Next-Generation Proteomics of Brain Extracellular Vesicles in Schizophrenia Provide New Clues on the Altered Molecular Connectome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Human Brain Samples
2.3. Preparation of Brain Tissues Prior to EVs Obtention
2.4. Enrichment of Brain EVs by PROSPR
2.5. Characterization of Brain EVs using Nanoparticle Tracking Analysis
2.6. Ultrastructural Characterization of Brain EVs
2.7. Processing of Brain EVs for Next-Generation Label-Free Proteomics
2.8. Four-Dimensional Proteomics of Brain EVs
2.9. Bioinformatics and Data Analysis
2.10. Data Availability
3. Results
3.1. Morphometric Characteristics of bEVs in Schizophrenia
3.2. Molecular Compositions of bEVs in Schizophrenia
3.3. Schizophrenia-Linked Alteration of bEV Proteomes
3.4. Schizophrenia-Linked Alteration of the EV-Mediated Brain Connectome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charlson, F.J.; Ferrari, A.J.; Santomauro, D.F.; Diminic, S.; Stockings, E.; Scott, J.G.; McGrath, J.J.; Whiteford, H.A. Global Epidemiology and Burden of Schizophrenia: Findings from the Global Burden of Disease Study 2016. Schizophr. Bull. 2018, 44, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Saleem, A.; Qurat Ul, A.; Akhtar, M.F. Alternative Therapy of Psychosis: Potential Phytochemicals and Drug Targets in the Management of Schizophrenia. Front. Pharmacol. 2022, 13, 895668. [Google Scholar] [CrossRef] [PubMed]
- Nucifora, F.C., Jr.; Woznica, E.; Lee, B.J.; Cascella, N.; Sawa, A. Treatment resistant schizophrenia: Clinical, biological, and therapeutic perspectives. Neurobiol. Dis. 2019, 131, 104257. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.H.; Hou, C.L.; Huang, Y.H.; He, X.Y.; Wang, Q.W.; Chen, X.; Wang, Z.L.; Wang, S.B.; Jia, F.J. Individuals at high risk for psychosis experience more childhood trauma, life events and social support deficit in comparison to healthy controls. Psychiatry Res. 2019, 273, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Takata, A. The molecular pathology of schizophrenia: An overview of existing knowledge and new directions for future research. Mol. Psychiatry 2023, 28, 1868–1889. [Google Scholar] [CrossRef] [PubMed]
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 388, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Golov, A.K.; Kondratyev, N.V.; Kostyuk, G.P.; Golimbet, A.V.E. Novel Approaches for Identifying the Molecular Background of Schizophrenia. Cells 2020, 9, 246. [Google Scholar] [CrossRef] [PubMed]
- Zamanpoor, M. Schizophrenia in a genomic era: A review from the pathogenesis, genetic and environmental etiology to diagnosis and treatment insights. Psychiatr. Genet. 2020, 30, 1–9. [Google Scholar] [CrossRef]
- Liu, C.; Kanazawa, T.; Tian, Y.; Mohamed Saini, S.; Mancuso, S.; Mostaid, M.S.; Takahashi, A.; Zhang, D.; Zhang, F.; Yu, H.; et al. The schizophrenia genetics knowledgebase: A comprehensive update of findings from candidate gene studies. Transl. Psychiatry 2019, 9, 205. [Google Scholar] [CrossRef]
- Iasevoli, F.; Avagliano, C.; D’Ambrosio, L.; Barone, A.; Ciccarelli, M.; De Simone, G.; Mazza, B.; Vellucci, L.; de Bartolomeis, A. Dopamine Dynamics and Neurobiology of Non-Response to Antipsychotics, Relevance for Treatment Resistant Schizophrenia: A Systematic Review and Critical Appraisal. Biomedicines 2023, 11, 895. [Google Scholar] [CrossRef]
- Kesby, J.P.; Eyles, D.W.; McGrath, J.J.; Scott, J.G. Dopamine, psychosis and schizophrenia: The widening gap between basic and clinical neuroscience. Transl. Psychiatry 2018, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Buckley, P.F. Neuroinflammation and Schizophrenia. Curr. Psychiatry Rep. 2019, 21, 72. [Google Scholar] [CrossRef] [PubMed]
- Calvin, O.L.; Redish, A.D. Global disruption in excitation-inhibition balance can cause localized network dysfunction and Schizophrenia-like context-integration deficits. PLoS Comput. Biol. 2021, 17, e1008985. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.; Jahanshad, N.; Zalesky, A.; Kochunov, P.; Agartz, I.; Alloza, C.; Andreassen, O.A.; Arango, C.; Banaj, N.; Bouix, S.; et al. Widespread white matter microstructural differences in schizophrenia across 4322 individuals: Results from the ENIGMA Schizophrenia DTI Working Group. Mol. Psychiatry 2018, 23, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Satterthwaite, T.D.; Vandekar, S.N.; Wolf, D.H.; Bassett, D.S.; Ruparel, K.; Shehzad, Z.; Craddock, R.C.; Shinohara, R.T.; Moore, T.M.; Gennatas, E.D.; et al. Connectome-wide network analysis of youth with Psychosis-Spectrum symptoms. Mol. Psychiatry 2015, 20, 1508–1515. [Google Scholar] [CrossRef]
- Gallart-Palau, X.; Serra, A.; Sze, S.K. Enrichment of extracellular vesicles from tissues of the central nervous system by PROSPR. Mol. Neurodegener. 2016, 11, 41. [Google Scholar] [CrossRef]
- Gallart-Palau, X.; Guo, X.; Serra, A.; Sze, S.K. Alzheimer’s disease progression characterized by alterations in the molecular profiles and biogenesis of brain extracellular vesicles. Alzheimers Res. Ther. 2020, 12, 54. [Google Scholar] [CrossRef]
- Gallart-Palau, X.; Serra, A.; Hase, Y.; Tan, C.F.; Chen, C.P.; Kalaria, R.N.; Sze, S.K. Brain-derived and circulating vesicle profiles indicate neurovascular unit dysfunction in early Alzheimer’s disease. Brain Pathol. 2019, 29, 593–605. [Google Scholar] [CrossRef]
- Lorca, C.; Laparra, M.; Céspedes, M.V.; Casaní, L.; Florit, S.; Jové, M.; Mota-Martorell, N.; Vilella, E.; Gallart-Palau, X.; Serra, A. Industrial By-Products As a Novel Circular Source of Biocompatible Extracellular Vesicles. Adv. Funct. Mater. 2022, 32, 2202700. [Google Scholar] [CrossRef]
- Graykowski, D.R.; Wang, Y.Z.; Upadhyay, A.; Savas, J.N. The Dichotomous Role of Extracellular Vesicles in the Central Nervous System. iScience 2020, 23, 101456. [Google Scholar] [CrossRef]
- Herrmann, I.K.; Wood, M.J.A.; Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 2021, 16, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Aharon, A.; Spector, P.; Ahmad, R.S.; Horrany, N.; Sabbach, A.; Brenner, B.; Aharon-Peretz, J. Extracellular Vesicles of Alzheimer’s Disease Patients as a Biomarker for Disease Progression. Mol. Neurobiol. 2020, 57, 4156–4169. [Google Scholar] [CrossRef] [PubMed]
- Muraoka, S.; DeLeo, A.M.; Sethi, M.K.; Yukawa-Takamatsu, K.; Yang, Z.; Ko, J.; Hogan, J.D.; Ruan, Z.; You, Y.; Wang, Y.; et al. Proteomic and biological profiling of extracellular vesicles from Alzheimer’s disease human brain tissues. Alzheimers Dement. 2020, 16, 896–907. [Google Scholar] [CrossRef] [PubMed]
- Gratpain, V.; Mwema, A.; Labrak, Y.; Muccioli, G.G.; van Pesch, V.; des Rieux, A. Extracellular vesicles for the treatment of central nervous system diseases. Adv. Drug Deliv. Rev. 2021, 174, 535–552. [Google Scholar] [CrossRef] [PubMed]
- Cristina, L.; María, F.-R.; Jose Antonio Sánchez, M.; María, M.; Julia, L.; Xavier, G.-P.; Aida, S. BP-EVs: A Novel Source of EVs in the Nanocarrier Field. In Extracellular Vesicles—Applications and Therapeutic Potential; Manash, K.P., Ed.; IntechOpen: Rijeka, Croatia, 2023; Chapter 1. [Google Scholar]
- Wang, Y.; Amdanee, N.; Zhang, X. Exosomes in schizophrenia: Pathophysiological mechanisms, biomarkers, and therapeutic targets. Eur. Psychiatry 2022, 65, e61. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Lorca, C.; Mulet, M.; Sánchez Milán, J.A.; Baratas, A.; de la Casa, M.; Espinet, C.; Serra, A.; Gallart-Palau, X. Altered ureido protein modification profiles in seminal plasma extracellular vesicles of non-normozoospermic men. Front. Endocrinol. 2023, 14, 1113824. [Google Scholar] [CrossRef] [PubMed]
- Mun, D.G.; Budhraja, R.; Bhat, F.A.; Zenka, R.M.; Johnson, K.L.; Moghekar, A.; Pandey, A. Four-dimensional proteomics analysis of human cerebrospinal fluid with trapped ion mobility spectrometry using PASEF. Proteomics 2023, 23, e2200507. [Google Scholar] [CrossRef]
- Serra, A.; Gallart-Palau, X.; Wei, J.; Sze, S.K. Characterization of glutamine deamidation by LERLIC-MS/MS in shotgun proteomics. Anal. Chem. 2016, 1, 10573–10582. [Google Scholar] [CrossRef]
- Gallart-Palau, X.; Serra, A.; Sze, S.K. System-wide molecular dynamics of endothelial dysfunction in Gram-negative sepsis. BMC Biol. 2020, 18, 175. [Google Scholar] [CrossRef]
- Guo, X.; Park, J.E.; Gallart-Palau, X.; Sze, S.K. Oxidative Damage to the TCA Cycle Enzyme MDH1 Dysregulates Bioenergetic Enzymatic Activity in the Aged Murine Brain. J. Proteome Res. 2020, 19, 1706–1717. [Google Scholar] [CrossRef]
- Sánchez Milán, J.A.; Fernández-Rhodes, M.; Guo, X.; Mulet, M.; Ngan, S.C.; Iyappan, R.; Katoueezadeh, M.; Sze, S.K.; Serra, A.; Gallart-Palau, X. Trioxidized cysteine in the aging proteome mimics the structural dynamics and interactome of phosphorylated serine. Aging Cell 2023, 00, e14062. [Google Scholar] [CrossRef] [PubMed]
- Panahi, M.; Hase, Y.; Gallart-Palau, X.; Mitra, S.; Watanabe, A.; Low, R.C.; Yamamoto, Y.; Sepulveda-Falla, D.; Hainsworth, A.H.; Ihara, M.; et al. ER stress induced immunopathology involving complement in CADASIL: Implications for therapeutics. Acta Neuropathol. Commun. 2023, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Gallart-Palau, X. Systems Biology in Neuroscience: The Paramount Importance of Data Sharing and Citation. NeuroSci 2020, 1, 98. [Google Scholar] [CrossRef]
- Saeedi, S.; Israel, S.; Nagy, C.; Turecki, G. The emerging role of exosomes in mental disorders. Transl. Psychiatry 2019, 9, 122. [Google Scholar] [CrossRef] [PubMed]
- Perez-Gonzalez, R.; Gauthier, S.A.; Kumar, A.; Levy, E. The Exosome Secretory Pathway Transports Amyloid Precursor Protein Carboxyl-terminal Fragments from the Cell into the Brain Extracellular Space*. J. Biol. Chem. 2012, 287, 43108–43115. [Google Scholar] [CrossRef]
- Levy, E. Exosomes in the Diseased Brain: First Insights from In Vivo Studies. Front. Neurosci. 2017, 11, 142. [Google Scholar] [CrossRef]
- Gallart-Palau, X.; Tan, L.M.; Serra, A.; Gao, Y.; Ho, H.H.; Richards, A.M.; Kandiah, N.; Chen, C.P.; Kalaria, R.N.; Sze, S.K. Degenerative protein modifications in the aging vasculature and central nervous system: A problem shared is not always halved. Ageing Res. Rev. 2019, 53, 100909. [Google Scholar] [CrossRef]
- Gomes, P.A.; Bodo, C.; Nogueras-Ortiz, C.; Samiotaki, M.; Chen, M.; Soares-Cunha, C.; Silva, J.M.; Coimbra, B.; Stamatakis, G.; Santos, L.; et al. A novel isolation method for spontaneously released extracellular vesicles from brain tissue and its implications for stress-driven brain pathology. Cell Commun. Signal 2023, 21, 35. [Google Scholar] [CrossRef]
- Kandimalla, R.; Saeed, M.; Tyagi, N.; Gupta, R.C.; Aqil, F. Exosome-based approaches in the management of Alzheimer’s disease. Neurosci. Biobehav. Rev. 2023, 144, 104974. [Google Scholar] [CrossRef]
- Huang, Y.; Driedonks, T.A.P.; Cheng, L.; Rajapaksha, H.; Routenberg, D.A.; Nagaraj, R.; Redding, J.; Arab, T.; Powell, B.H.; Pletniková, O.; et al. Brain Tissue-Derived Extracellular Vesicles in Alzheimer’s Disease Display Altered Key Protein Levels Including Cell Type-Specific Markers. J. Alzheimers Dis. 2022, 90, 1057–1072. [Google Scholar] [CrossRef]
- Ruan, Z.; Pathak, D.; Venkatesan Kalavai, S.; Yoshii-Kitahara, A.; Muraoka, S.; Bhatt, N.; Takamatsu-Yukawa, K.; Hu, J.; Wang, Y.; Hersh, S.; et al. Alzheimer’s disease brain-derived extracellular vesicles spread tau pathology in interneurons. Brain 2020, 144, 288–309. [Google Scholar] [CrossRef] [PubMed]
- Keerthikumar, S.; Chisanga, D.; Ariyaratne, D.; Al Saffar, H.; Anand, S.; Zhao, K.; Samuel, M.; Pathan, M.; Jois, M.; Chilamkurti, N.; et al. ExoCarta: A Web-Based Compendium of Exosomal Cargo. J. Mol. Biol. 2016, 428, 688–692. [Google Scholar] [CrossRef] [PubMed]
- Pathan, M.; Fonseka, P.; Chitti, S.V.; Kang, T.; Sanwlani, R.; Van Deun, J.; Hendrix, A.; Mathivanan, S. Vesiclepedia 2019: A compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res 2018, 47, D516–D519. [Google Scholar] [CrossRef] [PubMed]
- Montenegro-Venegas, C.; Guhathakurta, D.; Pina-Fernandez, E.; Andres-Alonso, M.; Plattner, F.; Gundelfinger, E.D.; Fejtova, A. Bassoon controls synaptic vesicle release via regulation of presynaptic phosphorylation and cAMP. EMBO Rep. 2022, 23, e53659. [Google Scholar] [CrossRef] [PubMed]
- Yap, K.; Drakew, A.; Smilovic, D.; Rietsche, M.; Paul, M.H.; Vuksic, M.; Del Turco, D.; Deller, T. The actin-modulating protein synaptopodin mediates long-term survival of dendritic spines. eLife 2020, 9, e62944. [Google Scholar] [CrossRef] [PubMed]
- Goldie, B.J.; Dun, M.D.; Lin, M.; Smith, N.D.; Verrills, N.M.; Dayas, C.V.; Cairns, M.J. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Res. 2014, 42, 9195–9208. [Google Scholar] [CrossRef] [PubMed]
- Henstridge, C.M.; Sideris, D.I.; Carroll, E.; Rotariu, S.; Salomonsson, S.; Tzioras, M.; McKenzie, C.-A.; Smith, C.; von Arnim, C.A.F.; Ludolph, A.C.; et al. Synapse loss in the prefrontal cortex is associated with cognitive decline in amyotrophic lateral sclerosis. Acta Neuropathol. 2018, 135, 213–226. [Google Scholar] [CrossRef]
- Casaletto, K.B.; Lindbergh, C.A.; VandeBunte, A.; Neuhaus, J.; Schneider, J.A.; Buchman, A.S.; Honer, W.G.; Bennett, D.A. Microglial Correlates of Late Life Physical Activity: Relationship with Synaptic and Cognitive Aging in Older Adults. J. Neurosci. 2022, 42, 288–298. [Google Scholar] [CrossRef]
- Lieberman, J.A.; Girgis, R.R.; Brucato, G.; Moore, H.; Provenzano, F.; Kegeles, L.; Javitt, D.; Kantrowitz, J.; Wall, M.M.; Corcoran, C.M.; et al. Hippocampal dysfunction in the pathophysiology of schizophrenia: A selective review and hypothesis for early detection and intervention. Mol. Psychiatry 2018, 23, 1764–1772. [Google Scholar] [CrossRef]
- Abi-Dargham, A.; Moore, H. Prefrontal DA transmission at D1 receptors and the pathology of schizophrenia. Neuroscientist 2003, 9, 404–416. [Google Scholar] [CrossRef]
- Jain, R.W.; Yong, V.W. B cells in central nervous system disease: Diversity, locations and pathophysiology. Nat. Rev. Immunol. 2022, 22, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Tin, S.K.; Xu, Q.; Thumboo, J.; Lee, L.Y.; Tse, C.; Fong, K.Y. Novel brain reactive autoantibodies: Prevalence in systemic lupus erythematosus and association with psychoses and seizures. J. Neuroimmunol. 2005, 169, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Dalmau, J.; Lancaster, E.; Martinez-Hernandez, E.; Rosenfeld, M.R.; Balice-Gordon, R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011, 10, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Glass, L.J.; Sinclair, D.; Boerrigter, D.; Naude, K.; Fung, S.J.; Brown, D.; Catts, V.S.; Tooney, P.; O’Donnell, M.; Lenroot, R.; et al. Brain antibodies in the cortex and blood of people with schizophrenia and controls. Transl. Psychiatry 2017, 7, e1192. [Google Scholar] [CrossRef]
Subject | Gender | Age at Death (y.o.) | PMD a (h) | Clinical Group |
---|---|---|---|---|
1 | M | 58 | 6 | SZ |
2 | M | 57 | 3 | C |
3 | M | 51 | 18 | SZ |
4 | M | 50 | 2 | C |
5 | M | 58 | 24 | SZ |
6 | M | 58 | 20 | C |
7 | M | 58 | 16 | SZ |
8 | M | 56 | 15 | C |
9 | M | 60 | 17 | SZ |
10 | M | 60 | 14 | C |
11 | F | 46 | 12 | SZ |
12 | F | 48 | 21 | C |
13 | M | 43 | 6 | SZ |
14 | M | 44 | 21 | C |
15 | F | 50 | 14 | SZ |
16 | F | 49 | 18 | C |
17 | M | 63 | 20 | SZ |
18 | M | 63 | 20 | C |
19 | M | 48 | 13 | SZ |
20 | M | 47 | 20 | C |
21 | M | 60 | 7 | SZ |
22 | M | 60 | 19 | C |
23 | M | 52 | 24 | SZ |
24 | M | 52 | 23 | C |
25 | M | 52 | 11 | SZ |
26 | M | 51 | 16 | C |
27 | F | 52 | 10 | SZ |
28 | F | 51 | 10 | C |
29 | M | 41 | 17 | SZ |
30 | M | 41 | 15 | C |
Region | Molecular Function | Protein List a |
---|---|---|
PFC-SZ | Clathrin-coated vesicle | ATP6V1A, CD9, AP2B1, AP1B1 |
Lysosomal membrane | ATP6V1A, AP2B1, LRP1, GNAI1, GNAI3, AP1B1 | |
Focal adhesion | GDI2, ARF1, CD9, TLN2, CAPN1, LRP1, PDPK1, RPS19, RPL4, CLASP1, MSN, TPM4 | |
Cell-substrate junction | GDI2, ARF1, CD9, TLN2, CAPN1, LRP1, PDPK1, RPS19, RPL4, CLASP1, MSN, TPM4 | |
Postsynaptic density | ARF1, PDPK1, RPS19, PDLIM5 | |
Gabaergic synapse | SLC12A5, GNAI3, GLUL, GNAI1 | |
HC-SZ | Regulation of synaptic plasticity | SQSTM1, APOE, BRAF, SHISA6, RAPGEF2, ERC1, GRIA1, SHISA7 |
Regulation of actin cytoskeleton organization | PFN2, GPM6B, SYNPO2, WASF3, BRAF, LIMCH1, CAPZB, RASA1, WDR1, WASH6P, RAC3, LMOD2 | |
Regulation of supramolecular fiber organization | PFN2, SYNPO2, APOE, WASF3, BRAF, LIMCH1, CAPZB, RPS3, RASA1, WDR1, WASH6P, LMOD2 | |
Purine ribonucleotide metabolic process | ADCY9, HINT1, NDUFAB1, HDAC4, VCP, OPA1, ATP5ME, DLG2, NDUFV3, SDHD, ATP1B1, ADSS2 | |
Regulation of actin filament-based process | SRI, PFN2, GPM6B, SYNPO2, WASF3, BRAF, LIMCH1, CAPZB, RASA1, WDR1, WASH6P, RAC3, LMOD2 | |
Synapse organization | GAP43, PFN2, APOE, CNKSR2, WASF3, SHISA6, VCP, ERC1, ELFN1, SHISA7, SNTA1, L1CAM, CLSTN1 | |
Regulation of trans-synaptic signaling | PFN2, SQSTM1, APOE, BRAF, SHISA6, RAPGEF2, ERC1, GRIA1, SHISA7, DLGAP2, DLGAP4, CACNA1A, PSMC5, CPLX3, CLSTN1 | |
Actin filament organization | PFN2, SYNPO2, MARCKSL1, WASF3, BRAF, LIMCH1, SHROOM2, SHROOM3, CAPZB, RASA1, ACTA1, WDR1, WASH6P, RAC3, MYO5A, SAMD14, LMOD2 | |
Glutamatergic synapse | GRIA1, ADCY9, GNAQ, CACNA1A, PRKCA, GLS | |
Pathways of neurodegeneration—multiple diseases | GRIA1, VCP, BRAF, PRKCA, SDHD, KLC1, PSMC5, ACTR1B, PSMD4, GNAQ, NDUFAB1, NDUFV3, SQSTM1 | |
CAU-SZ | Cell–cell adhesion via plasma membrane adhesion molecules | PCDHGB4, PCDHGB5, PCDHGB3, PCDHGA12, PCDHGB6, PCDHGA5, PCDHGA7, PCDHGA2, PCDHGB1, PCDHGA1, PCDHGC3, PCDHGB2, PCDHGA6, PCDHGA11, PCDHGA3, PCDHGB7, PCDHGA4, PCDHGC4, PCDHGA9, PCDHGA10, PCDHGA8 |
Presynaptic active zone | STX1A, CANX, GPM6A, SLC32A1 | |
Synaptic vesicle | PENK, STX1A, SLC30A3, SEPTIN2, SLC32A1 | |
Dendritic spine | STRN, CALB1, STRN4, PPP1R9A, CANX, GPM6A, NOS1 | |
Neuron spine | STRN, CALB1, STRN4, PPP1R9A, CANX, GPM6A, NOS1 | |
Mitochondrial protein-containing complex | HSPA9, TIMM13, ATP5F1C, TIMM8A, NDUFS5, NDUFA8, DLAT | |
Mitochondrial inner membrane | HSPA9, TIMM13, ATP5F1C, TIMM8A, NDUFS5, NDUFA8, CKMT2, SFXN5, LETM1 | |
Calmodulin binding | STRN, STRN4, MYO1C, SNTB2, PCNT, NOS1, CNN1 | |
Actin binding | PHACTR1, GMFB, PPP1R9A, MYO1C, CTNNA1, CTNNA2, SNTB2, CNN1 | |
Pathways of neurodegeneration—multiple diseases | NDUFA8, TUBAL3, NDUFS5, VDAC3, NOS1, ATP5F1C, STX1A |
ID | Symbol | Gene Name | Origin |
---|---|---|---|
P60709 | ACTB | actin beta | Neuronal/Glial |
B3KPP5 | ACTC1 | actin alpha cardiac muscle 1 | Neuronal |
P63261 | ACTG1 | actin gamma 1 | Neuronal |
Q01484 | ANK2 | ankyrin 2 | Neuronal |
P80723 | BASP1 | brain abundant membrane attached signal protein 1 | Neuronal |
Q9UPA5 | BSN | bassoon presynaptic cytomatrix protein | Neuronal |
Q9Y2J2 | EPB41L3 | erythrocyte membrane protein band 4.1 like 3 | Neuronal |
Q9Y6I3 | EPN1 | epsin 1 | Neuronal |
P17677 | GAP43 | growth associated protein 43 | Glial |
P14136 | GFAP | glial fibrillary acidic protein | Glial |
P78559 | MAP1A | microtubule-associated protein 1A | Neuronal |
A2BDK6 | MAP1B | microtubule-associated protein 1B | Neuronal |
P11137 | MAP2 | microtubule-associated protein 2 | Neuronal |
P27816 | MAP4 | microtubule-associated protein 4 | Neuronal |
Q96JE9 | MAP6 | microtubule-associated protein 6 | Neuronal |
P10636 | MAPT | microtubule-associated protein tau | Neuronal |
P02686 | MBP | myelin basic protein | Neuronal |
P13591 | NCAM1 | neural cell adhesion molecule 1 | Glial |
A0A024R7V4 | PENK | proenkephalin | Neuronal |
Q9NQC3 | RTN4 | reticulon 4 | Neuronal |
A2A2U1 | SLC1A2 | solute carrier family 1 member 2 | Glial |
P60880 | SNAP25 | synaptosome-associated protein 25 | Neuronal |
O60641 | SNAP91 | synaptosome-associated protein 91 | Neuronal |
P17600 | SYN1 | synapsin I | Neuronal |
A0A087X2E3 | SYN2 | synapsin II | Neuronal |
Q8N3V7 | SYNPO | synaptopodin | Neuronal |
Q71U36 | TUBA1A | tubulin alpha 1a | Neuronal |
P68363 | TUBA1B | tubulin alpha 1b | Neuronal |
B7Z1K5 | TUBA1C | tubulin alpha 1c | Neuronal |
Q13748 | TUBA3C | tubulin alpha 3c | Neuronal |
P68366 | TUBA4A | tubulin alpha 4a | Neuronal |
B4DY90 | TUBB | tubulin beta class I | Neuronal |
Q13885 | TUBB2A | tubulin beta 2A class IIa | Neuronal |
Q13509 | TUBB3 | tubulin beta 3 class III | Neuronal |
P04350 | TUBB4A | tubulin beta 4A class IVa | Neuronal |
P68371 | TUBB4B | tubulin beta 4B class IVb | Neuronal |
Q9BUF5 | TUBB6 | tubulin beta 6 class V | Neuronal |
NA | TUBB8B | tubulin beta 8B | Neuronal |
P09936 | UCHL1 | ubiquitin C-terminal hydrolase L1 | Neuronal |
F8WCA0 | VAMP2 | vesicle-associated membrane protein 2 | Neuronal |
P08670 | VIM | vimentin | Glial |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorca, C.; Fernández-Rhodes, M.; Sánchez Milán, J.A.; Mulet, M.; Elortza, F.; Ramos-Miguel, A.; Callado, L.F.; Meana, J.J.; Mur, M.; Batalla, I.; et al. Next-Generation Proteomics of Brain Extracellular Vesicles in Schizophrenia Provide New Clues on the Altered Molecular Connectome. Biomedicines 2024, 12, 129. https://doi.org/10.3390/biomedicines12010129
Lorca C, Fernández-Rhodes M, Sánchez Milán JA, Mulet M, Elortza F, Ramos-Miguel A, Callado LF, Meana JJ, Mur M, Batalla I, et al. Next-Generation Proteomics of Brain Extracellular Vesicles in Schizophrenia Provide New Clues on the Altered Molecular Connectome. Biomedicines. 2024; 12(1):129. https://doi.org/10.3390/biomedicines12010129
Chicago/Turabian StyleLorca, Cristina, María Fernández-Rhodes, Jose Antonio Sánchez Milán, María Mulet, Félix Elortza, Alfredo Ramos-Miguel, Luis F. Callado, J. Javier Meana, Maria Mur, Iolanda Batalla, and et al. 2024. "Next-Generation Proteomics of Brain Extracellular Vesicles in Schizophrenia Provide New Clues on the Altered Molecular Connectome" Biomedicines 12, no. 1: 129. https://doi.org/10.3390/biomedicines12010129