Nose-to-Heart Approach: Unveiling an Alternative Route of Acute Treatment
Abstract
:1. Introduction
2. Methods: Literature Search
3. Nose-to-Heart Approach
3.1. Anatomical and Physiological Characteristics of Systemic Absorption via IN Administration
3.2. Nose-to-Heart Delivery
4. Cardiovascular Diseases
4.1. Angina Pectoris and Acute Myocardial Infraction
4.2. Hypertensive Crisis
4.3. Cardiac Arrhythmias
Drug | Dose | Animal Model | Disease | Main Outcomes | Year | Reference |
---|---|---|---|---|---|---|
verapamil | 0.75 mg/kg | dog | rate control/cardiac arrythmias | higher bioavailability compared to the oral route | 1985 | [77] |
aspirin | 2 mg | rat | acute myocardial infraction | Tmax at 30 min, 100% bioavailability | 1992 | [14] |
metoprolol | 1 mg | rat | angina pectoris | 2% methylcellulose increases the formulation viscosity and the contact time with nasal mucosa | 1998 | [12] |
metoprolol | 2 mg/kg | rabbit | angina pectoris | maximum efficacy of drug solution at 10 min, sustained release microspheres with higher inhibition observed at 180 to 300 min | 2003 | [13] |
propranolol | − | Formulation study | − | microspheres of gelatin A and chitosan, of 1–50 μm, with good mucoadhesive properties and sustained release profile | 2007 | [63] |
carvedilol | 3 mg/kg | rabbit | unstable angina | maximum radioactivity observed 1 h after administration | 2010 | [45] |
carvedilol | 1 mg/kg | rabbit | Hypertensive crises | almost 7-fold increase in drug Cmax in rabbit plasma with the in situ gel, and 1 h earlier Tmax compared to pure drug and oral liposomes | 2023 | [61] |
Drug | Dose | Disease | Main Outcomes | Year | Reference |
---|---|---|---|---|---|
propranolol | 10 mg | angina pectoris | equivalence of nasal delivery to the intravenous administration | 1980 | [48] |
nitroglycerin | 0.8 mg | acute myocardial infraction | Tmax at 1–2 min, higher levels compared to sublingual administration | 1981 | [15] |
metoprolol | 20 mg | angina pectoris | poor nasal absorption of methylcellulose nasal solution due to high hydrophilicity | 1986 | [42] |
alprenolol | 10 mg | hypertension | improved bioavailability of methylcellulose nasal solution due to high lipophilicity | 1986 | [42] |
nicardipine | N/A | Hypertensive crises | better hemodynamic impact of IN administration than oral and tracheal delivery | 1990 | [57] |
propranolol | 5 mg | angina pectoris | nasal spray 15 min before exercise enhances exercise tolerance | 1993 | [48] |
verapamil | 5 mg | cardiac arrythmias | low absolute availability after IN administration, almost equal to 16.1% | 1993 | [78] |
nifedipine | 8.12 ± 0.32 mg | hypertensive crises | early increase in serum concentration and reduced blood pressure compared to oral or sublingual routes | 2001 | [56] |
etripamil | 70 mg | SVT | Phase I and II: safe and efficacious dose | 2018 | [73] |
etripamil | 70 mg | SVT | Phase I and II: conversion rate of 95% versus 35% achieved in placebo group | 2020 | [82] |
etripamil | 70 mg | SVT | Phase III: well-tolerated, conversion rate of 53.7% at 30 min versus 34.7% observed in placebo group | 2022 | [10] |
etripamil | 70 mg | SVT | Phase III: more effective than placebo; repeated dose was more effective than one-dose treatment | 2023 | [83] |
5. Disadvantages of IN Drug Delivery
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Landau, A.J.; Eberhardt, R.T.; Frishman, W.H. Intranasal delivery of cardiovascular agents: An innovative approach to cardiovascular pharmacotherapy. Am. Heart J. 1994, 127, 1594–1599. [Google Scholar] [CrossRef]
- Costantino, H.R.; Illum, L.; Brandt, G.; Johnson, P.H.; Quay, S.C. Intranasal delivery: Physicochemical and therapeutic aspects. Int. J. Pharm. 2007, 337, 1–24. [Google Scholar] [CrossRef]
- Huston, J.; Genovese, A.; Ashchi, A.; DeLuca, A.; Wiener, J.; Deeb, E.; Deeb, A.; Goldfaden, R.F. Etripamil Nasal Spray: Therapeutic Potential for Treating Paroxysmal Supraventricular Tachycardia. Am. J. Cardiovasc. Drugs 2023, 23, 471–475. [Google Scholar] [CrossRef]
- Hassan, R.H.; AGad, H.; Shaker, D.S.; Ishak, R.A.H. Exploring the potential of intranasal drug delivery systems in the management of hypertension. RPS Pharm. Pharmacol. Rep. 2023, 2, rqad021. [Google Scholar] [CrossRef]
- Fortuna, A.; Alves, G.; Serralheiro, A.; Sousa, J.; Falcão, A. Intranasal delivery of systemic-acting drugs: Small-molecules and biomacromolecules. Eur. J. Pharm. Biopharm. 2014, 88, 8–27. [Google Scholar] [CrossRef]
- Tai, J.; Han, M.; Lee, D.; Park, I.H.; Lee, S.H.; Kim, T.H. Different Methods and Formulations of Drugs and Vaccines for Nasal Administration. Pharmaceutics 2022, 14, 1073. [Google Scholar] [CrossRef]
- Tucker, C.; Tucker, L.; Brown, K. The Intranasal Route as an Alternative Method of Medication Administration. Crit. Care Nurse 2018, 38, 26–31. [Google Scholar] [CrossRef]
- Keller, L.A.; Merkel, O.; Popp, A. Intranasal drug delivery: Opportunities and toxicologic challenges during drug development. Drug Deliv. Transl. Res. 2022, 12, 735–757. [Google Scholar] [CrossRef]
- Abuelazm, M.; Kambalapalli, S.; Saleh, O.; Elzeftawy, M.A.; Albakri, K.; Gowaily, I.; Abdelazeem, B. The Efficacy and Safety of Etripamil Nasal Spray for Acute Paroxysmal Supraventricular Tachycardia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Am. J. Cardiovasc. Drugs 2023, 23, 379–391. [Google Scholar] [CrossRef]
- Stambler, B.S.; Plat, F.; Sager, P.T.; Shardonofsky, S.; Wight, D.; Potvin, D.; Pandey, A.S.; Ip, J.E.; Coutu, B.; Mondésert, B.; et al. First Randomized, Multicenter, Placebo-Controlled Study of Self-Administered Intranasal Etripamil for Acute Conversion of Spontaneous Paroxysmal Supraventricular Tachycardia (NODE-301). Circ. Arrhythmia Electrophysiol. 2022, 15, e010915. [Google Scholar] [CrossRef]
- Wang, J.; Tan, Y.; Dai, Y.; Hu, K.; Tan, X.; Jiang, S.; Li, G.; Zhang, X.; Kang, L.; Wang, X.; et al. Intranasal Delivery of Endothelial Cell-Derived Extracellular Vesicles with Supramolecular Gel Attenuates Myocardial Ischemia-Reperfusion Injury. Int. J. Nanomed. 2023, 18, 5495–5510. [Google Scholar] [CrossRef]
- Kilian, N.; Müller, D.G. The effect of a viscosity and an absorption enhancer on the intra nasal absorption of metoprolol in rats. Int. J. Pharm. 1998, 163, 211–217. [Google Scholar] [CrossRef]
- Rajinikanth, P.S.; Sankar, C.; Mishra, B. Sodium alginate microspheres of metoprolol tartrate for intranasal systemic delivery: Development and evaluation. Drug Deliv. 2003, 10, 21–28. [Google Scholar] [CrossRef]
- Hussain, A.A.; Iseki, K.; Kagoshima, M.; Dittert, L.W. Absorption of acetylsalicylic acid from the rat nasal cavity. J. Pharm. Sci. 1992, 81, 348–349. [Google Scholar] [CrossRef]
- Hill, A.B.; Bowley, C.J.; Nahrwold, M.L.; Knight, P.R.; Kirsh, M.M.; Denlinger, J.K. Intranasal administration of nitroglycerin. Anesthesiology 1981, 54, 346–348. [Google Scholar] [CrossRef]
- Pires, A.; Fortuna, A.; Alves, G.; Falcão, A. Intranasal drug delivery: How, why and what for? J. Pharm. Pharm. Sci. 2009, 12, 288–311. [Google Scholar] [CrossRef]
- Shrewsbury, S.B. The Upper Nasal Space: Option for Systemic Drug Delivery, Mucosal Vaccines and “Nose-to-Brain”. Pharmaceutics 2023, 15, 1720. [Google Scholar] [CrossRef]
- Gizurarson, S. Anatomical and histological factors affecting intranasal drug and vaccine delivery. Curr. Drug Deliv. 2012, 9, 566–582. [Google Scholar] [CrossRef]
- Sobiesk, J.L.; Munakomi, S. Anatomy, Head and Neck, Nasal Cavity. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Laffleur, F.; Bauer, B. Progress in nasal drug delivery systems. Int. J. Pharm. 2021, 607, 120994. [Google Scholar] [CrossRef]
- Erdő, F.; Bors, L.A.; Farkas, D.; Bajza, Á.; Gizurarson, S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull. 2018, 143, 155–170. [Google Scholar] [CrossRef]
- Gänger, S.; Schindowski, K. Tailoring Formulations for Intranasal Nose-to-Brain Delivery: A Review on Architecture, Physico-Chemical Characteristics and Mucociliary Clearance of the Nasal Olfactory Mucosa. Pharmaceutics 2018, 10, 116. [Google Scholar] [CrossRef]
- Washington, N.; Steele, R.J.; Jackson, S.J.; Bush, D.; Mason, J.; Gill, D.A.; Pitt, K.; Rawlins, D.A. Determination of baseline human nasal pH and the effect of intranasally administered buffers. Int. J. Pharm. 2000, 198, 139–146. [Google Scholar] [CrossRef]
- Lochhead, J.J.; Davis, T.P. Perivascular and Perineural Pathways Involved in Brain Delivery and Distribution of Drugs after Intranasal Administration. Pharmaceutics 2019, 11, 598. [Google Scholar] [CrossRef]
- Xu, J.; Tao, J.; Wang, J. Design and Application in Delivery System of Intranasal Antidepressants. Front. Bioeng. Biotechnol. 2020, 8, 626882. [Google Scholar] [CrossRef]
- Kang-Mieler, J.J.; Osswald, C.R.; Mieler, W.F. Advances in ocular drug delivery: Emphasis on the posterior segment. Expert. Opin. Drug Deliv. 2014, 11, 1647–1660. [Google Scholar] [CrossRef]
- Proschak, E.; Heitel, P.; Kalinowsky, L.; Merk, D. Opportunities and Challenges for Fatty Acid Mimetics in Drug Discovery. J. Med. Chem. 2017, 60, 5235–5266. [Google Scholar] [CrossRef]
- Chung, S.; Peters, J.M.; Detyniecki, K.; Tatum, W.; Rabinowicz, A.L.; Carrazana, E. The nose has it: Opportunities and challenges for intranasal drug administration for neurologic conditions including seizure clusters. Epilepsy Behav. Rep. 2022, 21, 100581. [Google Scholar] [CrossRef]
- Trevino, J.T.; Quispe, R.C.; Khan, F.; Novak, V. Non-Invasive Strategies for Nose-to-Brain Drug Delivery. J. Clin. Trials 2020, 10, 439. [Google Scholar]
- Grassin-Delyle, S.; Buenestado, A.; Naline, E.; Faisy, C.; Blouquit-Laye, S.; Couderc, L.J.; Le Guen, M.; Fischler, M.; Devillier, P. Intranasal drug delivery: An efficient and non-invasive route for systemic administration: Focus on opioids. Pharmacol. Ther. 2012, 134, 366–379. [Google Scholar] [CrossRef]
- Agewall, S. Acute and stable coronary heart disease: Different risk factors. Eur. Heart J. 2008, 29, 1927–1929. [Google Scholar] [CrossRef]
- Ojha, N.; Dhamoon, A.S. Myocardial Infarction. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537076/ (accessed on 8 August 2023).
- Berger, A.K.; Duval, S.; Krumholz, H.M. Aspirin, beta-blocker, and angiotensin-converting enzyme inhibitor therapy in patients with end-stage renal disease and an acute myocardial infarction. J. Am. Coll. Cardiol. 2003, 42, 201–208. [Google Scholar] [CrossRef]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Tibaut, M.; Mekis, D.; Petrovic, D. Pathophysiology of Myocardial Infarction and Acute Management Strategies. Cardiovasc. Hematol. Agents Med. Chem. 2017, 14, 150–159. [Google Scholar] [CrossRef]
- Hobl, E.L.; Schmid, R.W.; Stimpfl, T.; Ebner, J.; Jilma, B. Absorption kinetics of low-dose chewable aspirin--implications for acute coronary syndromes. Eur. J. Clin. Investig. 2015, 45, 13–17. [Google Scholar] [CrossRef]
- NDA 021134/S-004, Page 4, Nitrostat®, (Nitroglycerin Sublingual Tablets, USP). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021134s004lbl.pdf (accessed on 6 December 2023).
- Twiner, M.J.; Hennessy, J.; Wein, R.; Levy, P.D. Nitroglycerin Use in the Emergency Department: Current Perspectives. Open Access Emerg. Med. 2022, 14, 327–333. [Google Scholar] [CrossRef]
- Kadoglou, N.P.E.; Parissis, J.; Karavidas, A.; Kanonidis, I.; Trivella, M. Assessment of acute heart failure prognosis: The promising role of prognostic models and biomarkers. Heart Fail. Rev. 2022, 27, 655–663. [Google Scholar] [CrossRef]
- Brugada, J.; Katritsis, D.G.; Arbelo, E.; Arribas, F.; Bax, J.J.; Blomström-Lundqvist, C.; Calkins, H.; Corrado, D.; Deftereos, S.G.; Diller, G.P.; et al. 2019 ESC Guidelines for the management of patients with supraventricular tachycardia the Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC). Eur. Heart J. 2020, 41, 655–720. [Google Scholar] [CrossRef]
- Duchateau, G.S.M.J.E.; Zuidema, J.; Albers, W.M.; Merkus, F.W.H.M. Nasal absorption of alprenolol and metoprolol. Int. J. Pharm. 1986, 34, 131–136. [Google Scholar] [CrossRef]
- Brunner, M.; Faber, T.S.; Greve, B.; Keck, A.; Schnabel, P.; Jeron, A.; Meinertz, T.; Just, H.; Zehender, M. Usefulness of carvedilol in unstable angina pectoris. Am. J. Cardiol. 2000, 85, 1173–1178. [Google Scholar] [CrossRef]
- SEC Working Group for the 2023 Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure and SEC Guidelines Committee. Comments on the 2023 update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Rev. Esp. Cardiol. (Engl. Ed.) 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Patil, S.; Babbar, A.; Mathur, R.; Mishra, A.; Sawant, K. Mucoadhesive chitosan microspheres of carvedilol for nasal administration. J. Drug Target. 2010, 18, 321–331. [Google Scholar] [CrossRef]
- Patil, S.B.; Kaul, A.; Babbar, A.; Mathur, R.; Mishra, A.; Sawant, K.K. In vivo evaluation of alginate microspheres of carvedilol for nasal delivery. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Foster, T.; Hirai, S.; Kashihara, T.; Batenhorst, R.; Jones, M. Nasal absorption of propranolol in humans. J. Pharm. Sci. 1980, 69, 1240. [Google Scholar] [CrossRef]
- Landau, A.J.; Frishman, W.H.; Alturk, N.; Adjei-Poku, M.; Fornasier-Bongo, M.; Furia, S. Improvement in exercise tolerance and immediate beta-adrenergic blockade with intranasal propranolol in patients with angina pectoris. Am. J. Cardiol. 1993, 72, 995–998. [Google Scholar] [CrossRef]
- Neri, M.; Riezzo, I.; Pascale, N.; Pomara, C.; Turillazzi, E. Ischemia/Reperfusion Injury following Acute Myocardial Infarction: A Critical Issue for Clinicians and Forensic Pathologists. Mediat. Inflamm. 2017, 2017, 7018393. [Google Scholar] [CrossRef] [PubMed]
- Petraina, A.; Nogales, C.; Krahn, T.; Mucke, H.; Lüscher, T.F.; Fischmeister, R.; Kass, D.A.; Burnett, J.C.; Hobbs, A.J.; Schmidt, H.H.H.W. Cyclic GMP modulating drugs in cardiovascular diseases: Mechanism-based network pharmacology. Cardiovasc. Res. 2022, 118, 2085–2102. [Google Scholar] [CrossRef]
- Lubos, E.; Handy, D.E.; Loscalzo, J. Role of oxidative stress and nitric oxide in atherothrombosis. Front. Biosci. 2008, 13, 5323–5344. [Google Scholar] [CrossRef]
- Varounis, C.; Katsi, V.; Nihoyannopoulos, P.; Lekakis, J.; Tousoulis, D. Cardiovascular Hypertensive Crisis: Recent Evidence and Review of the Literature. Front. Cardiovasc. Med. 2017, 3, 51. [Google Scholar] [CrossRef]
- Tulman, D.B.; Stawicki, S.P.; Papadimos, T.J.; Murphy, C.V.; Bergese, S.D. Advances in management of acute hypertension: A concise review. Discov. Med. 2012, 13, 375–383. [Google Scholar]
- Stewart, M.H. Hypertensive crisis: Diagnosis, presentation, and treatment. Curr. Opin. Cardiol. 2023, 38, 311–317. [Google Scholar] [CrossRef]
- Watson, K.; Broscious, R.; Devabhakthuni, S.; Noel, Z.R. Focused Update on Pharmacologic Management of Hypertensive Emergencies. Curr. Hypertens. Rep. 2018, 20, 56. [Google Scholar] [CrossRef] [PubMed]
- Kubota, R.; Komiyama, T.; Shimada, H. Evaluation of the method for nifedipine administration for a rapid onset of clinical effect: A clinical study in normal volunteers. Yakugaku Zasshi 2001, 121, 264–355. [Google Scholar] [CrossRef]
- Kinoshita, R.; Ishida, K.; Sendaya, K.; Miyagawa, A.; Oda, S.; Taniguchi, K.; Honda, N. Clinical evaluation of isosorbide dinitrate (ISDN) spray: A study on the plasma concentrations of ISDN and on its hemodynamic effects using three administration routes. Masui 1990, 39, 1660–1663. [Google Scholar] [PubMed]
- Hafner, A. Advances in Development, Characterisation and Application of Nasal Drug Delivery Systems. Pharmaceutics 2022, 14, 1562. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Glover, M.; Kapil, V.; Abrams, S.M.L.; Partridge, S.; McCormack, T.; Sever, P.; Delles, C.; Wilkinson, I.B. Management of hypertensive crisis: British and Irish Hypertension Society Position document. J. Hum. Hypertens. 2023, 37, 863–879. [Google Scholar] [CrossRef] [PubMed]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef]
- Kar, S.; Singh, S.K. Cationic nanoliposomes of carvedilol for intranasal application: In vitro, in vivo and in silico studies. J. Drug Deliv. Sci. Technol. 2023, 80, 104178. [Google Scholar] [CrossRef]
- Jagdale, S.; Shewale, N.; Kuchekar, B.S. Optimization of Thermoreversible In Situ Nasal Gel of Timolol Maleate. Scientifica 2016, 2016, 6401267. [Google Scholar] [CrossRef]
- Dandagi, P.M.; Mastiholimath, V.S.; Gadad, A.P.; Iliger, S.R. Mucoadhesive microspheres of propranolol hydrochloride for nasal delivery. Indian J. Pharm. Sci. 2007, 69, 402–407. [Google Scholar] [CrossRef]
- Barnes, J.; Moshirfar, M. Timolol. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK545176 (accessed on 18 July 2023).
- Dworkin, P.H.; Bell, B.B.; Mirowski, M. Propranolol in supraventricular tachycardias of childhood. Arch. Dis. Child. 1973, 48, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Parker, N.; Flowers, R.; Vickery, K.; Stolfi, A.; Bugnitz, C. Assessing the Risk of Hypoglycemia Secondary to Propranolol Therapy for the Treatment of Supraventricular Tachycardia in Infants. Pediatr. Cardiol. 2023, 44, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Antzelevitch, C.; Burashnikov, A. Overview of Basic Mechanisms of Cardiac Arrhythmia. Card. Electrophysiol. Clin. 2011, 3, 23–45. [Google Scholar] [CrossRef] [PubMed]
- Hansson, A.; Madsen-Härdig, B.; Bertil Olsson, S. Arrhythmia-provoking factors and symptoms at the onset of paroxysmal atrial fibrillation: A study based on interviews with 100 patients seeking hospital assistance. BMC Cardiovasc. Disord. 2004, 4, 13. [Google Scholar] [CrossRef]
- Hoffman, R.S. Treatment of patients with cocaine-induced arrhythmias: Bringing the bench to the bedside. Br. J. Clin. Pharmacol. 2010, 69, 448–457. [Google Scholar] [CrossRef]
- Veduta, A.; Panaitescu, A.M.; Ciobanu, A.M.; Neculcea, D.; Popescu, M.R.; Peltecu, G.; Cavoretto, P. Treatment of Fetal Arrhythmias. J. Clin. Med. 2021, 10, 2510. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gao, M.; Zhang, M.; Liu, D.; Li, Z.; Du, J.; Hou, Y. Treatment of atrial fibrillation: A comprehensive review and practice guide. Cardiovasc. J. Afr. 2020, 31, 153–158. [Google Scholar] [CrossRef]
- Weintraub, S.; Frishman, W.H. A Novel Calcium Channel Blocker: Etripamil: What is the Future of Intranasal Drug Delivery in the Treatment of Cardiac Arrhythmias? Cardiol. Rev. 2021, 29, 253–258. [Google Scholar] [CrossRef]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef]
- Stambler, B.S.; Dorian, P.; Sager, P.T.; Wight, D.; Douville, P.; Potvin, D.; Shamszad, P.; Haberman, R.J.; Kuk, R.S.; Lakkireddy, D.R.; et al. Etripamil Nasal Spray for Rapid Conversion of Supraventricular Tachycardia to Sinus Rhythm. J. Am. Coll. Cardiol. 2018, 72, 489–497. [Google Scholar] [CrossRef]
- Fahie, S.; Cassagnol, M. Verapamil. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538495/ (accessed on 6 February 2023).
- Kurita, Y.; Mitamura, H.; Shiroshita-Takeshita, A.; Yamane, A.; Ieda, M.; Kinebuchi, O.; Sato, T.; Miyoshi, S.; Hara, M.; Takatsuki, S.; et al. Daily oral verapamil before but not after rapid atrial excitation prevents electrical remodeling. Cardiovasc. Res. 2002, 54, 447–455. [Google Scholar] [CrossRef]
- De Simone, A.; De Pasquale, M.; De Matteis, C.; Canciello, M.; Manzo, M.; Sabino, L.; Alfano, F.; Di Mauro, M.; Campana, A.; De Fabrizio, G.; et al. VErapamil plus antiarrhythmic drugs reduce atrial fibrillation recurrences after an electrical cardioversion (VEPARAF Study). Eur. Heart J. 2003, 24, 1425–1429. [Google Scholar] [CrossRef]
- Arnold, T.H.; Tackett, R.L.; Vallner, J.J. Pharmacodynamics of acute intranasal administration of verapamil: Comparison with i.v. and oral administration. Biopharm. Drug Dispos. 1985, 6, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Watling, S.; Engelhardt, J.; Kandrotas, R.; Gal, P.; Kroboth, P.; Smith, H.; Johnson, M. Comparison of intranasal versus intravenous verapamil bioavailability. Int. J. Clin. Pharmacol. Ther. Toxicol. 1993, 31, 100–104. [Google Scholar] [PubMed]
- Scholz, H. Pharmacological aspects of calcium channel blockers. Cardiovasc. Drugs Ther. 1997, 10 (Suppl. S3), 869–872. [Google Scholar] [CrossRef]
- Kotadia, I.D.; Williams, S.E.; O’Neill, M. Supraventricular tachycardia: An overview of diagnosis and management. Clin. Med. 2020, 20, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Kashou, A.H.; Noseworthy, P.A. Etripamil nasal spray: An investigational agent for the rapid termination of paroxysmal supraventricular tachycardia (SVT). Expert Opin. Investig. Drugs 2020, 29, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Stambler, B.S.; Camm, A.J.; Alings, M.; Dorian, P.; Heidbuchel, H.; Houtgraaf, J.; Kowey, P.R.; Merino, J.L.; Mondésert, B.; Piccini, J.P.; et al. Self-administered etripamil for termination of spontaneous paroxysmal supraventricular tachycardia: Primary analysis from the rapid study. Lancet 2023, 402, 118–128. [Google Scholar] [CrossRef]
- Ip, J.E.; Coutu, B.; Bennett, M.T.; Pandey, A.S.; Stambler, B.S.; Sager, P.; Chen, M.; Shardonofsky, S.; Plat, F.; Camm, A.J. Etripamil Nasal Spray for Conversion of Repeated Spontaneous Episodes of Paroxysmal Supraventricular Tachycardia during Long-Term Follow-Up: Results from the NODE-302 Study. JAHA 2023, 12, e028227. [Google Scholar] [CrossRef]
- Fortuna, A.; Schindowski, K.; Sonvico, F. Editorial: Intranasal Drug Delivery: Challenges and Opportunities. Front. Pharmacol. 2022, 13, 868986. [Google Scholar] [CrossRef]
- Alabsi, W.; Eedara, B.B.; Encinas-Basurto, D.; Polt, R.; Mansour, H.M. Nose-to-Brain Delivery of Therapeutic Peptides as Nasal Aerosols. Pharmaceutics 2022, 14, 1870. [Google Scholar] [CrossRef] [PubMed]
- Maaz, A.; Blagbrough, I.S.; De Bank, P.A. In Vitro Evaluation of Nasal Aerosol Depositions: An Insight for Direct Nose to Brain Drug Delivery. Pharmaceutics 2021, 13, 1079. [Google Scholar] [CrossRef] [PubMed]
- Prasada Rao, M.R.; Mogadati, P.; Arutla, S.; Senthi, M. Development and Validation of Robust Analytical Method to Determine Droplets Size Distribution of Nasal Spray Using Laser Diffraction Technique. Pharm. Anal. Acta 2019, 10, 611. [Google Scholar] [CrossRef]
- Inoue, D.; Kimura, S.; Kiriyama, A.; Katsumi, H.; Yamamot, A.; Ogawara, K.; Higaki, K.; Tanaka, A.; Yutani, R.; Sakane, T.; et al. Quantitative Estimation of the Effect of Nasal Mucociliary Function on In Vivo Absorption of Norfloxacin after Intranasal Administration to Rats. Mol. Pharm. 2018, 15, 4462–4469. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papakyriakopoulou, P.; Valsami, G.; Kadoglou, N.P.E. Nose-to-Heart Approach: Unveiling an Alternative Route of Acute Treatment. Biomedicines 2024, 12, 198. https://doi.org/10.3390/biomedicines12010198
Papakyriakopoulou P, Valsami G, Kadoglou NPE. Nose-to-Heart Approach: Unveiling an Alternative Route of Acute Treatment. Biomedicines. 2024; 12(1):198. https://doi.org/10.3390/biomedicines12010198
Chicago/Turabian StylePapakyriakopoulou, Paraskevi, Georgia Valsami, and Nikolaos P. E. Kadoglou. 2024. "Nose-to-Heart Approach: Unveiling an Alternative Route of Acute Treatment" Biomedicines 12, no. 1: 198. https://doi.org/10.3390/biomedicines12010198
APA StylePapakyriakopoulou, P., Valsami, G., & Kadoglou, N. P. E. (2024). Nose-to-Heart Approach: Unveiling an Alternative Route of Acute Treatment. Biomedicines, 12(1), 198. https://doi.org/10.3390/biomedicines12010198