Weight Is a Predictor of Delayed Operation Time in Primary Isolated Anterior Cruciate Ligament Reconstruction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Surgical Technique
2.3. Evaluation of Pure Operation Time
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shankar, D.S.; Vasavada, K.D.; Avila, A.; DeClouette, B.; Aziz, H.; Strauss, E.J.; Alaia, M.J.; Jazrawi, L.M.; Gonzalez-Lomas, G.; Campbell, K.A. Acceptable clinical outcomes despite high reoperation rate at minimum 12-month follow-up after concomitant arthroscopically assisted anterior cruciate ligament reconstruction and medial meniscal allograft transplantation. Knee Surg. Relat. Res. 2023, 35, 2. [Google Scholar] [CrossRef]
- Morgan, A.M.; Bi, A.S.; Kaplan, D.J.; Alaia, M.J.; Strauss, E.J.; Jazrawi, L.M. An eponymous history of the anterolateral ligament complex of the knee. Knee Surg. Relat. Res. 2022, 34, 45. [Google Scholar] [CrossRef]
- Sundararajan, S.R.; Ramakanth, R.; Jha, A.K.; Rajasekaran, S. Outside-in technique versus inside-out semitendinosus graft harvest technique in ACLR: A randomised control trial. Knee Surg. Relat. Res. 2022, 34, 16. [Google Scholar] [CrossRef]
- Kim, S.; Bosque, J.; Meehan, J.P.; Jamali, A.; Marder, R. Increase in outpatient knee arthroscopy in the United States: A comparison of National Surveys of Ambulatory Surgery, 1996 and 2006. J. Bone Joint Surg. Am. 2011, 93, 994–1000. [Google Scholar] [CrossRef]
- Gans, I.; Retzky, J.S.; Jones, L.C.; Tanaka, M.J. Epidemiology of Recurrent Anterior Cruciate Ligament Injuries in National Collegiate Athletic Association Sports: The Injury Surveillance Program, 2004–2014. Orthop. J. Sports Med. 2018, 6, 2325967118777823. [Google Scholar] [CrossRef] [Green Version]
- Sherman, S.L.; Calcei, J.; Ray, T.; Magnussen, R.A.; Musahl, V.; Kaeding, C.C.; Clatworthy, M.; Bergfeld, J.A.; Arnold, M.P. ACL Study Group presents the global trends in ACL reconstruction: Biennial survey of the ACL Study Group. J. ISAKOS 2021, 6, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Belmont, P.J., Jr.; Goodman, G.P.; Hamilton, W.; Waterman, B.R.; Bader, J.O.; Schoenfeld, A.J. Morbidity and mortality in the thirty-day period following total hip arthroplasty: Risk factors and incidence. J. Arthroplast. 2014, 29, 2025–2030. [Google Scholar] [CrossRef]
- Belmont, P.J., Jr.; Goodman, G.P.; Waterman, B.R.; Bader, J.O.; Schoenfeld, A.J. Thirty-day postoperative complications and mortality following total knee arthroplasty: Incidence and risk factors among a national sample of 15,321 patients. J. Bone Joint Surg. Am. 2014, 96, 20–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boddapati, V.; Fu, M.C.; Schairer, W.W.; Ranawat, A.S.; Dines, D.M.; Taylor, S.A.; Dines, J.S. Increased Shoulder Arthroscopy Time Is Associated With Overnight Hospital Stay and Surgical Site Infection. Arthroscopy 2018, 34, 363–368. [Google Scholar] [CrossRef]
- Agarwalla, A.; Gowd, A.K.; Liu, J.N.; Garcia, G.H.; Bohl, D.D.; Verma, N.N.; Forsythe, B. Effect of Operative Time on Short-Term Adverse Events After Isolated Anterior Cruciate Ligament Reconstruction. Orthop. J. Sports Med. 2019, 7, 2325967118825453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westermann, R.; Anthony, C.A.; Duchman, K.R.; Gao, Y.; Pugely, A.J.; Hettrich, C.M.; Amendola, N.; Wolf, B.R. Infection following Anterior Cruciate Ligament Reconstruction: An Analysis of 6389 Cases. J. Knee Surg. 2017, 30, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Mont, M.A.; Jacobs, J.J.; Boggio, L.N.; Bozic, K.J.; Della Valle, C.J.; Goodman, S.B.; Lewis, C.G.; Yates, A.J., Jr.; Watters, W.C., 3rd; Turkelson, C.M.; et al. Preventing venous thromboembolic disease in patients undergoing elective hip and knee arthroplasty. J. Am. Acad. Orthop. Surg. 2011, 19, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Bohl, D.D.; Ondeck, N.T.; Darrith, B.; Hannon, C.P.; Fillingham, Y.A.; Della Valle, C.J. Impact of Operative Time on Adverse Events Following Primary Total Joint Arthroplasty. J. Arthroplast. 2018, 33, 2256–2262 e2254. [Google Scholar] [CrossRef]
- Kim, D.Y.; Seo, Y.C.; Kim, C.W.; Lee, C.R.; Jung, S.H. Factors affecting range of motion following two-stage revision arthroplasty for chronic periprosthetic knee infection. Knee Surg. Relat. Res. 2022, 34, 33. [Google Scholar] [CrossRef] [PubMed]
- Hanly, R.J.; Marvi, S.K.; Whitehouse, S.L.; Crawford, R.W. Morbid Obesity in Total Hip Arthroplasty: Redefining Outcomes for Operative Time, Length of Stay, and Readmission. J. Arthroplast. 2016, 31, 1949–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mednick, R.E.; Alvi, H.M.; Krishnan, V.; Lovecchio, F.; Manning, D.W. Factors Affecting Readmission Rates Following Primary Total Hip Arthroplasty. J. Bone Joint Surg. Am. 2014, 96, 1201–1209. [Google Scholar] [CrossRef] [Green Version]
- Reinke, C.E.; Kelz, R.R.; Zubizarreta, J.R.; Mi, L.; Saynisch, P.; Kyle, F.A.; Even-Shoshan, O.; Fleisher, L.A.; Silber, J.H. Obesity and readmission in elderly surgical patients. Surgery 2012, 152, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Saucedo, J.M.; Marecek, G.S.; Wanke, T.R.; Lee, J.; Stulberg, S.D.; Puri, L. Understanding readmission after primary total hip and knee arthroplasty: Who’s at risk? J. Arthroplast. 2014, 29, 256–260. [Google Scholar] [CrossRef]
- Ruopp, M.D.; Perkins, N.J.; Whitcomb, B.W.; Schisterman, E.F. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom. J. 2008, 50, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Gadinsky, N.E.; Manuel, J.B.; Lyman, S.; Westrich, G.H. Increased operating room time in patients with obesity during primary total knee arthroplasty: Conflicts for scheduling. J. Arthroplast. 2012, 27, 1171–1176. [Google Scholar] [CrossRef]
- Kadry, B.; Press, C.D.; Alosh, H.; Opper, I.M.; Orsini, J.; Popov, I.A.; Brodsky, J.B.; Macario, A. Obesity increases operating room times in patients undergoing primary hip arthroplasty: A retrospective cohort analysis. PeerJ 2014, 2, e530. [Google Scholar] [CrossRef] [Green Version]
- Raphael, I.J.; Parmar, M.; Mehrganpour, N.; Sharkey, P.F.; Parvizi, J. Obesity and operative time in primary total joint arthroplasty. J. Knee Surg. 2013, 26, 95–99. [Google Scholar] [CrossRef]
- Traven, S.A.; Wolf, G.J.; Goodloe, J.B.; Reeves, R.A.; Woolf, S.K.; Slone, H.S. Elevated BMI increases concurrent pathology and operative time in adolescent ACL reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 4182–4187. [Google Scholar] [CrossRef]
- Helito, C.P.; da Silva, A.G.M.; Guimaraes, T.M.; Sobrado, M.F.; Pecora, J.R.; Camanho, G.L. Functional results of multiple revision anterior cruciate ligament with anterolateral tibial tunnel associated with anterolateral ligament reconstruction. Knee Surg. Relat. Res. 2022, 34, 24. [Google Scholar] [CrossRef]
- Burnham, J.M.; Herbst, E.; Pauyo, T.; Pfeiffer, T.; Johnson, D.L.; Fu, F.H.; Musahl, V. Technical Considerations in Revision Anterior Cruciate Ligament (ACL) Reconstruction for Operative Techniques in Orthopaedics. Oper. Tech. Orthop. 2017, 27, 63–69. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic; Report of a WHO Consultation; World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 2000; Volume 894, pp. 1–253. [Google Scholar]
- Ballal, M.S.; Khan, Y.; Hastie, G.; Hatcher, A.; Coogan, S.; McNicholas, M.J. Functional outcome of primary hamstring anterior cruciate ligament reconstruction in patients with different body mass index classes. Arthroscopy 2013, 29, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Berg, E.E. Knee joint arthroscopy in the morbidly obese. Arthroscopy 1998, 14, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Baumgarten, K.M.; Carlson, W.O.; Watson, E.S. The effect of obesity on orthopaedic conditions. S D Med. 2011, 41–44. [Google Scholar]
- Lee, D.H.; Kim, H.J.; Ahn, H.S.; Bin, S.I. Comparison of Femoral Tunnel Length and Obliquity Between Transtibial, Anteromedial Portal, and Outside-In Surgical Techniques in Single-Bundle Anterior Cruciate Ligament Reconstruction: A Meta-analysis. Arthroscopy 2016, 32, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.S.; Ro, K.H.; Lee, J.H.; Lee, D.H. Location of the femoral tunnel aperture in single-bundle anterior cruciate ligament reconstruction: Comparison of the transtibial, anteromedial portal, and outside-in techniques. Am. J. Sports Med. 2013, 41, 2533–2539. [Google Scholar] [CrossRef]
- Jain, G.; Datt, R.; Mahmood, A.; Nag, H.L.; Sahu, A. Anteromedial Portal Reference Technique for Femoral Tunnel Depth Measurement During Arthroscopic Anterior Cruciate Ligament Reconstruction. Cureus 2021, 13, e13147. [Google Scholar] [CrossRef] [PubMed]
- Burnham, J.M.; Malempati, C.S.; Carpiaux, A.; Ireland, M.L.; Johnson, D.L. Anatomic Femoral and Tibial Tunnel Placement During Anterior Cruciate Ligament Reconstruction: Anteromedial Portal All-Inside and Outside-In Techniques. Arthrosc. Tech. 2017, 6, e275–e282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubowitz, J.H. Anteromedial portal technique for the anterior cruciate ligament femoral socket: Pitfalls and solutions. Arthroscopy 2009, 25, 95–101. [Google Scholar] [CrossRef]
- McAllister, D.R.; Parker, R.D.; Cooper, A.E.; Recht, M.P.; Abate, J. Outcomes of postoperative septic arthritis after anterior cruciate ligament reconstruction. Am. J. Sports Med. 1999, 27, 562–570. [Google Scholar] [CrossRef]
- Lohmander, L.S.; Englund, P.M.; Dahl, L.L.; Roos, E.M. The long-term consequence of anterior cruciate ligament and meniscus injuries: Osteoarthritis. Am. J. Sports Med. 2007, 35, 1756–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shelbourne, K.D.; Stube, K.C. Anterior cruciate ligament (ACL)-deficient knee with degenerative arthrosis: Treatment with an isolated autogenous patellar tendon ACL reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 1997, 5, 150–156. [Google Scholar] [CrossRef]
- Nakata, K.; Shino, K.; Horibe, S.; Tanaka, Y.; Toritsuka, Y.; Nakamura, N.; Koyanagi, M.; Yoshikawa, H. Arthroscopic anterior cruciate ligament reconstruction using fresh-frozen bone plug-free allogeneic tendons: 10-year follow-up. Arthroscopy 2008, 24, 285–291. [Google Scholar] [CrossRef]
- Lawrence, R.C.; Felson, D.T.; Helmick, C.G.; Arnold, L.M.; Choi, H.; Deyo, R.A.; Gabriel, S.; Hirsch, R.; Hochberg, M.C.; Hunder, G.G.; et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008, 58, 26–35. [Google Scholar] [CrossRef] [Green Version]
Overall (n = 103) | Pure OP Time ≥ 61 min (n = 34) | Pure OP Time < 61 min (n = 69) | p-Value | |
---|---|---|---|---|
Sex (male/female) | 67/36 | 25/9 | 42/27 | |
Age (years) | 31.9 ± 12.6 | 31.4 ± 11.7 | 32.3 ± 13.1 | 0.76 |
Height (cm) | 170.7 ± 8.7 | 172.3 ± 8.4 | 169.9 ± 8.7 | 0.2 |
Weight (kg) | 72.4 ± 12.7 | 82.3 ± 10.1 | 67.6 ± 10.9 | <0.001 |
Body mass index (kg/m2) | 24.9 ± 4.1 | 27.9 ± 3.9 | 23.4 ± 3.3 | 0.018 |
OP time (min) | 62.5 ± 10.6 | 66.4 ± 9.8 | 60.6 ± 10.5 | |
Pure OP time (min) | 45.9 ± 13.4 | 63.3 ± 3.0 | 37.4 ± 6.4 |
Variables | OP Time | Pure OP Time | ||
---|---|---|---|---|
Pearson Correlation Coefficient (r) | p-Value | Pearson Correlation Coefficient (r) | p-Value | |
Age (years) | 0.104 | 0.3 | 0.013 | 0.89 |
Height (cm) | 0.037 | 0.71 | 0.037 | 0.18 |
Weight (kg) | 0.148 | 0.14 | 0.635 | <0.001 |
Body mass index (kg/m2) | 0.147 | 0.14 | 0.584 | <0.001 |
Unstandardized Coefficients | Standardized Coefficients | ||||
---|---|---|---|---|---|
Dependent Variable | Explicative Variable | B | Standard Error | b | p-Value |
Pure operation time (except suture time) | Age (years) | −0.035 | 0.085 | −0.033 | 0.68 |
Height (cm) | 0.948 | 0.784 | 1.21 | 0.23 | |
Weight (kg) | 0.671 | 0.081 | 0.635 | <0.001 | |
Body mass index (kg/m2) | 3.91 | 2.741 | 1.195 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.; Lee, S.-S.; Oh, J.; Lee, D.-H. Weight Is a Predictor of Delayed Operation Time in Primary Isolated Anterior Cruciate Ligament Reconstruction. Biomedicines 2023, 11, 2137. https://doi.org/10.3390/biomedicines11082137
Lim S, Lee S-S, Oh J, Lee D-H. Weight Is a Predictor of Delayed Operation Time in Primary Isolated Anterior Cruciate Ligament Reconstruction. Biomedicines. 2023; 11(8):2137. https://doi.org/10.3390/biomedicines11082137
Chicago/Turabian StyleLim, Sungtae, Sung-Sahn Lee, Juyong Oh, and Dae-Hee Lee. 2023. "Weight Is a Predictor of Delayed Operation Time in Primary Isolated Anterior Cruciate Ligament Reconstruction" Biomedicines 11, no. 8: 2137. https://doi.org/10.3390/biomedicines11082137
APA StyleLim, S., Lee, S.-S., Oh, J., & Lee, D.-H. (2023). Weight Is a Predictor of Delayed Operation Time in Primary Isolated Anterior Cruciate Ligament Reconstruction. Biomedicines, 11(8), 2137. https://doi.org/10.3390/biomedicines11082137