Exploring the Synthetic Chemistry of Phenyl-3-(5-aryl-2-furyl)- 2-propen-1-ones as Urease Inhibitors: Mechanistic Approach through Urease Inhibition, Molecular Docking and Structure–Activity Relationship
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Chemistry of Furan-Based Chalcones 4a–s
2.2. Urease Inhibition Activity of Furan Chalcones 4a–s
2.3. Structure–Activity Relationship (SAR) Studies of Furan Chalcones 4a–s
2.4. Molecular Docking, ADMET, and Drug-Likeness Investigations 4a–s
ADMET Studies
3. Materials and Methods
3.1. Synthesis of Furan Chalcone Molecules 4a–s
3.1.1. Synthesis of 5-aryl-2-furaldehydes
3.1.2. Synthesis of Furan Chalcones 4a–s
3.1.3. Furan Chalcones 4a–s Urease Inhibition Assay
3.1.4. Molecular Docking Studies
3.1.5. ADMET Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karplus, P.A.; Pearson, M.A.; Hausinger, R.P. 70 Years of Crystalline Urease: What Have We Learned? Acc. Chem. Res. 1997, 30, 330–337. [Google Scholar] [CrossRef]
- Li, M.; Ding, W.; Baruah, B.; Crans, D.C.; Wang, R. Inhibition of protein tyrosine phosphatase 1B and alkaline phosphatase by bis(maltolato)oxovanadium (IV). J. Inorg. Biochem. 2008, 102, 1846–1853. [Google Scholar] [CrossRef]
- Mobley, H.L.; Hausinger, R.P. Microbial ureases: Significance, regulation, and molecular characterization. Microbiol. Rev. 1989, 53, 85–108. [Google Scholar] [CrossRef]
- Collins, C.M.; D’Orazio, S.E.F. Bacterial ureases: Structure, regulation of expression and role in pathogenesis. Mol. Microbiol. 1993, 9, 907–913. [Google Scholar] [CrossRef]
- Montecucco, C.; Rappuoli, R. Living dangerously: How Helicobacter pylori survives in the human stomach. Nat. Rev. Mol. Cell Biol. 2001, 2, 457–466. [Google Scholar] [CrossRef]
- Williams, R.J.P. Metallo-enzyme catalysis. Chem. Commun. 2003, 10, 1109–1113. [Google Scholar] [CrossRef]
- Ibrar, A.; Khan, I.; Abbas, N. Structurally Diversified Heterocycles and Related Privileged Scaffolds as Potential Urease Inhibitors: A Brief Overview. Archiv der Pharmazie 2013, 346, 423–446. [Google Scholar] [CrossRef]
- Kafarski, P.; Talma, M. Recent advances in design of new urease inhibitors: A review. J. Adv. Res. 2018, 13, 101–112. [Google Scholar] [CrossRef]
- Irfan, A.; Faiz, S.; Rasul, A.; Zafar, R.; Zahoor, A.F.; Kotwica-Mojzych, K.; Mojzych, M. Exploring the Synergistic Anticancer Potential of Benzofuran–Oxadiazoles and Triazoles: Improved Ultrasound- and Microwave-Assisted Synthesis, Molecular Docking, Hemolytic, Thrombolytic and Anticancer Evaluation of Furan-Based Molecules. Molecules 2022, 27, 1023. [Google Scholar] [CrossRef]
- Irfan, A.; Tahir, O.A.; Umer, M.; Ahmad, S.; Kousar, H. A review on biological studies of Quinoxaline derivative. World J. Pharm. Pharm. Sci. 2017, 6, 11–30. [Google Scholar]
- Srikrishna, D.; Godugu, C.; Dubey, P.K. A Review on Pharmacological Properties of Coumarins. Mini Rev. Med. Chem. 2018, 18, 113–141. [Google Scholar] [CrossRef]
- Hernández-López, H.; Tejada-Rodríguez, C.J.; Leyva-Ramos, S. A Panoramic Review of Benzimidazole Derivatives and their Potential Biological Activity. Mini Rev. Med. Chem. 2022, 22, 1268–1280. [Google Scholar] [CrossRef] [PubMed]
- Irfan, A.; Batool, F.; Irum, S.; Ullah, S.; Umer, M.; Shaheen, R.; Chand, A.J. A Therapeutic Journey of Sulfonamide Derivatives as Potent Anti-Cancer Agents: A Review. WJPR 2018, 7, 257–270. [Google Scholar]
- Shahzadi, I.; Zahoor, A.F.; Tüzün, B.; Mansha, A.; Anjum, M.N.; Rasul, A.; Irfan, A.; Kotwica-Mojzych, K.; Mojzych, M. Repositioning of acefylline as anti-cancer drug: Synthesis, anticancer and computational studies of azomethines derived from acefylline tethered 4-amino-3-mercapto-1,2,4-triazole. PLoS ONE 2022, 17, e0278027. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, S.S.; Suliman, R.S.; Almutairi, K.; Kahtani, K.; Aljatli, D. Imidazole as a Promising Medicinal Scaffold: Current Status and Future Direction. Drug Des. Dev. Ther. 2021, 29, 3289–3312. [Google Scholar] [CrossRef]
- Aziz, H.; Zahoor, A.F.; Shahzadi, I.; Irfan, A. Recent Synthetic Methodologies Towards the Synthesis of Pyrazoles. Polycycl. Aromat. Compd. 2019, 41, 698–720. [Google Scholar] [CrossRef]
- Irfan, A.; Ullah, S.; Anum, A.; Jabeen, N.; Zahoor, A.F.; Kanwal, H.; Kotwica-Mojzych, K.; Mojzych, M. Synthetic Transformations and Medicinal Significance of 1,2,3-Thiadiazoles Derivatives: An Update. Appl. Sci. 2021, 11, 5742. [Google Scholar] [CrossRef]
- Li, W.-Y.; Ni, W.-W.; Ye, Y.-X.; Fang, H.-L.; Pan, X.-M.; He, J.-L.; Zhou, T.-L.; Yi, J.; Liu, S.-S.; Zhou, M.; et al. N-monoarylacetothioureas as potent urease inhibitors: Synthesis, SAR, and biological evaluation. J. Enzym. Inhib. Med. Chem. 2020, 35, 404–413. [Google Scholar] [CrossRef]
- Ghomi, M.K.; Noori, M.; Montazer, M.N.; Zomorodian, K.; Dastyafteh, N.; Yazdanpanah, S.; Sayahi, M.H.; Javanshir, S.; Nouri, A.; Asadi, M.; et al. [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives as new therapeutic candidates against urease positive microorganisms: Design, synthesis, pharmacological evaluations, and in silico studies. Sci. Rep. 2023, 13, 10136. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Ali, S.; Hameed, S.; Rama, N.H.; Hussain, M.T.; Wadood, A.; Uddin, R.; Ul-Haq, Z.; Khan, A.; Ali, S.; et al. Synthesis, antioxidant activities and urease inhibition of some new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. Eur. J. Med. Chem. 2010, 45, 5200–5207. [Google Scholar] [CrossRef]
- Moghadam, E.S.; Al-Sadi, A.M.; Talebi, M.; Amanlou, M.; Amini, M.; Abdel-Jalil, R. Novel benzimidazole derivatives; synthesis, bioactivity and molecular docking study as potent urease inhibitors. DARU J. Pharm. Sci. 2022, 30, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Mishra, H.; Parrill, A.L.; Williamson, J.S. Tree-dimensional quantitative structure-activity relationship and comparative molecular feld analysis of dipeptide hydroxamic acid Helicobacter pylori urease inhibitors. Antimicrob. Agents Chemother. 2002, 46, 2613–2618. [Google Scholar] [CrossRef]
- Dastyafteh, N.; Noori, M.; Montazer, M.N.; Zomorodian, K.; Yazdanpanah, S.; Iraji, A.; Ghomi, M.K.; Javanshir, S.; Asadi, M.; Dianatpour, M.; et al. New thioxothiazolidinyl-acetamides derivatives as potent urease inhibitors: Design, synthesis, in vitro inhibition, and molecular dynamic simulation. Sci. Rep. 2023, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Irfan, A.; Faisal, S.; Ahmad, S.; Al-Hussain, S.A.; Javed, S.; Zahoor, A.F.; Parveen, B.; Zaki, M.E.A. Structure-Based Virtual Screening of Furan-1,3,4-Oxadiazole Tethered N-phenylacetamide Derivatives as Novel Class of hTYR and hTYRP1 Inhibitors. Pharmaceuticals 2023, 16, 344. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem. Rev. 2017, 117, 7762–7810. [Google Scholar] [CrossRef]
- Rajendran, G.; Bhanu, D.; Aruchamy, B.; Ramani, P.; Pandurangan, N.; Bobba, K.N.; Oh, E.J.; Chung, H.Y.; Gangadaran, P.; Ahn, B.-C. Chalcone: A Promising Bioactive Scaffold in Medicinal Chemistry. Pharmaceuticals 2022, 15, 1250. [Google Scholar] [CrossRef] [PubMed]
- Sultan, A.; Shajahan, S.; Ahamad, T.; Alshehri, S.M.; Sajjad, N.; Nisa, M.; Rehman, M.H.U.; Torun, L.; Khalid, M.; Acevedo, R. Silica-supported heterogeneous catalysts-mediated synthesis of chalcones as potent urease inhibitors: In vitro and molecular docking studies. Monatsh. Chem. 2020, 151, 123–133. [Google Scholar] [CrossRef]
- Olleik, H.; Yahiaoui, S.; Roulier, B.; Courvoisier-Dezord, E.; Perrier, J.; Pérès, B.; Hijazi, A.; Baydoun, E.; Raymond, J.; Boumendjel, A.; et al. Aurone derivatives as promising antibacterial agents against resistant Gram-positive pathogens. Eur. J. Med. Chem. 2019, 165, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Irfan, A.; Zahoor, A.F.; Kamal, S.; Hassan, M.; Kloczkowski, A. Ultrasonic-Assisted Synthesis of Benzofuran Appended Oxadiazole Molecules as Tyrosinase Inhibitors: Mechanistic Approach through Enzyme Inhibition, Molecular Docking, Chemoinformatics, ADMET and Drug-Likeness Studies. Int. J. Mol. Sci. 2022, 23, 10979. [Google Scholar] [CrossRef]
- Irfan, A.; Faisal, S.; Zahoor, A.F.; Noreen, R.; Al-Hussain, S.A.; Tuzun, B.; Javaid, R.; Elhenawy, A.A.; Zaki, M.E.A.; Ahmad, S.; et al. In Silico Development of Novel Benzofuran-1,3,4-Oxadiazoles as Lead Inhibitors of M. tuberculosis Polyketide Synthase 13. Pharmaceuticals 2023, 16, 829. [Google Scholar] [CrossRef]
- Aslam, S.; Asif, N.; Khan, M.N.; Khan, M.A.; Munawar, M.A.; Nasrullah, M. Synthesis of Novel Arylfurfurylchalcones. Asian J. Chem. 2013, 25, 7738–7742. [Google Scholar] [CrossRef]
- Irfan, A.; Zahoor, A.F.; Rasul, A.; Al-Hussain, S.A.; Faisal, S.; Ahmad, S.; Noor, R.; Muhammed, M.T.; Zaki, M.E.A. BTEAC Catalyzed Ultrasonic-Assisted Synthesis of Bromobenzofuran-Oxadiazoles: Unravelling Anti-HepG-2 Cancer Therapeutic Potential through In Vitro and In Silico Studies. Int. J. Mol. Sci. 2023, 24, 3008. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.R.; Sastry, V.G.; Bano, N.; Anwar, S. Synthesis of novel chalcone derivatives by conventional and microwave irradiation methods and their pharmacological activities. Arab. J. Chem. 2016, 9, S931–S935. [Google Scholar] [CrossRef]
- Holla, B.S.; Veerendra, B.; Shivanandaa, M.K. Non-linear optical properties of new arylfuranylpropenones. J. Cryst. Growth 2004, 263, 532–535. [Google Scholar] [CrossRef]
- Ibrar, A.; Kazmi, M.; Khan, A.; Halim, S.A.; Saeed, A.; Mehsud, S.; AlHarrasi, A.; Khan, I. Robust therapeutic potential of carbazole-triazine hybrids as a new class of urease inhibitors: A distinctive combination of nitrogen-containing heterocycles. Bioorg. Chem 2020, 95, 103479–103482. [Google Scholar] [CrossRef] [PubMed]
- Wahid, S.; Jahangir, S.; Versiani, M.A.; Khan, K.M.; Salar, U.; Ashraf, M.; Farzand, U.; Wadood, A.; Taha, M.; Perveen, S. Atenolol Thiourea Hybrid as Potent Urease Inhibitors: Design, Biology-Oriented Drug Synthesis, Inhibitory Activity Screening, and Molecular Docking Studies. Bioorg. Chem. 2020, 94, 103359–103362. [Google Scholar] [CrossRef] [PubMed]
- Pervez, H.; Chohan, Z.H.; Ramzan, M.; Nasim, F.-U.-H.; Khan, K.M. Synthesis and biological evaluation of some new N4-substituted isatin-3-thiosemicarbazones. J. Enzym. Inhib. Med. Chem. 2009, 24, 437–446. [Google Scholar] [CrossRef] [PubMed]
- AL-Hazimi, H.M.A.; Al-Alshaikh, M.A. Microwave assisted synthesis of substituted fu-ran-2-carboxaldehydes and their reactions. J. Saudi Chem. Soc. 2010, 14, 373–382. [Google Scholar] [CrossRef]
- Brain, C.T.; Hallett, A.; Ko, S.Y. Thioamide Synthesis: Thioacyl-N-phthalimides as Thio-acylating Agents. J. Org. Chem. 1997, 62, 3808–3809. [Google Scholar] [CrossRef]
- Holla, B.S.; Akberali, P.M.; Shivananda, M.K. Studies on nitrophenylfuran derivatives: Part XII. Synthesis, characterization, antibacterial and antiviral activities of some nitro-phenylfurfurylidene-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines. Farmaco 2002, 56, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Holla, B.S.; Akberali, P.M.; Shivananda, M.K. Studies on arylfuran derivatives: Part X. Synthesis and antibacterial properties of arylfuryl-Δ2-pyrazolines. Farmaco 2000, 55, 256–263. [Google Scholar] [CrossRef]
- Puterová, Z.; Krutošíková, A.; Lyčka, A.; Ďurčeková, T. Reactions of Substituted Furan-2-carboxaldehydes and Furo[b]pyrrole Type Aldehydes with Benzothiazolium Salts. Molecules 2004, 9, 241–255. [Google Scholar] [CrossRef]
- Svane, S.; Sigurdarson, J.J.; Finkenwirth, F.; Eitinger, T.; Karring, H. Inhibition of Urease Activity by Different Compounds Provides Insight into the Modulation and Association of Bacterial Nickel Import and Ureolysis. Sci. Rep. 2020, 10, 8503. [Google Scholar] [CrossRef] [PubMed]
- Zambelli, B.; Mazzei, L.; Ciurli, S. Intrinsic Disorder in the Nickel-Dependent Urease Network. Prog. Mol. Biol. Transl. Sci. 2020, 174, 307–330. [Google Scholar] [PubMed]
- Martin, P.R.; Hausinger, R.P. Site-Directed Mutagenesis of the Active Site Cysteine in Klebsiella Aerogenes Urease. J. Biol. Chem. 1992, 267, 20024–20027. [Google Scholar] [CrossRef]
- Ansari, F.L.; Wadood, A.; Ullah, A.; Iftikhar, F.; Ul-Haq, Z. In silico studies of urease inhibitors to explore ligand-enzyme interactions. J. Enzym. Inhib. Med. Chem. 2009, 24, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Ha, N.C.; Oh, S.T.; Sung, J.Y.; Cha, K.A.; Lee, M.H.; Oh, B.H. Supramolecular Assembly and Acid Resistance of Helicobacter Pylori Urease. Nat. Struct. Biol. 2001, 8, 505–509. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An Integrated Online Platform for Accurate and Comprehensive Predictions of ADMET Properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef]
Structures of Compounds | Product Yield (%) | M.P (°C) | ||
---|---|---|---|---|
Method A: Conventional Synthetic Approach [31] | Method B: Microwave Irradiation Synthetic Approach [33] | Lit M.P (°C) | ||
71 | 85 | 172–174 | 172 [31] | |
68 | 90 | 126–128 | 126 [31] | |
77 | 90 | 140–141 | 140 [31] | |
72 | 88 | 136–138 | 136 [31] | |
69 | 85 | 196–198 | 200 decompose [31] | |
67 | 90 | 197–200 | - | |
70 | 88 | 166–168 | - | |
65 | 82 | 130–132 | - | |
75 | 90 | 195–198 | - | |
90 | 92 | 202–204 | - | |
80 | 90 | 248–251 | - | |
78 | 90 | 106–108 | 106 [34] | |
82 | 88 | 197–200 | - | |
75 | 80 | Decompose ˂ 300 | - | |
86 | z90 | 116–118 | - | |
84 | 92 | 166–68 | - | |
82 | 90 | 181–182 | - | |
72 | 86 | 130–132 | - | |
88 | 90 | 100–102 | 96–98 [34] |
Compounds | %Age Urease Inhibition Activity (0.1 mM) | Urease Inhibition IC50 (µM) |
---|---|---|
4a | 50.71 ± 0.62 | 91.89 ± 2.24 |
4b | 27.15 ± 0.17 | - |
4c | 39.41 ± 0.34 | - |
4d | 46.55 ± 0.91 | - |
4e | 65.46 ± 0.77 | 24.95 ± 1.77 |
4f | 69.71 ± 1.86 | 21.05 ± 3.52 |
4g | 39.72 ± 2.46 | - |
4h | 66.24 ± 1.36 | 16.13 ± 2.45 |
4i | 51.72 ± 1.62 | 90.81 ± 8.99 |
4j | 68.24 ± 0.11 | 26.05 ± 2.25 |
4k | 69.52 ± 0.16 | 23.09 ± 3.65 |
4l | 51.47 ± 0.41 | 91.43 ± 6.25 |
4m | 63.14 ± 0.86 | 26.71 ± 0.65 |
4n | 62.28 ± 1.28 | 46.77 ± 5.44 |
4o | 54.88 ± 1.98 | 33.96 ± 9.61 |
4p | 57.37 ± 3.02 | 52.64 ± 8.52 |
4q | 54.74 ± 0.73 | 44.43 ± 6.91 |
4r | 12.64 ± 3.37 | - |
4s | 71.41 ± 1.77 | 18.75 ± 0.85 |
Thiourea | 21.25 ± 0.15 |
SN | Name | Structure | Binding Affinities with Urease Enzyme |
---|---|---|---|
1 | 4h | −7.2 Kcal/mol | |
2 | 4s | −7.2 Kcal/mol | |
3 | Thiourea (control) | −3.2 Kcal/mol |
SN | Compound Name | GI-Tract Absorption | Bioavailability Scores | Lipinski Rule | Water Solubility | Acute Toxicity | Log Po/w (iLOGP) |
---|---|---|---|---|---|---|---|
1 | 4h | High | 0.55 | Accepted | 4.87 × 10−4 mg/mL | None | 3.67 |
2 | 4s | High | 0.55 | Accepted | 1.69 × 10−3 mg/mL | None | 3.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatima, M.; Aslam, S.; Zafar, A.M.; Irfan, A.; Khan, M.A.; Ashraf, M.; Faisal, S.; Noreen, S.; Shazly, G.A.; Shah, B.R.; et al. Exploring the Synthetic Chemistry of Phenyl-3-(5-aryl-2-furyl)- 2-propen-1-ones as Urease Inhibitors: Mechanistic Approach through Urease Inhibition, Molecular Docking and Structure–Activity Relationship. Biomedicines 2023, 11, 2428. https://doi.org/10.3390/biomedicines11092428
Fatima M, Aslam S, Zafar AM, Irfan A, Khan MA, Ashraf M, Faisal S, Noreen S, Shazly GA, Shah BR, et al. Exploring the Synthetic Chemistry of Phenyl-3-(5-aryl-2-furyl)- 2-propen-1-ones as Urease Inhibitors: Mechanistic Approach through Urease Inhibition, Molecular Docking and Structure–Activity Relationship. Biomedicines. 2023; 11(9):2428. https://doi.org/10.3390/biomedicines11092428
Chicago/Turabian StyleFatima, Miraj, Samina Aslam, Ansa Madeeha Zafar, Ali Irfan, Misbahul Ain Khan, Muhammad Ashraf, Shah Faisal, Sobia Noreen, Gamal A. Shazly, Bakht Ramin Shah, and et al. 2023. "Exploring the Synthetic Chemistry of Phenyl-3-(5-aryl-2-furyl)- 2-propen-1-ones as Urease Inhibitors: Mechanistic Approach through Urease Inhibition, Molecular Docking and Structure–Activity Relationship" Biomedicines 11, no. 9: 2428. https://doi.org/10.3390/biomedicines11092428
APA StyleFatima, M., Aslam, S., Zafar, A. M., Irfan, A., Khan, M. A., Ashraf, M., Faisal, S., Noreen, S., Shazly, G. A., Shah, B. R., & Bin Jardan, Y. A. (2023). Exploring the Synthetic Chemistry of Phenyl-3-(5-aryl-2-furyl)- 2-propen-1-ones as Urease Inhibitors: Mechanistic Approach through Urease Inhibition, Molecular Docking and Structure–Activity Relationship. Biomedicines, 11(9), 2428. https://doi.org/10.3390/biomedicines11092428