 (4.6) | 19.1 (5.0) | −3.05% |
MUAP Amplitude (μV) | 79.9 (22.3) | 81.3 (22.3) | 1.75% | 86.3 (33.2) | 90.8 (33.2) | 5.21% |
MUAP Firing Rate (Hz) | 11.3 (0.9) | 11.5 (1.0) | 1.77% | 11.6 (0.8) | 11.6 (0.9) | 0.00% |
CoV_MUAP Firing Rate (%) | 17.8 (3.6) | 15.5 (4.1) * | −12.92% | 17.6 (5.1) | 16.8 (3.4) | −4.55% |
CoV_Force (%) | 5.7 (3.7) | 8.4 (8.1) * | 47.37% | 6.6 (5.1) | 8.3 (4.5) | 25.76% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, H.; Houston, M.; Dias, N.; Guo, C.; Francisco, G.; Zhang, Y.; Li, S. Efficacy of High-Definition Transcranial Alternating Current Stimulation (HD-tACS) at the M1 Hotspot Versus C3 Site in Modulating Corticospinal Tract Excitability. Biomedicines 2024, 12, 2635. https://doi.org/10.3390/biomedicines12112635
Meng H, Houston M, Dias N, Guo C, Francisco G, Zhang Y, Li S. Efficacy of High-Definition Transcranial Alternating Current Stimulation (HD-tACS) at the M1 Hotspot Versus C3 Site in Modulating Corticospinal Tract Excitability. Biomedicines. 2024; 12(11):2635. https://doi.org/10.3390/biomedicines12112635
Chicago/Turabian StyleMeng, Hao, Michael Houston, Nicholas Dias, Chen Guo, Gerard Francisco, Yingchun Zhang, and Sheng Li. 2024. "Efficacy of High-Definition Transcranial Alternating Current Stimulation (HD-tACS) at the M1 Hotspot Versus C3 Site in Modulating Corticospinal Tract Excitability" Biomedicines 12, no. 11: 2635. https://doi.org/10.3390/biomedicines12112635
APA StyleMeng, H., Houston, M., Dias, N., Guo, C., Francisco, G., Zhang, Y., & Li, S. (2024). Efficacy of High-Definition Transcranial Alternating Current Stimulation (HD-tACS) at the M1 Hotspot Versus C3 Site in Modulating Corticospinal Tract Excitability. Biomedicines, 12(11), 2635. https://doi.org/10.3390/biomedicines12112635