From Genes to Therapy: Pituitary Adenomas in the Era of Precision Medicine
Abstract
:1. Introduction
1.1. Definition and Categorization of Intracranial Tumors
1.2. A Brief Overview of the Unchanged Prognosis over the Past Two Decades
2. Pituitary Adenomas
2.1. Introduction
2.2. Distinction from Other Intracranial Tumors
3. Epigenetics of Pituitary Adenomas
3.1. Introduction to the Role of Epigenetics in Tumor Development—Specific Changes Associated with Pituitary Adenomas
3.2. Potential Therapeutic Avenues Targeting Epigenetic Modifications
4. Transcriptomic Insights into Pituitary Adenomas
4.1. Overview of Transcriptomics and Its Significance in Cancer Biology
4.2. Implications for Targeted Therapy Based on Transcriptomic Data
5. Immunological Aspects of Pituitary Adenomas
5.1. Introduction to the Immune Response in Intracranial Tumors
5.2. Opportunities and Challenges for Immunotherapy in Pituitary Adenomas
6. The Tumor Microenvironment in Pituitary Adenomas
6.1. Exploring the Microenvironment’s Contribution to Pituitary Adenoma Progression
6.2. Strategies to Target and Modulate the Tumor Microenvironment for Therapeutic Advantage
7. Biomarkers: The Future of Diagnosis and Treatment
7.1. The Importance of Biomarkers in Oncology
7.2. Exploring Potential Biomarkers Specific to Intracranial Tumors and Pituitary Adenomas
7.3. Role of Biomarkers in Early Diagnosis and Targeted Therapies
8. Old and Emerging Targets for Therapy: A Glimpse into the Future
8.1. Historical Treatment Options: A Static Landscape
8.1.1. Analysis of Traditional Treatments over the Past 20 Years
8.1.2. The Exceptions: Pituitary Adenomas and the Alternative Treatments
8.2. Overview of the Current State of Targeted Therapies
8.3. Potential Novel Targets
8.3.1. Advances in the Imaging of Pituitary Tumors
8.3.2. Single-Cell RNA Sequencing
9. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Hao, B.; Zhang, M.; Reiter, R.J.; Lin, S.; Zheng, T.; Chen, X.; Ren, Y.; Yue, L.; Abay, B.; et al. Melatonin enhances radiofrequency-induced NK antitumor immunity, causing cancer metabolism reprogramming and inhibition of multiple pulmonary tumor development. Signal Transduct. Target. Ther. 2021, 6, 330. [Google Scholar] [CrossRef] [PubMed]
- Nayak, D.R.; Padhy, N.; Mallick, P.K.; Zymbler, M.; Kumar, S. Brain Tumor Classification Using Dense Efficient-Net. Axioms 2022, 11, 34. [Google Scholar] [CrossRef]
- Liu, A.P.Y.; Dhanda, S.K.; Lin, T.; Sioson, E.; Vasilyeva, A.; Gudenas, B.; Tatevossian, R.G.; Jia, S.; Neale, G.; Bowers, D.C.; et al. Molecular classification and outcome of children with rare CNS embryonal tumors: Results from St. Jude Children’s Research Hospital including the multi-center SJYC07 and SJMB03 clinical trials. Acta Neuropathol. 2022, 144, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Kessler, T.; Schrimpf, D.; Doerner, L.; Hai, L.; Kaulen, L.D.; Ito, J.; Bent, M.v.D.; Taphoorn, M.; Brandes, A.A.; Idbaih, A.; et al. Prognostic Markers of DNA Methylation and Next-Generation Sequencing in Progressive Glioblastoma from the EORTC-26101 Trial. Clin. Cancer Res. 2023, 29, 3892–3900. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Solanki, S.; Singh, U.P.; Chouhan, S.S.; Jain, S. Brain Tumor Detection and Classification Using Intelligence Techniques: An Overview. IEEE Access 2023, 11, 12870–12886. [Google Scholar] [CrossRef]
- Bhimani, A.D.; Schupper, A.J.; Arnone, G.D.; Chada, D.; Chaker, A.N.; Mohammadi, N.; Hadjipanayis, C.G.; Mehta, A.I. Size Matters: Rethinking of the Sizing Classification of Pituitary Adenomas Based on the Rates of Surgery: A Multi-institutional Retrospective Study of 29,651 Patients. J. Neurol. Surg. B Skull Base 2020, 83, 66–75. [Google Scholar] [CrossRef]
- Kim, S.; Hoch, M.J.; Peng, L.; Somasundaram, A.; Chen, Z.; Weinberg, B.D. A brain tumor reporting and data system to optimize imaging surveillance and prognostication in high-grade gliomas. J. Neuroimaging 2022, 32, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
- Giannini, C.; Burger, P.C.; Berkey, B.A.; Cairncross, J.G.; Jenkins, R.B.; Mehta, M.; Curran, W.J.; Aldape, K. Anaplastic Oligodendroglial Tumors: Refining the Correlation among Histopathology, 1p 19q Deletion and Clinical Outcome in Intergroup Radiation Therapy Oncology Group Trial 9402. Brain Pathol. 2008, 18, 360–369. [Google Scholar] [CrossRef]
- Woehrer, A.; Registry, O.B.O.T.A.B.T.; Hackl, M.; Waldhör, T.; Weis, S.; Pichler, J.; Olschowski, A.; Buchroithner, J.; Maier, H.; Stockhammer, G.; et al. Relative survival of patients with non-malignant central nervous system tumours: A descriptive study by the Austrian Brain Tumour Registry. Br. J. Cancer 2014, 110, 286–296. [Google Scholar] [CrossRef]
- Rutenberg, M.S.; Rotondo, R.L.; Rao, D.; Holtzman, A.L.; Indelicato, D.J.; Huh, S.; Morris, C.G.; Mendenhall, W.M. Clinical outcomes following proton therapy for adult craniopharyngioma: A single-institution cohort study. J. Neurooncol. 2020, 147, 387–395. [Google Scholar] [CrossRef]
- Asa, S.L.; Mete, O.; Perry, A.; Osamura, R.Y. Overview of the 2022 WHO Classification of Pituitary Tumors. Endocr. Pathol. 2022, 33, 6–26. [Google Scholar] [CrossRef] [PubMed]
- Vergeer, R.A.; Postma, M.R.; Schmidt, I.; Korsten-Meijer, A.G.; Feijen, R.A.; Kruijff, S.; Nagengast, W.B.; van Dijk, J.M.C.; Dunnen, W.F.A.D.; van Beek, A.P.; et al. Detection by fluorescence of pituitary neuroendocrine tumour (PitNET) tissue during endoscopic transsphenoidal surgery using bevacizumab-800CW (DEPARTURE trial): Study protocol for a non-randomised, non-blinded, single centre, feasibility and dose-finding trial. BMJ Open 2021, 11, e049109. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhang, D.; Pang, H.; Wang, Z.; Gao, L.; Wang, Y.; Ma, W.; Lian, W.; Xing, B. Safety of Withholding Perioperative Hydrocortisone for Patients with Pituitary Adenomas with an Intact Hypothalamus-Pituitary-Adrenal Axis: A Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e2242221. [Google Scholar] [CrossRef] [PubMed]
- Majd, N.; Waguespack, S.G.; Janku, F.; Fu, S.; Penas-Prado, M.; Xu, M.; Alshawa, A.; Kamiya-Matsuoka, C.; Raza, S.M.; McCutcheon, I.E.; et al. Efficacy of pembrolizumab in patients with pituitary carcinoma: Report of four cases from a phase II study. J. Immunother. Cancer 2020, 8, e001532. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hou, B.; Lu, L.; Feng, M.; Zang, J.; Yao, S.; Feng, F.; Wang, R.; Li, F.; Zhu, Z. PET/MRI in the Diagnosis of Hormone-Producing Pituitary Microadenoma: A Prospective Pilot Study. J. Nucl. Med. 2018, 59, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis 2010, 31, 27–36. [Google Scholar] [CrossRef]
- Liu, A.P.Y.; Gudenas, B.; Lin, T.; Orr, B.A.; Klimo, P.; Kumar, R.; Bouffet, E.; Gururangan, S.; Crawford, J.R.; Kellie, S.J.; et al. Risk-adapted therapy and biological heterogeneity in pineoblastoma: Integrated clinico-pathological analysis from the prospective, multi-center SJMB03 and SJYC07 trials. Acta Neuropathol. 2020, 139, 259–271. [Google Scholar] [CrossRef]
- García-Martínez, A.; Sottile, J.; Sánchez-Tejada, L.; Fajardo, C.; Cámara, R.; Lamas, C.; Barberá, V.M.; Picó, A. DNA Methylation of Tumor Suppressor Genes in Pituitary Neuroendocrine Tumors. J. Clin. Endocrinol. Metab. 2019, 104, 1272–1282. [Google Scholar] [CrossRef]
- Kober, P.; Boresowicz, J.; Rusetska, N.; Maksymowicz, M.; Paziewska, A.; Dąbrowska, M.; Kunicki, J.; Bonicki, W.; Ostrowski, J.; Siedlecki, J.A.; et al. The Role of Aberrant DNA Methylation in Misregulation of Gene Expression in Gonadotroph Nonfunctioning Pituitary Tumors. Cancers 2019, 11, 1650. [Google Scholar] [CrossRef]
- Hauser, B.M.; Lau, A.; Gupta, S.; Bi, W.L.; Dunn, I.F. The Epigenomics of Pituitary Adenoma. Front. Endocrinol. 2019, 10, 290. [Google Scholar] [CrossRef] [PubMed]
- Fuks, F.; Burgers, W.A.; Brehm, A.; Hughes-Davies, L.; Kouzarides, T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat. Genet. 2000, 24, 88–91. [Google Scholar] [CrossRef]
- LaPierre, M.P.; Godbersen, S.; Esteban, M.T.; Schad, A.N.; Treier, M.; Ghoshdastider, U.; Stoffel, M. MicroRNA-7a2 Regulates Prolactin in Developing Lactotrophs and Prolactinoma Cells. Endocrinology 2021, 162, bqaa220. [Google Scholar] [CrossRef]
- Armagan, D.M.; Akdemir, A.S.; Ozkaya, H.M.; Korkmaz, O.P.; Gazioglu, N.; Kadioglu, P.; Tanriover, N.; Dagistanli, K.-F.; Dirican, A.; Ozturk, M. SNPs of miR-23b, miR-107 and HMGA2 and their Relations with the Response to Medical Treatment in Acromegaly Patients. Exp. Clin. Endocrinol. Diabetes 2021, 129, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Cheng, J.; Li, B.; Nie, D.; Li, C.; Gui, S.; Wang, H.; Zhang, Y. Up-regulation of the expressions of MiR-149-5p and MiR-99a-3p in exosome inhibits the progress of pituitary adenomas. Cell Biol. Toxicol. 2021, 37, 633–651. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Jiang, X.; Weisenthal, K.; Ma, J.; Botticelli, E.M.; Zhou, Y.; Hedley-Whyte, E.T.; Wang, B.; Swearingen, B.; Soberman, R.J.; et al. High Histone Deacetylase 2/3 Expression in Non-Functioning Pituitary Tumors. Front. Oncol. 2022, 12, 875122. [Google Scholar] [CrossRef] [PubMed]
- Bi, K.; He, M.X.; Bakouny, Z.; Kanodia, A.; Napolitano, S.; Wu, J.; Grimaldi, G.; Braun, D.A.; Cuoco, M.S.; Mayorga, A.; et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell 2021, 39, 649–661.e5. [Google Scholar] [CrossRef]
- Velten, L.; Story, B.A.; Hernández-Malmierca, P.; Raffel, S.; Leonce, D.R.; Milbank, J.; Paulsen, M.; Demir, A.; Szu-Tu, C.; Frömel, R.; et al. Identification of leukemic and pre-leukemic stem cells by clonal tracking from single-cell transcriptomics. Nat. Commun. 2021, 12, 1366. [Google Scholar] [CrossRef]
- Xing, X.; Yang, F.; Huang, Q.; Guo, H.; Li, J.; Qiu, M.; Bai, F.; Wang, J. Decoding the multicellular ecosystem of lung adenocarcinoma manifested as pulmonary subsolid nodules by single-cell RNA sequencing. Sci. Adv. 2021, 7, eabd9738. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z. Recharacterizing Tumor-Infiltrating Lymphocytes by Single-Cell RNA Sequencing. Cancer Immunol. Res. 2019, 7, 1040–1046. [Google Scholar] [CrossRef] [PubMed]
- Rodon, J.; Soria, J.-C.; Berger, R.; Miller, W.H.; Rubin, E.; Kugel, A.; Tsimberidou, A.; Saintigny, P.; Ackerstein, A.; Braña, I.; et al. Genomic and transcriptomic profiling expands precision cancer medicine: The WINTHER trial. Nat. Med. 2019, 25, 5. [Google Scholar] [CrossRef]
- Weidenbusch, B.; Richter, G.H.; Kesper, M.S.; Guggemoos, M.; Gall, K.; Prexler, C.; Kazantsev, I.; Sipol, A.; Lindner, L.; Nathrath, M.; et al. Transcriptome based individualized therapy of refractory pediatric sarcomas: Feasibility, tolerability and efficacy. Oncotarget 2018, 9, 20747–20760. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.L.; Horowitz, P.; Greenwald, N.F.; Abedalthagafi, M.; Agarwalla, P.K.; Gibson, W.J.; Mei, Y.; Schumacher, S.E.; Ben-David, U.; Chevalier, A.; et al. Landscape of genomic alterations in pituitary adenomas. Clin. Cancer Res. 2017, 23, 1841–1851. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gao, H.; Xie, W.; Guo, J.; Fang, Q.; Zhao, P.; Liu, C.; Zhu, H.; Wang, Z.; Wang, J.; et al. Genomic and transcriptomic analysis of pituitary adenomas reveals the impacts of copy number variations on gene expression and clinical prognosis among prolactin-secreting subtype. Aging 2020, 13, 1276–1293. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi-Ponciano, K.; Andonegui-Elguera, S.; Peña-Martínez, E.; Silva-Román, G.; Vela-Patiño, S.; Gomez-Apo, E.; Chavez-Macias, L.; Vargas-Ortega, G.; Espinosa-De-Los-Monteros, L.; Gonzalez-Virla, B.; et al. Transcriptome and methylome analysis reveals three cellular origins of pituitary tumors. Sci. Rep. 2020, 10, 19373. [Google Scholar] [CrossRef] [PubMed]
- Guaraldi, F.; Morandi, L.; Zoli, M.; Mazzatenta, D.; Righi, A.; Evangelisti, S.; Ambrosi, F.; Tonon, C.; Giannini, C.; Lloyd, R.V.; et al. Epigenomic and somatic mutations of pituitary tumors with clinical and pathological correlations in 111 patients. Clin. Endocrinol. 2022, 97, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.Y.; Osorio, R.C.; Jung, J.; Carrete, L.; Choudhary, N.; Lad, M.; Saha, A.; Aghi, M.K. Transcriptomic Profiles of Normal Pituitary Cells and Pituitary Neuroendocrine Tumor Cells. Cancers 2022, 15, 110. [Google Scholar] [CrossRef] [PubMed]
- Boyle, J.; Patronas, N.J.; Smirniotopoulos, J.; Herscovitch, P.; Dieckman, W.; Millo, C.; Maric, D.; Chatain, G.P.; Hayes, C.P.; Benzo, S.; et al. CRH stimulation improves 18F-FDG-PET detection of pituitary adenomas in Cushing’s disease. Endocrine 2019, 65, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Hu, X.; Peng, M.; Deng, J.; Zhou, S.; Xu, S.; Wu, J.; Yang, X. Inhibitory role of proguanil on the growth of bladder cancer via enhancing EGFR degradation and inhibiting its downstream signaling pathway to induce autophagy. Cell Death Dis. 2022, 13, 499. [Google Scholar] [CrossRef]
- Gadelha, M.R.; Bronstein, M.D.; Brue, T.; Coculescu, M.; Fleseriu, M.; Guitelman, M.; Pronin, V.; Raverot, G.; Shimon, I.; Lievre, K.K.; et al. Pasireotide versus continued treatment with octreotide or lanreotide in patients with inadequately controlled acromegaly (PAOLA): A randomised, phase 3 trial. Lancet Diabetes Endocrinol. 2014, 2, 875–884. [Google Scholar] [CrossRef]
- Passos, V.Q.; Fortes, M.A.H.Z.; Giannella-Neto, D.; Bronstein, M.D. Genes differentially expressed in prolactinomas responsive and resistant to dopamine agonists. Neuroendocrinology 2009, 89, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Li, C.; Jiang, Z.; Zhang, S.; Li, Q.; Liu, X.; Zhou, Y.; Li, R.; Wei, L.; Li, L.; et al. Single-cell transcriptome and genome analyses of pituitary neuroendocrine tumors. Neuro Oncol. 2021, 23, 1859–1871. [Google Scholar] [CrossRef] [PubMed]
- Yeung, J.T.; Vesely, M.D.; Miyagishima, D.F. In silico analysis of the immunological landscape of pituitary adenomas. J. Neurooncol. 2020, 147, 595–598. [Google Scholar] [CrossRef] [PubMed]
- Ilie, M.D.; Vasiljevic, A.; Raverot, G.; Bertolino, P. The Microenvironment of Pituitary Tumors—Biological and Therapeutic Implications. Cancers 2019, 11, 1605. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Guo, X.; Gao, L.; Deng, K.; Lian, W.; Bao, X.; Feng, M.; Duan, L.; Zhu, H.; Xing, B. The Immune Profile of Pituitary Adenomas and a Novel Immune Classification for Predicting Immunotherapy Responsiveness. J. Clin. Endocrinol. Metab. 2020, 105, e3207–e3223. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Li, B.; Chen, Y.; Li, C.; Zhang, Y. Analysis of the Prognostic and Immunological Role of HSPB1 in Pituitary Adenoma: A Potential Target for Therapy. Medicina 2023, 59, 885. [Google Scholar] [CrossRef] [PubMed]
- Nie, D.; Xue, Y.; Fang, Q.; Cheng, J.; Li, B.; Wang, D.; Li, C.; Gui, S.; Zhang, Y.; Zhao, P. Immune Checkpoints: Therapeutic Targets for Pituitary Tumors. Dis. Markers 2021, 2021, 5300381. [Google Scholar] [CrossRef] [PubMed]
- Kemeny, H.R.; Elsamadicy, A.A.; Farber, S.H.; Champion, C.D.; Lorrey, S.J.; Chongsathidkiet, P.; Woroniecka, K.I.; Cui, X.; Shen, S.H.; Rhodin, K.E.; et al. Targeting PD-L1 Initiates Effective Antitumor Immunity in a Murine Model of Cushing Disease. Clin. Cancer Res. 2020, 26, 1141–1151. [Google Scholar] [CrossRef]
- Sol, B.; de Filette, J.M.K.; Awada, G.; Raeymaeckers, S.; Aspeslagh, S.; Andreescu, C.E.; Neyns, B.; Velkeniers, B. Immune checkpoint inhibitor therapy for ACTH-secreting pituitary carcinoma: A new emerging treatment? Eur. J. Endocrinol. 2021, 184, K1–K5. [Google Scholar] [CrossRef]
- Caccese, M.; Barbot, M.; Ceccato, F.; Padovan, M.; Gardiman, M.P.; Fassan, M.; Denaro, L.; Emanuelli, E.; D’avella, D.; Scaroni, C.; et al. Rapid disease progression in patient with mismatch-repair deficiency pituitary ACTH-secreting adenoma treated with checkpoint inhibitor pembrolizumab. Anticancer Drugs 2020, 31, 199–204. [Google Scholar] [CrossRef]
- Lamb, L.S.; Sim, H.-W.; McCormack, A.I. Case Report: A Case of Pituitary Carcinoma Treated with Sequential Dual Immunotherapy and Vascular Endothelial Growth Factor Inhibition Therapy. Front. Endocrinol. 2020, 11, 576027. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 2016, 16, 582–598. [Google Scholar] [CrossRef] [PubMed]
- Luga, V.; Wrana, J.L. Tumor–Stroma Interaction: Revealing Fibroblast-Secreted Exosomes as Potent Regulators of Wnt-Planar Cell Polarity Signaling in Cancer Metastasis. Cancer Res. 2013, 73, 6843–6847. [Google Scholar] [CrossRef] [PubMed]
- Paraiso, K.H.T.; Smalley, K.S.M. Fibroblast-mediated drug resistance in cancer. Biochem. Pharmacol. 2013, 85, 1033–1041. [Google Scholar] [CrossRef]
- Sapochnik, M.; Fuertes, M.; Arzt, E. Programmed cell senescence: Role of IL-6 in the pituitary. J. Mol. Endocrinol. 2017, 58, R241–R253. [Google Scholar] [CrossRef]
- Chiloiro, S.; De Marinis, L. The immune microenviroment in somatotropinomas: From biology to personalized and target therapy. Rev. Endocr. Metab. Disord. 2023, 24, 283–295. [Google Scholar] [CrossRef]
- Wu, J.L.; Qiao, J.Y.; Duan, Q.H. Significance of TNF-α and IL-6 expression in invasive pituitary adenomas. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef]
- Sato, M.; Tamura, R.; Tamura, H.; Mase, T.; Kosugi, K.; Morimoto, Y.; Yoshida, K.; Toda, M. Analysis of Tumor Angiogenesis and Immune Microenvironment in Non-Functional Pituitary Endocrine Tumors. J. Clin. Med. 2019, 8, 695. [Google Scholar] [CrossRef]
- Chiloiro, S.; Capoluongo, E.D.; Tartaglione, T.; Giampietro, A.; Bianchi, A.; Giustina, A.; Pontecorvi, A.; De Marinis, L. The Changing Clinical Spectrum of Hypophysitis. Trends Endocrinol. Metab. 2019, 30, 590–602. [Google Scholar] [CrossRef]
- Marques, P.; Barry, S.; Carlsen, E.; Collier, D.; Ronaldson, A.; Awad, S.; Dorward, N.; Grieve, J.; Balkwill, F.; Korbonits, M. MON-460 Pasireotide Treatment Inhibits Cytokine Release from Pituitary Adenoma-Associated Fibroblasts: Is This Mechanism Playing a Key Role in Its Effect? J. Endocr. Soc. 2019, 3 (Suppl. S1), MON-460. [Google Scholar] [CrossRef]
- Dai, C.; Liang, S.; Sun, B.; Li, Y.; Kang, J. Anti-VEGF Therapy in Refractory Pituitary Adenomas and Pituitary Carcinomas: A Review. Front. Oncol. 2021, 11, 773905. [Google Scholar] [CrossRef] [PubMed]
- Bodaghi, A.; Fattahi, N.; Ramazani, A. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of COVID-19 and other diseases. Heliyon 2023, 9, e13323. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, A.N.; Mathur, R.; Farooque, A.; Verma, A.; Dwarakanath, B.S. Cancer biomarkers—Current perspectives. Indian J. Med. Res. 2010, 132, 129–149. [Google Scholar] [PubMed]
- Nixon, A.B.; Schalper, K.A.; Jacobs, I.; Potluri, S.; Wang, I.-M.; Fleener, C. Peripheral immune-based biomarkers in cancer immunotherapy: Can we realize their predictive potential? J. Immunother. Cancer 2019, 7, 325. [Google Scholar] [CrossRef] [PubMed]
- Walcher, L.; Kistenmacher, A.-K.; Suo, H.; Kitte, R.; Dluczek, S.; Strauß, A.; Blaudszun, A.-R.; Yevsa, T.; Fricke, S.; Kossatz-Boehlert, U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front. Immunol. 2020, 11, 1280. [Google Scholar] [CrossRef] [PubMed]
- Lindholm, E.M.; Aure, M.R.; Haugen, M.H.; Sahlberg, K.K.; Kristensen, V.N.; Nebdal, D.; Børresen-Dale, A.; Lingjærde, O.C.; Engebraaten, O. miRNA expression changes during the course of neoadjuvant bevacizumab and chemotherapy treatment in breast cancer. Mol. Oncol. 2019, 13, 2278–2296. [Google Scholar] [CrossRef] [PubMed]
- Hurvitz, S.A.; Martin, M.; Press, M.F.; Chan, D.; Fernandez-Abad, M.; Petru, E.; Rostorfer, R.; Guarneri, V.; Huang, C.-S.; Barriga, S.; et al. Potent Cell-Cycle Inhibition and Upregulation of Immune Response with Abemaciclib and Anastrozole in neoMONARCH, Phase II Neoadjuvant Study in HR+/HER2− Breast Cancer. Clin. Cancer Res. 2020, 26, 566–580. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Feng, M.; Zhang, Y.; Dai, C.; Sun, B.; Bao, X.; Deng, K.; Yao, Y.; Wang, R. Expression of Matrix Metalloproteinase-9, Pituitary Tumor Transforming Gene, High Mobility Group A 2, and Ki-67 in Adrenocorticotropic Hormone–Secreting Pituitary Tumors and Their Association with Tumor Recurrence. World Neurosurg. 2018, 113, e213–e221. [Google Scholar] [CrossRef]
- Xu, L.; Khaddour, K.; Chen, J.; Rich, K.M.; Perrin, R.J.; Campian, J.L. Pituitary carcinoma: Two case reports and review of literature. World J. Clin. Oncol. 2020, 11, 91–102. [Google Scholar] [CrossRef]
- Righi, A.; Morandi, L.; Leonardi, E.; Farnedi, A.; Marucci, G.; Sisto, A.; Frank, G.; Faustini-Fustini, M.; Zoli, M.; Mazzatenta, D.; et al. Galectin-3 expression in pituitary adenomas as a marker of aggressive behavior. Hum. Pathol. 2013, 44, 2400–2409. [Google Scholar] [CrossRef]
- Pan, Q.; Chegini, N. MicroRNA Signature and Regulatory Functions in the Endometrium during Normal and Disease States. Semin. Reprod. Med. 2008, 26, 479–493. [Google Scholar] [CrossRef] [PubMed]
- Crescitelli, R.; Lässer, C.; Szabó, T.G.; Kittel, A.; Eldh, M.; Dianzani, I.; Buzás, E.I.; Lötvall, J. Distinct RNA profiles in subpopulations of extracellular vesicles: Apoptotic bodies, microvesicles and exosomes. J. Extracell. Vesicles 2013, 2, 20677. [Google Scholar] [CrossRef] [PubMed]
- Osterhage, K.; Rotermund, R.; Droste, M.; Dierlamm, J.; Saeger, W.; Petersenn, S.; Aberle, J.; Flitsch, J. Bevacizumab in Aggressive Pituitary Adenomas—Experience with 3 Patients. Exp. Clin. Endocrinol. Diabetes 2021, 129, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Geyer, C.E.; Gelber, R.; Yothers, G.; Taboada, M.; Ross, L.; Rastogi, P.; Cui, K.; Arahmani, A.; Aktan, G.; Arnedos, M.; et al. Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in BRCA1/2 and high-risk, early breast cancer. Ann. Oncol. 2022, 33, 1250–1268. [Google Scholar] [CrossRef] [PubMed]
- Paumier, A.; Le Péchoux, C. Post-operative radiation therapy. Transl. Lung Cancer Res. 2013, 2, 423–432. [Google Scholar] [CrossRef]
- Kendre, G.; Murugesan, K.; Brummer, T.; Segatto, O.; Saborowski, A.; Vogel, A. Charting co-mutation patterns associated with actionable drivers in intrahepatic cholangiocarcinoma. J. Hepatol. 2023, 78, 614–626. [Google Scholar] [CrossRef] [PubMed]
- Mondin, A.; Manara, R.; Voltan, G.; Tizianel, I.; Denaro, L.; Ferrari, M.; Barbot, M.; Scaroni, C.; Ceccato, F. Pasireotide-Induced Shrinkage in GH and ACTH Secreting Pituitary Adenoma: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2022, 13, 935759. [Google Scholar] [CrossRef]
- Sebastian, P.; Balakrishnan, R.; Yadav, B.; John, S. Outcome of radiotherapy for pituitary adenomas. Rep. Pract. Oncol. Radiother. 2016, 21, 466–472. [Google Scholar] [CrossRef]
- Sundlöv, A.; Sjögreen-Gleisner, K.; Tennvall, J.; Dahl, L.; Svensson, J.; Åkesson, A.; Bernhardt, P.; Lindgren, O. Pituitary Function after High-Dose 177Lu-DOTATATE Therapy and Long-Term Follow-Up. Neuroendocrinology 2021, 111, 344–353. [Google Scholar] [CrossRef]
- Regmi, D.; Thapa, A.; Kc, B.; Shakya, B. Endoscopic Endonasal Transsphenoidal Approach to Pituitary Adenoma: A Multi-disciplinary Approach. J. Nepal Health Res. Counc. 2017, 15, 174–177. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, T.; Lv, W.; Chen, L.; Zhao, B.; Jiang, X.; Ye, L.; Qu, L.; Zhao, L.; Zhang, Y.; et al. Ambulatory Surgery Protocol for Endoscopic Endonasal Resection of Pituitary Adenomas: A Prospective Single-arm Trial with Initial Implementation Experience. Sci. Rep. 2020, 10, 9755. [Google Scholar] [CrossRef] [PubMed]
- Melmed, S. Pituitary-Tumor Endocrinopathies. N. Engl. J. Med. 2020, 382, 937–950. [Google Scholar] [CrossRef]
- Brue, T.; Castinetti, F. The risks of overlooking the diagnosis of secreting pituitary adenomas. Orphanet J. Rare Dis. 2016, 11, 135. [Google Scholar] [CrossRef] [PubMed]
- Molitch, M.E. Diagnosis and Treatment of Pituitary Adenomas: A. Review. JAMA 2017, 317, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, F.R.P.; Silva, C.M.d.S.; Lima, G.A.B.; Warszawski, L.; Domingues, R.C.; Dominic, M.; Fontes, R.; Neto, L.V.; Gadelha, M.R. Prevalence of obstructive sleep apnea in patients with prolactinoma before and after treatment with dopamine agonists. Pituitary 2014, 17, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Searle, L.; McDowell, S.; Willink, R.; Krebs, J. A cannulated prolactin series reduces the need for further investigations in women with infertility and lowers the number of false positive screening prolactin measurements. Aust. N. Z. J. Obstet. Gynaecol. 2021, 61, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Petersenn, S.; Houchard, A.; Sert, C.; Caron, P.J. PRIMARYS Study Group, Predictive factors for responses to primary medical treatment with lanreotide autogel 120 mg in acromegaly: Post hoc analyses from the PRIMARYS study. Pituitary 2020, 23, 171–181. [Google Scholar] [CrossRef]
- Walia, R.; Gupta, R.; Bhansali, A.; Pivonello, R.; Kumar, R.; Singh, H.; Ahuja, C.; Chhabra, R.; Singh, A.; Dhandapani, S.; et al. Molecular Imaging Targeting Corticotropin-releasing Hormone Receptor for Corticotropinoma: A Changing Paradigm. J. Clin. Endocrinol. Metab. 2021, 106, e1816–e1826. [Google Scholar] [CrossRef]
- Graffeo, C.S.; Carlstrom, L.P.; Cohen, S.C.; Perry, A.; Choby, G.; Van Gompel, J.J. Perioperative Tranexamic Acid for ACTH-Secreting Pituitary Adenomas: Implementation Protocol Results and Trial Prospectus. World Neurosurg. 2021, 153, e359–e364. [Google Scholar] [CrossRef]
- Newell-Price, J.; Pivonello, R.; Tabarin, A.; Fleseriu, M.; Witek, P.; Gadelha, M.R.; Petersenn, S.; Tauchmanova, L.; Ravichandran, S.; Gupta, P.; et al. Use of late-night salivary cortisol to monitor response to medical treatment in Cushing’s disease. Eur. J. Endocrinol. 2020, 82, 207–217. [Google Scholar] [CrossRef]
- Batista, R.L.; Musolino, N.R.; Cescato, V.A.; da Silva, G.O.; Medeiros, R.S.; Herkenhoff, C.G.; Trarbach, E.B.; Cunha-Neto, M.B. Cabergoline in the Management of Residual Nonfunctioning Pituitary Adenoma: A Single-Center, Open-Label, 2-Year Randomized Clinical Trial. Am. J. Clin. Oncol. 2019, 42, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Wang, X.-S.; Cao, K.-C.; Bao, X.-J.; Yu, J. Identification of CDK6 and RHOU in Serum Exosome as Biomarkers for the Invasiveness of Non-functioning Pituitary Adenoma. Chin. Med. Sci. J. 2019, 34, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.J.; Suki, D.; Hatiboglu, M.A.; Abouassi, H.; Shi, W.; Wildrick, D.M.; Lang, F.F.; Sawaya, R. Factors influencing the risk of local recurrence after resection of a single brain metastasis. J. Neurosurg. 2010, 113, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.J.; Suki, D.; Hatiboglu, M.A.; Rao, V.Y.; Fox, B.D.; Sawaya, R. Impact of surgical methodology on the complication rate and functional outcome of patients with a single brain metastasis. J. Neurosurg. 2015, 122, 1132–1143. [Google Scholar] [CrossRef] [PubMed]
- Suki, D.; Hatiboglu, M.A.; Patel, A.J.; Weinberg, J.S.; Groves, M.D.; Mahajan, A.; Sawaya, R. Comparative risk of leptomeningeal dissemination of cancer after surgery or stereotactic radiosurgery for a single supratentorial solid tumor metastasis. Neurosurgery 2009, 64, 664–674, discussion 674–676. [Google Scholar] [CrossRef] [PubMed]
- Suki, D.; Abouassi, H.; Patel, A.J.; Sawaya, R.; Weinberg, J.S.; Groves, M.D. Comparative risk of leptomeningeal disease after resection or stereotactic radiosurgery for solid tumor metastasis to the posterior fossa. J. Neurosurg. 2008, 108, 248–257. [Google Scholar] [CrossRef]
- Ilie, M.-D.; Vasiljevic, A.; Bertolino, P.; Raverot, G. Biological and Therapeutic Implications of the Tumor Microenvironment in Pituitary Adenomas. Endocr. Rev. 2023, 44, 297–311. [Google Scholar] [CrossRef]
- Burman, P.; Casar-Borota, O.; Perez-Rivas, L.G.; Dekkers, O.M. Aggressive Pituitary Tumors and Pituitary Carcinomas: From Pathology to Treatment. J. Clin. Endocrinol. Metab. 2023, 108, 1585–1601. [Google Scholar] [CrossRef]
- Colao, A.; Petersenn, S.; Newell-Price, J.; Findling, J.W.; Gu, F.; Maldonado, M.; Schoenherr, U.; Biol, D.; Mills, D.; Salgado, L.R.; et al. A 12-month phase 3 study of pasireotide in Cushing’s disease. N. Engl. J. Med. 2012, 366, 914–924. [Google Scholar] [CrossRef]
- Lacroix, A.; Gu, F.; Gallardo, W.; Pivonello, R.; Yu, Y.; Witek, P.; Boscaro, M.; Salvatori, R.; Yamada, M.; Tauchmanova, L.; et al. Efficacy and safety of once-monthly pasireotide in Cushing’s disease: A 12 month clinical trial. Lancet Diabetes Endocrinol. 2018, 6, 17–26. [Google Scholar] [CrossRef]
- Godbout, A.; Manavela, M.; Danilowicz, K.; Beauregard, H.; Bruno, O.D.; Lacroix, A. Cabergoline monotherapy in the long-term treatment of Cushing’s disease. Eur. J. Endocrinol. 2010, 163, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Xu, W.; Ding, H.; Chen, Z.; Shi, C.; Han, J.; Yu, L.; Qiao, N.; Zhang, Y.; Cao, X.; et al. The p300 Inhibitor A-485 Exerts Antitumor Activity in Growth Hormone Pituitary Adenoma. J. Clin. Endocrinol. Metab. 2022, 107, e2291–e2300. [Google Scholar] [CrossRef] [PubMed]
- Arimura, H.; Askoro, R.; Fujio, S.; Ummah, F.C.; Takajo, T.; Nagano, Y.; Nishio, Y.; Arita, K. A Thyroid-stimulating Hormone (TSH) Producing Adenoma in a Patient with Severe Hypothyroidism: Thyroxine Replacement Reduced the TSH Level and Tumor Size. NMC Case Rep. J. 2019, 7, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lu, J.; You, Q.; Huang, H.; Chen, Y.; Liu, K. The mTOR/AP-1/VEGF signaling pathway regulates vascular endothelial cell growth. Oncotarget 2016, 7, 53269–53276. [Google Scholar] [CrossRef]
- Panwar, V.; Singh, A.; Bhatt, M.; Tonk, R.K.; Azizov, S.; Raza, A.S.; Sengupta, S.; Kumar, D.; Garg, M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct. Target. Ther. 2023, 8, 375. [Google Scholar] [CrossRef] [PubMed]
- Korman, A.J.; Garrett-Thomson, S.C.; Lonberg, N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat. Rev. Drug Discov. 2022, 21, 509–528. [Google Scholar] [CrossRef]
- Klein, S.; Persa, O.-D.; Mauch, C.; Noh, K.-W.; Pappesch, R.; Wagener-Ryczek, S.; Buettner, R.; Quaas, A.; Helbig, D. First report on two cases of pleomorphic dermal sarcoma successfully treated with immune checkpoint inhibitors. OncoImmunology 2019, 8, e1665977. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Li, X.; Feng, G.; Hu, S.; Bai, Y. The Impact of NOTCH Pathway Alteration on Tumor Microenvironment and Clinical Survival of Immune Checkpoint Inhibitors in NSCLC. Front. Immunol. 2021, 12, 638763. [Google Scholar] [CrossRef]
- Wang, P.; Wang, T.-J.; Yang, Y.-K.; Yao, K.; Li, Z.; Li, Y.M.; Yan, C.-X. The expression profile of PD-L1 and CD8+ lymphocyte in pituitary adenomas indicating for immunotherapy. J. Neurooncol. 2018, 139, 89–95. [Google Scholar] [CrossRef]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef]
- Ott, P.A.; Hodi, F.S.; Robert, C. CTLA-4 and PD-1/PD-L1 Blockade: New Immunotherapeutic Modalities with Durable Clinical Benefit in Melanoma Patients. Clin. Cancer Res. 2013, 19, 5300–5309. [Google Scholar] [CrossRef] [PubMed]
- De Velasco, G.; Je, Y.; Bossé, D.; Awad, M.M.; Ott, P.A.; Moreira, R.B.; Schutz, F.; Bellmunt, J.; Sonpavde, G.P.; Hodi, F.S.; et al. Comprehensive Meta-analysis of Key Immune-Related Adverse Events from CTLA-4 and PD-1/PD-L1 Inhibitors in Cancer Patients. Cancer Immunol. Res. 2017, 5, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Wojtukiewicz, M.Z.; Rek, M.M.; Karpowicz, K.; Górska, M.; Polityńska, B.; Wojtukiewicz, A.M.; Moniuszko, M.; Radziwon, P.; Tucker, S.C.; Honn, K.V. Inhibitors of immune checkpoints—PD-1, PD-L1, CTLA-4—New opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 2021, 40, 949–982. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.J.; Almodallal, Y.; Jatoi, A. Rare Adverse Events with Programmed Death-1 and Programmed Death-Ligand 1 Inhibitors: Justification and Rationale for a Systematic Review. Curr. Oncol. Rep. 2021, 23, 86. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Li, N.; Tang, H.; Chen, H.; Chen, X.; Zhang, L.; Tao, D. Delayed thrombocytopenia as a rare but serious adverse event secondary to immune checkpoint inhibitor: A case report. Ann. Palliat. Med. 2021, 10, 5881–5886. [Google Scholar] [CrossRef] [PubMed]
- Mukada, N.; Tosaka, M.; Yamaguchi, R.; Tanaka, Y.; Takahashi, A.; Shimauchi-Otaki, H.; Osawa, S.; Tsushima, Y.; Yoshimoto, Y. Preoperative Magnetic Resonance Imaging Localization of the Normal Pituitary Gland in Nonfunctioning Pituitary Adenoma Patients Using the Radiological Sign of “Internal Carotid Artery Notch”. World Neurosurg. 2022, 166, e177–e188. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.-W.; Wang, J.-Q.; Wu, J.-L.; Wang, H.-B.; Wu, K.-L. Simultaneously avoiding the hippocampus and hypothalamic-pituitary axis during whole brain radiotherapy: A planning study. Med. Dosim. 2019, 44, 130–135. [Google Scholar] [CrossRef]
- Tang, B.N.T.; Levivier, M.; Heureux, M.; Wikler, D.; Massager, N.; Devriendt, D.; David, P.; Dumarey, N.; Corvilain, B.; Goldman, S. 11C-methionine PET for the diagnosis and management of recurrent pituitary adenomas. Eur. J. Nucl. Med. Mol. Imaging 2006, 33, 169–178. [Google Scholar] [CrossRef]
- Cheung, L.Y.M.; George, A.S.; McGee, S.R.; Daly, A.Z.; Brinkmeier, M.L.; Ellsworth, B.S.; Camper, S.A. Single-Cell RNA Sequencing Reveals Novel Markers of Male Pituitary Stem Cells and Hormone-Producing Cell Types. Endocrinology 2018, 159, 3910–3924. [Google Scholar] [CrossRef]
- Gupta, A.; Shah, K.; Oza, M.J.; Behl, T. Reactivation of p53 gene by MDM2 inhibitors: A novel therapy for cancer treatment. Biomed. Pharmacother. 2019, 109, 484–492. [Google Scholar] [CrossRef]
- Charmsaz, S.; Collins, D.M.; Perry, A.S.; Prencipe, M. Novel Strategies for Cancer Treatment: Highlights from the 55th IACR Annual Conference. Cancers 2019, 11, 1125. [Google Scholar] [CrossRef] [PubMed]
Immune Modulators | Function in Pituitary Carcinomas (pc) | Suggestions | References |
---|---|---|---|
PD-1/PD-L1 | Cushing’s disease ACTH-pc Prolactin-pc | For high PD-L1 pc | [48,49,50,51] |
CTLA-4 | ACTH-pc Prolactin-pc | Therapeutic combination of CTLA-4 and PD-1/PD-L1 inhibitors | [49,51] |
Epigenetic Marker/Target Protein | Role/Impact | Study Reference |
---|---|---|
DNA methylation (on TSGs) | Selectively affects TSG expression and tumor characteristics in PitNETs | [19] |
Histone modifications (p53 expression) | Linked to increased p53 expression and longer progression-free survival in pituitary tumors | [21] |
Sirtuins | Higher expression in growth hormone-expressing adenomas, inverse correlation with tumor size | [21] |
Citrullinating enzymes | Proposed as an early marker in prolactinomas pathogenesis | [21] |
DNMTs and HDACs | Targeted by epigenetic therapies to reactivate silenced genes, enhancing sensitivity to conventional treatments | [22] |
miRNAs (various) | Implicated in pituitary tumorigenesis, acting as oncosuppressors or oncogenes | [23,24,25] |
HDAC2 and HDAC3 | Higher expression in clinically non-functioning pituitary adenomas, potential therapeutic targets | [26] |
miR-7a2 and its target gene Raf1 | Involved in lactotroph cell development and prolactin synthesis, potential therapeutic target in hyperprolactinemia | [23] |
BCAT1 (in PRL-PAs) | Associated with increased prolactin production, drug resistance, and proliferation | [34] |
NR5A1, TBX19, POU1F1 (transcription factors) | Guide terminal differentiation in pituitary adenomas, categorizing them into molecular clusters | [35] |
USP8 (in corticotrophinomas) | Mutations lead to the prolonged activation of EGFR, stimulating ACTH synthesis | [38,39] |
DRD2 and NGFR (in prolactinomas) | Associated with response to dopamine agonists (DAs) | [41] |
AMIGO2, ZFP36, BTG1, DLG5 (in gonadotroph tumors) | Identified as novel tumor-related genes | [42] |
HSPB1 | Associated with reduced overall survival in tumors, potential therapeutic target in invasive pituitary adenoma | [46] |
Immune Checkpoint Blockers | Explored as a new therapeutic option for aggressive pituitary adenomas/PitNETs and pituitary carcinomas | [47,59] |
IL-6, TNF-α | Play significant roles in the development and progression of invasive pituitary adenoma | [56,57] |
VEGF/VEGFR Signaling | Associated with an immunosuppressive microenvironment in non-functioning PitNETs with CS invasion, potential target for therapy | [58] |
Tumor-Associated Fibroblasts (TAFs) | Impact tumor invasiveness, angiogenesis, and epithelial-to-mesenchymal pathways in PAs, target of SSAs | [60] |
mTOR Inhibitors | Target the constitutive activation of the mTOR pathway in various human cancers, including pituitary tumors | [104,105] |
Mismatch Repair Deficiency (MMRd) and PD-L1 Expression | Correlated with responsiveness to anti-PD-1 therapies; PD-L1 prevalent in functional pituitary adenomas | [50,109] |
Tyrosine Kinase Inhibitors (targeting EGFR) | Potential therapeutic approach for aggressive corticotroph and lactotroph adenomas | [78,104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toader, C.; Dobrin, N.; Tataru, C.-I.; Covache-Busuioc, R.-A.; Bratu, B.-G.; Glavan, L.A.; Costin, H.P.; Corlatescu, A.D.; Dumitrascu, D.-I.; Ciurea, A.V. From Genes to Therapy: Pituitary Adenomas in the Era of Precision Medicine. Biomedicines 2024, 12, 23. https://doi.org/10.3390/biomedicines12010023
Toader C, Dobrin N, Tataru C-I, Covache-Busuioc R-A, Bratu B-G, Glavan LA, Costin HP, Corlatescu AD, Dumitrascu D-I, Ciurea AV. From Genes to Therapy: Pituitary Adenomas in the Era of Precision Medicine. Biomedicines. 2024; 12(1):23. https://doi.org/10.3390/biomedicines12010023
Chicago/Turabian StyleToader, Corneliu, Nicolaie Dobrin, Catalina-Ioana Tataru, Razvan-Adrian Covache-Busuioc, Bogdan-Gabriel Bratu, Luca Andrei Glavan, Horia Petre Costin, Antonio Daniel Corlatescu, David-Ioan Dumitrascu, and Alexandru Vlad Ciurea. 2024. "From Genes to Therapy: Pituitary Adenomas in the Era of Precision Medicine" Biomedicines 12, no. 1: 23. https://doi.org/10.3390/biomedicines12010023
APA StyleToader, C., Dobrin, N., Tataru, C. -I., Covache-Busuioc, R. -A., Bratu, B. -G., Glavan, L. A., Costin, H. P., Corlatescu, A. D., Dumitrascu, D. -I., & Ciurea, A. V. (2024). From Genes to Therapy: Pituitary Adenomas in the Era of Precision Medicine. Biomedicines, 12(1), 23. https://doi.org/10.3390/biomedicines12010023