Procoagulant Status and Fibrinolytic Activity in COVID-19 Patients during Illness and Convalescence
Abstract
:1. Introduction
2. Materials and Methods
- Group 1—patients with mild COVID-19 (n = 39);
- Group 2—patients with moderate COVID-19 (n = 65);
- Group 3—patients with severe COVID-19 (n = 37).
- The National Medical Research Center for Obstetrics, Gynecology and Perinatology, named after academician V.I. Kulakov of the Ministry of Health of the Russian Federation, Moscow, Russia.
- F.I. Inozemtsev City Clinical Hospital, Moscow, Russia.
- A database containing 18 patients with severe COVID-19 was provided by Dr. Fazoil Ataullakhanov (CTP FHF RAS, research work “Use of the thrombodynamics test in COVID-19: identification of early predictors of the development of severe pneumonia and development of effective measures for its prevention”, registration number: AAAA-A20-120111090014-6) [20].
- age over 18 years;
- signed informed consent.
- pregnancy or lactation;
- hereditary deficiency of blood coagulation factors predisposing to hemorrhagic conditions;
- purpura and other hemorrhagic conditions;
- cancer comorbidity;
- history of organ transplantation;
- HIV infection;
- syphilis;
- other acute infectious diseases;
- continuous use of anticoagulants/antiplatelet agents.
- the need for surgery during COVID-19;
- patient’s refusal to continue participation in the study.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. WHO Coronavirus (COVID-19) Dashboard; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [PubMed]
- McCloskey, B.; Heymann, D.L. SARS to novel coronavirus—Old lessons and new lessons. Epidemiol. Infect. 2020, 148, e22. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S. Mapping the Nonstructural Transmembrane Proteins of Severe Acute Respiratory Syndrome Coronavirus 2. J. Comput. Biol. 2021, 28, 909–921. [Google Scholar] [CrossRef] [PubMed]
- Michel, C.J.; Mayer, C.; Poch, O.; Thompson, J.D. Characterization of accessory genes in coronavirus genomes. Virol. J. 2020, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 11727–11734. [Google Scholar] [CrossRef] [PubMed]
- Zang, R.; Gomez Castro, M.F.; McCune, B.T.; Zeng, Q.; Rothlauf, P.W.; Sonnek, N.M.; Liu, Z.; Brulois, K.F.; Wang, X.; Greenberg, H.B.; et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol. 2020, 5, eabc3582. [Google Scholar] [CrossRef] [PubMed]
- Henarejos-Castillo, I.; Sebastian-Leon, P.; Devesa-Peiro, A.; Pellicer, A.; Diaz-Gimeno, P. SARS-CoV-2 infection risk assessment in the endometrium: Viral infection-related gene expression across the menstrual cycle. Fertil. Steril. 2020, 114, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.F.-W.; Yuan, S.; Kok, K.-H.; To, K.K.-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.; Poon, R.W.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Chowdary, P. COVID-19 coagulopathy—What should we treat? Exp. Physiol. 2022, 107, 749–758. [Google Scholar] [CrossRef]
- Beznoshenko, O.; Gorodnova, E.; Dolgushina, N.; Krechetova, L.; Ivanets, T.; Romanov, A.; Menzhinskaya, I.V.; Piregov, A.V. Generation of the Thrombin in COVID-19 Patients with Thrombophilia of Various Genesis Both during Acute Phase and Recovery. Int. J. Bioeng. Life Sci. 2022, 16. [Google Scholar]
- Pavoni, V.; Gianesello, L.; Pazzi, M.; Dattolo, P.; Prisco, D. Questions about COVID-19 associated coagulopathy: Possible answers from the viscoelastic tests. J. Clin. Monit. Comput. 2022, 36, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Kuri-Cervantes, L.; Pampena, M.B.; Meng, W.; Rosenfeld, A.M.; Ittner, C.A.G.; Weisman, A.R.; Agyekum, R.S.; Mathew, D.; Baxter, A.E.; Vella, L.A.; et al. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci. Immunol. 2020, 5, eabd7114. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.; Wong, P.; Klein, J.; Castro, T.B.R.; Silva, J.; Sundaram, M.; Ellingson, M.K.; Mao, T.; Oh, J.E.; Israelow, B.; et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020, 584, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Pavoni, V.; Gianesello, L.; Pazzi, M.; Stera, C.; Meconi, T.; Frigieri, F.C. Evaluation of coagulation function by rotation thromboelastometry in critically ill patients with severe COVID-19 pneumonia. J. Thromb. Thrombolysis 2020, 50, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Lodigiani, C.; Iapichino, G.; Carenzo, L.; Cecconi, M.; Ferrazzi, P.; Sebastian, T.; Kucher, N.; Studt, J.-D.; Sacco, C.; Bertuzzi, A.; et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb. Res. 2020, 191, 9–14. [Google Scholar] [CrossRef]
- Yao, Y.; Cao, J.; Wang, Q.; Shi, Q.; Liu, K.; Luo, Z.; Chen, X.; Chen, S.; Yu, K.; Huang, Z.; et al. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: A case control study. J. Intensive Care 2020, 8, 1–11. [Google Scholar] [CrossRef]
- Bareille, M.; Hardy, M.; Douxfils, J.; Roullet, S.; Lasne, D.; Levy, J.H.; Stépanian, A.; Susen, S.; Frère, C.; Lecompte, T.; et al. Viscoelastometric Testing to Assess Hemostasis of COVID-19: A Systematic Review. J. Clin. Med. 2021, 10, 1740. [Google Scholar] [CrossRef]
- Krechetova, L.V.; Nechipurenko, D.Y.; Shpilyuk, M.A.; Beznoshchenko, O.S.; Beresneva, E.A.; Markelov, M.I.; Ivanets, T.Y.; Gavrilova, T.Y.; Kozachenko, I.F.; Esayan, R.M.; et al. The use of the thrombodynamics test in the diagnostics of hemostasis disorders in patients with COVID-19 of varying severity. J. Clin. Pract. 2021, 12, 23–37. [Google Scholar] [CrossRef]
- Mitrovic, M.; Sabljic, N.; Cvetkovic, Z.; Pantic, N.; Dakic, A.Z.; Bukumiric, Z.; Libek, V.; Savic, N.; Milenkovic, B.; Virijevic, M.; et al. Rotational thromboelastometry (ROTEM) profiling of COVID–19 patients. Platelets 2021, 32, 690–696. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Henderson, L.A.; Canna, S.W.; Schulert, G.S.; Volpi, S.; Lee, P.Y.; Kernan, K.F.; Caricchio, R.; Mahmud, S.; Hazen, M.M.; Halyabar, O.; et al. On the Alert for Cytokine Storm: Immunopathology in COVID-19. Arthritis Rheumatol. 2020, 72, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
- Hincker, A.; Feit, J.; Sladen, R.N.; Wagener, G. Rotational thromboelastometry predicts thromboembolic complications after major non-cardiac surgery. Crit. Care 2014, 18, 549. [Google Scholar] [CrossRef]
- Zanetto, A.; Senzolo, M.; Vitale, A.; Cillo, U.; Radu, C.; Sartorello, F.; Spiezia, L.; Campello, E.; Rodriguez-Castro, K.; Ferrarese, A.; et al. Thromboelastometry hypercoagulable profiles and portal vein thrombosis in cirrhotic patients with hepatocellular carcinoma. Dig. Liver Dis. 2017, 49, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Kong, R.; Hutchinson, N.; Görlinger, K. Hyper- and hypocoagulability in COVID-19 as assessed by thromboelastometry -two case reports-. Korean J. Anesthesiol. 2021, 74, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ejikemeuwa, A.; Gerzanich, V.; Nasr, M.; Tang, Q.; Simard, J.M.; Zhao, R.Y. Understanding the Role of SARS-CoV-2 ORF3a in Viral Pathogenesis and COVID-19. Front. Microbiol. 2022, 13, 854567. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.-E.; Kim, D.-K.; Song, Y.-J. SARS-CoV-2 Nonstructural Proteins 1 and 13 Suppress Caspase-1 and the NLRP3 Inflammasome Activation. Microorganisms 2021, 9, 494. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, S.; Xiao, Y.; Zhang, W.; Wu, S.; Qin, T.; Yue, Y.; Qian, W.; Li, L. NLRP3 Inflammasome and Inflammatory Diseases. Oxidative Med. Cell. Longev. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Liu, F.; Zhang, D.; Ling, J.; Zhu, Z.; Chen, Y.; Yang, P.; Yang, Y.; Liu, X.; et al. Role of NLRP3 inflammasome in diabetes and COVID-19 role of NLRP3 inflammasome in the pathogenesis and treatment of COVID-19 and diabetes NLRP3 inflammasome in diabetes and COVID-19 intervention. Front. Immunol. 2023, 14, 1203389. [Google Scholar] [CrossRef]
- Makatsariya, A.; Slukhanchuk, E.; Bitsadze, V.; Khizroeva, J.; Tretyakova, M.; Tsibizova, V.; Dobryakov, A.; Elalamy, I.; Gris, J.C. COVID-19, neutrophil extracellular traps and vascular complications in obstetric practice. JPME 2020, 48, 985–994. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Kumar, N.; Singh, M.; Kaur, M.; Singh, G.; Narang, A.; Kanwal, A.; Sharma, K.; Singh, B.; Napoli, M.D.; et al. Neutrophil Extracellular Traps and NLRP3 Inflammasome: A Disturbing Duo in Atherosclerosis, Inflammation and Atherothrombosis. Vaccines 2023, 11, 261. [Google Scholar] [CrossRef] [PubMed]
- Nougier, C.; Benoit, R.; Simon, M.; Desmurs-Clavel, H.; Marcotte, G.; Argaud, L.; David, J.S.; Bonnet, A.; Negrier, C.; Dargaud, Y. Hypofibrinolytic state and high thrombin generation may play a major role in SARS-CoV2 associated thrombosis. J. Thromb. Haemost. 2020, 18, 2215–2219. [Google Scholar] [CrossRef] [PubMed]
- Dolgushina, N.; Gorodnova, E.; Beznoshenco, O.; Romanov, A.; Menzhinskaya, I.; Krechetova, L.; Sukhikh, G. Von Willebrand Factor and ADAMTS-13 Are Associated with the Severity of COVID-19 Disease. J. Clin. Med. 2022, 11, 4006. [Google Scholar] [CrossRef] [PubMed]
- Wright, F.L.; Vogler, T.O.; Moore, E.E.; Moore, H.B.; Wohlauer, M.V.; Urban, S.; Nydam, T.L.; Moore, P.K.; McIntyre, R.C., Jr. Fibrinolysis Shutdown Correlation with Thromboembolic Events in Severe COVID-19 Infection. J. Am. Coll. Surg. 2020, 231, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.-W.; Ilyas, I.; Weng, J.-P. Endothelial dysfunction in COVID-19: An overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol. Sin. 2022, 44, 695–709. [Google Scholar] [CrossRef] [PubMed]
- Görlinger, K.; Almutawah, H.; Almutawaa, F.; Alwabari, M.; Alsultan, Z.; Almajed, J.; Alwabari, M.; Alsultan, M.; Shahwar, D.; Yassen, K.A. The role of rotational thromboelastometry during the COVID-19 pandemic: A narrative review. Korean J. Anesthesiol. 2021, 74, 91–102. [Google Scholar] [CrossRef]
- Oxley, T.J.; Mocco, J.; Majidi, S.; Kellner, C.P.; Shoirah, H.; Singh, I.P.; De Leacy, R.A.; Shigematsu, T.; Ladner, T.R.; Yaeger, K.A.; et al. Large-Vessel Stroke as a Presenting Feature of COVID-19 in the Young. N. Engl. J. Med. 2020, 382, e60. [Google Scholar] [CrossRef]
- Magro, C.; Mulvey, J.J.; Berlin, D.; Nuovo, G.; Salvatore, S.; Harp, J.; Baxter-Stoltzfus, A.; Laurence, J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl. Res. 2020, 220, 1–13. [Google Scholar] [CrossRef]
- Teuwen, L.-A.; Geldhof, V.; Pasut, A.; Carmeliet, P. COVID-19: The vasculature unleashed. Nat. Rev. Immunol. 2020, 20, 389–391. [Google Scholar] [CrossRef]
- Driggin, E.; Madhavan, M.V.; Bikdeli, B.; Chuich, T.; Laracy, J.; Biondi-Zoccai, G.; Brown, T.S.; Der Nigoghossian, C.; Zidar, D.A.; Haythe, J.; et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J. Am. Coll. Cardiol. 2020, 75, 2352–2371. [Google Scholar] [CrossRef] [PubMed]
Criteria | Mild COVID-19 | Moderate COVID-19 | Severe COVID-19 |
---|---|---|---|
Complaints and main symptoms |
|
|
|
Body temperature, °C | <38 | >38 | - |
Respiratory rate, bits per min | - | >22 | >30 |
Saturation (SpO2), % | - | <95 | ≤93 |
CT/X-ray data | - | Typical for viral infection | - |
serum CRP, mg/L | - | >10 | - |
PaO2/FiO2, mmHg | - | - | ≤300 |
Arterial blood lactate, mmol/L | - | - | >2 |
Hemodynamics | - | - | Unstable (systolic blood pressure less than 90 mm Hg or diastolic blood pressure less than 60 mm Hg, diuresis less than 20 mL/h) |
qSOFA, points | - | - | >2 |
Characteristics | Group 1 | Group 2 | Group 3 | p-Value |
---|---|---|---|---|
Gender male | 7 (17.9%) | 24 (36.9%) | 22 (59.5%) | 0.0009 *** |
Gender female | 32 (82.1%) | 41 (63.1%) | 15 (40.5%) | |
Age, years | 38 (34–54) | 60 (43–78) | 63 (53–71) | 0.0001 ** |
Age ≥ 56 years | 8 (20.5%) | 41 (63.1%) | 25 (67.6%) | <0.0001 *** |
Height, m | 1.67 ± 0.09 | 1.68 ± 0.08 | 1.69 ± 0.07 | 0.5664 * |
Body weight, kg | 71.3 ± 15.4 | 78.5 ± 20.3 | 83.3 ± 12.5 | 0.0094 * |
BMI, kg/m2 | 25.2 ± 4.4 | 27.4 ± 6.2 | 29.1 ± 5.3 | 0.0092 * |
Patients with BMI ≥ 25 kg/m2 | 19 (48.7%) | 34 (52.3%) | 29 (78.4%) | 0.0138 *** |
Smoking | 4 (10.3%) | 10 (15.4%) | 1 (2.7%) | 0.1355 *** |
Blood group 0(I) | 18 (46.1%) | 9 (13.9%) | 10 (27.0%) | 0.0017 *** |
Blood group A(II) | 12 (30.8%) | 42 (64.6%) | 18 (48.7%) | |
Blood group B(III) | 3 (7.7%) | 11 (16.9%) | 7 (18.9%) | |
Blood group AB(IV) | 6 (15.4%) | 3 (4.6%) | 2 (5.4%) | |
Alcohol consumption | 13 (33.3%) | 12 (18.5%) | 9 (24.3%) | 0.229 *** |
Duration of treatment, days | 7.4 ± 5.1 | 12.1 ± 10.4 | 30.0 ± 7.4 | 0.0026 *** |
Indicator, Measurement Units, (Reference Interval) | Time Point | Group 1 | Group 2 | Group 3 | p-Value |
---|---|---|---|---|---|
CT EXTEM, s, (38–79) | 1 | 67 (62.3–72.8) | 79.9 (67–106) | 81 (70.5–106.8) | <0.0001 * |
2 | 72.5 (70–98) | 79 (67–106) | 77 (74.3–85.8) | 0.7174 * | |
p < 0.0001 ** | p = 0.6608 ** | p = 0.2946 ** | |||
CFT EXTEM, s, (34–159) | 1 | 77 (67.5–91.8) | 70 (62–86.5) | 57 (50.5–72) | 0.0043 * |
2 | 80 (65–95) | 68.5 (57–88) | 58 (44–64.5) | 0.0010 * | |
p = 0.9531 ** | p = 0.8044 ** | p = 0.3328 ** | |||
α-angle EXTEM, %, (64–79) | 1 | 75 (72–77) | 76 (73–78) | 78 (75.8–80) | 0.0043 * |
2 | 74 (71–77) | 76.5 (73–79) | 78 (78–81.5) | 0.0006 * | |
p = 0.7566 ** | p = 0.7809 ** | p = 0.4855 ** | |||
A10 EXTEM, mm, (43–65) | 1 | 59 (53.3–60.8) | 60.5 (56–66) | 64 (58.5–70.5) | 0.0074 * |
2 | 58.5 (53–64) | 60 (55–66) | 64 (58.5–70.5) | 0.0054 * | |
p = 0.9491 ** | p = 0.8167 ** | p = 0.5141 ** | |||
A20 EXTEM, mm, (55–72) | 1 | 64 (59.3–66) | 66 (62–71) | 70 (62.8–73.3) | 0.0131 * |
2 | 64 (60–68) | 66 (62–71) | 69 (65–74.8) | 0.0065 * | |
p = 0.7683 ** | p = 0.9249 ** | p = 0.5398 ** | |||
MCF EXTEM, mm, (50–72) | 1 | 65 (60–67) | 66 (62–72) | 70 (66.3–73.3) | 0.0162 * |
2 | 64.5 (60–69) | 67.5 (64–71) | 70 (66.3–74.7) | 0.0031 * | |
p = 0.8328 ** | p = 0.5319 ** | p = 0.4883 ** | |||
TPI EXTEM, c.u., (19–131) | 1 | 74.5 (52–86) | 87 (59.8–135) | 126 (75–154) | 0.0084 * |
2 | 71.5 (46–104) | 86 (61.5–135.3) | 122 (92–182.8) | 0.0007 * | |
p = 0.9204 ** | p = 0.7217 ** | p = 0.4291 ** | |||
ML EXTEM, %, <15 | 1 | 6 (3.3–9) | 6 (4–11) | 7 (2.8–9.3) | 0.8242 * |
2 | 5 (3–9) | 4 (2–6) | 3 (2–4) | 0.0256 * | |
p = 0.4852 ** | p = 0.0004 ** | p = 0.0484 ** |
Indicator, Measurement Units, (Reference Interval) | Time Point | Group 1 | Group 2 | Group 3 | p-Value |
---|---|---|---|---|---|
CT INTEM, s, (100–240) | 1 | 194 (178–212) | 190 (174–206) | 198 (189–224) | 0.1924 * |
2 | 200 (192–214) | 193 (172–209) | 201 (181–216) | 0.1459 * | |
p = 0.1453 ** | p = 0.7569 ** | p = 0.4408 ** | |||
CFT INTEM, s, (30–110) | 1 | 70 (62–90) | 61.5 (49–72) | 56 (45.3–64.3) | 0.0002 * |
2 | 80 (65–95) | 68.5 (57–88) | 58 (44–64.5) | 0.0010 * | |
p = 0.3219 ** | p = 0.7630 ** | p = 0.2511 ** | |||
α-angle INTEM, %, (64–80) | 1 | 76 (73–77) | 77 (75–80) | 79 (76.8–81) | 0.0043 * |
2 | 74 (71–77) | 76.5 (73–79) | 78 (78–81.5) | 0.0006 * | |
p = 0.7302 ** | p = 0.9332 ** | p = 0.1761 ** | |||
A10 INTEM, mm, (44–66) | 1 | 56 (52–60) | 60 (56–64.5) | 63 (57.5–68.5) | 0.0021 * |
2 | 58.5 (53–64) | 60 (55–66) | 64 (58.5–70.5) | 0.0054 * | |
p = 0.6201 ** | p = 0.8084 ** | p = 0.4641 ** | |||
A20 INTEM, mm, (55–70) | 1 | 61 (57.3–64) | 64 (61–68.5) | 65 (62.3–73.3) | 0.0029 * |
2 | 64 (60–68) | 66 (62–71) | 69 (65–74.8) | 0.0065 * | |
p = 0.3929 ** | p = 0.3915 ** | p = 0.3951 ** | |||
MCF INTEM, mm, (50–71) | 1 | 60 (58–64.8) | 64 (61–69) | 65 (63.7–71.5) | 0.0023 * |
2 | 64.5 (60–69) | 67.5 (64–71) | 70 (66.3–74.8) | 0.0031 * | |
p = 0.4856 ** | p = 0.2896 ** | p = 0.3227 ** | |||
TPI INTEM, c.u., (39–143) | 1 | 65.5 (47–85) | 87 (63.5–136) | 128.5 (80–172.5) | 0.0005 * |
2 | 73 (52.3–97.5) | 93 (73.5–135.5) | 126.5 (102–126.5) | <0.0001 * | |
p = 0.4386 ** | p = 0.4443 ** | p = 0.3947 ** | |||
ML INTEM, %, <15 | 1 | 7 (5–10) | 7 (4.5–12) | 7 (1.8–11.3) | 0.8655 * |
2 | 6 (4–8.8) | 4.5 (2–8) | 3 (0–4.8) | 0.0235 * | |
p = 0.3325 ** | p = 0.0013 ** | p = 0.0290 ** |
Indicator, Measurement Units, (Reference Interval) | Time Point | Group 1 | Group 2 | Group 3 | p-Value |
---|---|---|---|---|---|
A 10 FIBTEM, mm, (8–23) | 1 | 17 (14.3–22) | 23.5 (17–33) | 28 (19–35.3) | 0.0004 * |
2 | 17 (13–20) | 21 (17–27) | 27 (22.3–34.3) | <0.0001 * | |
p = 0.2869 ** | p = 0.1647 ** | p = 0.9056 ** | |||
A 20 FIBTEM, mm, (9–25) | 1 | 18 (15–23) | 25.5 (18–35) | 29 (20–37.3) | 0.0002 * |
2 | 17 (14–21) | 23 (19–30) | 28 (23.5–35.8) | <0.0001 * | |
p = 0.3048 ** | p = 0.1739 ** | p = 0.8744 ** | |||
MCF FIBTEM, mm, (10–28) | 1 | 18 (15.3–23.7) | 26 (18.5–35.5) | 29 (20–37.5) | 0.0001 * |
2 | 17 (14–21) | 24 (18–30) | 28.1 (24.5–36) | <0.0001 * | |
p = 0.2865 ** | p = 0.1337 ** | p = 0.8588 ** | |||
ML FIBTEM, %, <9 | 1 | 0 (0–1) | 1 (0–4.5) | 1 (0–3.3) | 0.0232 * |
2 | 0 (0–1) | 0 (0–3) | 0 (0–2.3) | 0.3781 * | |
p = 0.7827 ** | p = 0.2770 ** | p = 0.1015 ** |
Indicator (Measurement Units) (Reference Interval) | Group 1 | Group 2 | Group 3 | p-Value |
---|---|---|---|---|
Leukocytes (×109/L) (3.50–9.00) | 5.12 ± 2.29 | 6.16 ± 3.41 | 7.48 ± 3.21 | 0.0060 * |
Red blood cells (×1012/L) (3.50–5.10) | 4.86 ± 0.49 | 4.50 ± 0.59 | 4.67 ± 0.73 | 0.0197 * |
Hemoglobin (g/L) (105–170) | 139.9 ± 15.7 | 132.1 ± 24.1 | 132.1 ± 24.5 | 0.1893 * |
Hematocrit (0.320–0.460) | 0.417 ± 0.049 | 0.390 ± 0.064 | 0.386 ± 0.064 | 0.0451 * |
Platelets (×109/L) (150–400) | 239.8 ± 52.2 | 235.7 ± 90.3 | 260.5 ± 110.1 | 0.3871 * |
Neutrophils (×109/L) (2.0–6.0) | 2.97 ± 2.11 | 4.02 ± 2.43 | 5.85 ± 2.99 | <0.0001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beznoshchenco, O.S.; Romanov, A.Y.; Dolgushina, N.V.; Gorodnova, E.A.; Ivanets, T.Y.; Yarotskaya, E.L.; Pyregov, A.V.; Grachev, S.V.; Sukhikh, G.T. Procoagulant Status and Fibrinolytic Activity in COVID-19 Patients during Illness and Convalescence. Biomedicines 2024, 12, 42. https://doi.org/10.3390/biomedicines12010042
Beznoshchenco OS, Romanov AY, Dolgushina NV, Gorodnova EA, Ivanets TY, Yarotskaya EL, Pyregov AV, Grachev SV, Sukhikh GT. Procoagulant Status and Fibrinolytic Activity in COVID-19 Patients during Illness and Convalescence. Biomedicines. 2024; 12(1):42. https://doi.org/10.3390/biomedicines12010042
Chicago/Turabian StyleBeznoshchenco, Olga S., Andrey Yu. Romanov, Nataliya V. Dolgushina, Elena A. Gorodnova, Tatiana Yu. Ivanets, Ekaterina L. Yarotskaya, Aleksey V. Pyregov, Sergej V. Grachev, and Gennady T. Sukhikh. 2024. "Procoagulant Status and Fibrinolytic Activity in COVID-19 Patients during Illness and Convalescence" Biomedicines 12, no. 1: 42. https://doi.org/10.3390/biomedicines12010042
APA StyleBeznoshchenco, O. S., Romanov, A. Y., Dolgushina, N. V., Gorodnova, E. A., Ivanets, T. Y., Yarotskaya, E. L., Pyregov, A. V., Grachev, S. V., & Sukhikh, G. T. (2024). Procoagulant Status and Fibrinolytic Activity in COVID-19 Patients during Illness and Convalescence. Biomedicines, 12(1), 42. https://doi.org/10.3390/biomedicines12010042