The Value of Prolactin, a Panel of Cytokines, and the Soluble Human Epidermal Growth Factor Receptor 2 in the Prediction of Rapid Progression and Shorter Survival during Palliative Chemotherapy of Colorectal Cancer Patients
Abstract
:1. Introduction
2. Materials and Patients
2.1. Patients
2.2. Assays
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Predictive Value of Prolactin
4.2. Predictive Value of IP-10 (IP-10, CXCL10)
4.3. Predictive Value of sHER2
4.4. Predictive Value of IL-8 and IL-6
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Cancer. Available online: https://www.who.int/news-room/fact-=sheets/detail/cancer (accessed on 14 July 2021).
- Kow, A.W.C. Hepatic metastasis from colorectal cancer. J. Gastrointest. Oncol. 2019, 10, 1274–1298. [Google Scholar] [CrossRef]
- Long, T.; Raufman, J. The diagnostic and prognostic role of cytokines in colon cancer. Gastrointest. Cancer Targets Ther. 2011, 1, 27–39. [Google Scholar]
- Hegde, P.S.; Karanikas, V.; Evers, S. The Where, the When, and the How of Immune Monitoring for Cancer Immunotherapies in the Era of Checkpoint Inhibition. Clin. Cancer Res. 2016, 22, 1865–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czajka-Francuz, P.; Francuz, T.; Cisoń-Jurek, S.; Czajka, A.; Fajkis, M.; Szymczak, B.; Kozaczka, M.; Malinowski, K.P.; Zasada, W.; Wojnar, J.; et al. Serum cytokine profile as a potential prognostic tool in colorectal cancer patients—One center study. Rep. Pract. Oncol. Radiother. 2020, 25, 867–875. [Google Scholar] [CrossRef]
- Patel, D.D.; Bhatavdekar, J.M.; Ghosh, N.; Vora, H.H.; Karelia, N.H.; Shah, N.G.; Suthar, T.P.; Balar, D.B.; Trivedi, C.R. Plasma prolactin in patients with colorectal cancer. Value in follow-up and as a prognosticator. Cancer 1994, 73, 570–574. [Google Scholar] [CrossRef]
- Soroush, A.R.; Zadeh, H.M.; Moemeni, M.; Shakiba, B.; Elmi, S. Plasma prolactin in patients with colorectal cancer. BMC Cancer 2004, 4, 97. [Google Scholar] [CrossRef] [Green Version]
- Bhatavdekar, J.M.; Patel, D.D.; Giri, D.D.; Karelia, N.H.; Vora, H.H.; Ghosh, N.; Shah, N.G.; Trivedi, S.N.; Balar, D.B. Comparison of plasma prolactin and CEA in monitoring patients with adenocarcinoma of colon and rectum. Br. J. Cancer 1992, 66, 977–980. [Google Scholar] [CrossRef] [Green Version]
- Mahboob, S.; Ahn, S.B.; Cheruku, H.R.; Cantor, D.; Rennel, E.; Fredriksson, S.; Edfeldt, G.; Breen, E.J.; Khan, A.; Mohamedali, A.; et al. A novel multiplexed immunoassay identifies CEA, IL-8 and prolactin as prospective markers for Dukes’ stages A-D colorectal cancers. Clin. Proteom. 2015, 12, 10. [Google Scholar] [CrossRef] [Green Version]
- Bhatavdekar, J.M.; Shah, N.G.; Balar, D.B.; Patel, D.D.; Bhaduri, A.; Trivedi, S.N.; Karelia, N.H.; Ghosh, N.; Shukla, M.K.; Giri, D.D. Plasma Prolactin as an Indicator of Disease Progression in Advanced Breast Cancer. Cancer 1990, 65, 2028–2032. [Google Scholar] [CrossRef]
- Becker, D.J.; Vinik, A.I.; Pimstone, B.L.; Paul, M. Prolactin responses to Thyrotropin Releasing Hormone in Protein Calorie Malnutrition. J. Clin. Endocrinol. Metab. 1975, 41, 782. [Google Scholar] [CrossRef]
- Navarro, I.; Batista, K.; Schraner, M.; Riediger, T. Brainstem prolactin-releasing peptide contributes to cancer anorexia-cachexia syndrome in rats. Neuropharmacology 2020, 180, 108289. [Google Scholar] [CrossRef]
- Faupel-Badger, J.M.; Ginsburg, E.; Fleming, J.M.; Susser, L.; Doucet, T.; Vonderhaar, B.K. 16-kDa Prolactin Reduces Angiogenesis, but Not Growth of Human Breast Cancer Tumors In Vivo. Horm. Cancer 2010, 1, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Bernard, V.; Young, J.; Chanson, P.; Binart, N. New insights in prolactin: Pathological implications. Nat. Rev. Endocrinol. 2015, 11, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Karin, N.; Razon, H. Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity. Cytokine 2018, 109, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Zumwalt, T.J.; Arnold, M.; Goel, A.; Boland, C.R. Active secretion of CXCL10 and CCL5 from colorectal cancer microenvironments associates with GranzymeB+ CD8+ T-cell infiltration. Oncotarget 2015, 6, 2981–2991. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, Y.; Wang, S.; Ni, H.; Zhao, P.; Chen, G.; Xu, B.; Yuan, L. The role of CXCR3 and its ligands in cancer. Front. Oncol. 2022, 12, 1022688. [Google Scholar] [CrossRef]
- Song, W.; Yin, H.; Han, C.; Mao, Q.; Tang, J.; Ji, Z.; Yan, X.; Wang, L.; Liu, S.; Ai, C. The role of CXCL10 in prognosis of patients with colon cancer and tumor microenvironment remodeling. Medicine 2021, 100, e27224. [Google Scholar] [CrossRef]
- Wightman, S.; Uppal, A.; Pitroda, S.; Ganai, S.; Burnette, B.; Stack, M.; Oshima, G.; Khan, S.; Huang, X.; Posner, M.C.; et al. Oncogenic CXCL10 signalling drives metastasis development and poor clinical outcome. Br. J. Cancer 2015, 113, 327–335. [Google Scholar] [CrossRef]
- Dufour, J.H.; Dziejman, M.; Liu, M.T.; Leung, J.H.; Lane, T.E.; Luster, A.D. IFN-γ-Inducible Protein 10 (IP-10; CXCL10)-Deficient Mice Reveal a Role for IP-10 in Effector T Cell Generation and Trafficking1. J. Immunol. 2002, 168, 3195–3204. [Google Scholar] [CrossRef]
- Mohammadpoor, A.H.; Ghaffarzadegan, K.; Hasanpoor, M.; Izanloo, A.; Mehri, S.; Jannati, M.; Elyasi, S. Evaluation of Serum CXCL10 Level as a Prognostic Marker in Colorectal Cancer Patients: A Retrospective Cohort Study. Rep. Radiother. Oncol. 2021, 8, e122874. [Google Scholar] [CrossRef]
- Afrasânie, V.A.; Marinca, M.V.; Alexa-Stratulat, T.; Gafton, B.; Paduraru, M.; Adavidoaiei, A.M.; Miron, L.; Rusu, C. KRAS, NRAS, BRAF, HER2 and microsatellite instability in metastatic colorectal cancer—Practical implications for the clinician. Radiol. Oncol. 2019, 53, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, M.; Venetis, K.; Guerini-Rocco, E.; Bottiglieri, L.; Mastropasqua, M.G.; Garrone, O.; Fusco, N.; Ghidini, M. HER2 in Metastatic Colorectal Cancer: Pathology, Somatic Alterations, and Perspectives for Novel Therapeutic Schemes. Life 2022, 12, 1403. [Google Scholar] [CrossRef]
- Moreno-Aspitia, A.; Hillman, D.W.; Dyar, S.H.; Tenner, K.S.; Gralow, J.; Kaufman, P.A.; Davidson, N.E.; Lafky, J.M.; Reinholz, M.M.; Lingle, W.L.; et al. Soluble human epidermal growth factor receptor 2 (HER2) levels in patients with HER2-positive breast cancer receiving chemotherapy with or without trastuzumab: Results from North Central Cancer Treatment Group adjuvant trial N9831. Cancer 2013, 119, 2675–2682. [Google Scholar] [CrossRef] [Green Version]
- Xia, W.; Chen, W.; Zhang, Z.; Wu, D.; Wu, P.; Chen, Z.; Li, C.; Huang, J. Prognostic Value, Clinicopathologic Features and Diagnostic Accuracy of Interleukin-8 in Colorectal Cancer: A Meta-Analysis. PLoS ONE 2015, 10, e0123484. [Google Scholar] [CrossRef] [Green Version]
- Bie, Y.; Ge, W.; Yang, Z.; Cheng, Z.; Zhao, Z.; Li, S.; Wang, W.; Wang, Y.; Zhao, X.; Yin, Z.; et al. The Crucial Role of CXCL8 and Its Receptors in Colorectal Liver Metastasis. Dis. Markers 2019, 2019, 8023460. [Google Scholar] [CrossRef]
- Conciatori, F.; Bazzichetto, C.; Falcone, I.; Ferretti, G.; Cognetti, F.; Milella, M.; Ciuffreda, L. Colorectal cancer stem cells properties and features: Evidence of interleukin-8 involvement. Cancer Drug Resist. 2019, 2, 968–979. [Google Scholar] [CrossRef]
- Long, X.; Ye, Y.; Zhang, L.; Liu, P.; Yu, W.; Wei, F.; Ren, X.; Yu, J. IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways. Int. J. Oncol. 2016, 48, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Bazzichetto, C.; Milella, M.; Zampiva, I.; Simionato, F.; Amoreo, C.A.; Buglioni, S.; Pacelli, C.; Le Pera, L.; Colombo, T.; Bria, E.; et al. Interleukin-8 in Colorectal Cancer: A Systematic Review and Meta- Analysis of Its Potential Role as a Prognostic Biomarker. Biomedicines 2022, 10, 2631. [Google Scholar] [CrossRef]
- Pączek, S.; Łukaszewicz-Zając, M.; Gryko, M.; Mroczko, P.; Kulczyńska-Przybik, A.; Mroczko, B. CXCL-8 in Preoperative Colorectal Cancer Patients: Significance for Diagnosis and Cancer Progression. Int. J. Mol. Sci. 2020, 21, 2040. [Google Scholar] [CrossRef] [Green Version]
- Burz, C.; Bojan, A.; Balacescu, L.; Pop, V.V.; Silaghi, C.; Lupan, I.; Aldea, C.; Sur, D.; Samasca, G.; Cainap, C.; et al. Interleukin 8 as predictive factor for response to chemotherapy in colorectal cancer patients. Acta Clin. Belg. 2021, 76, 113–118. [Google Scholar] [CrossRef]
- Xu, J.; Ye, Y.; Zhang, H.; Szmitkowski, M.; Mäkinen, M.J.; Li, P.; Xia, D.; Yang, J.; Wu, Y.; Wu, H. Diagnostic and Prognostic Value of Serum Interleukin-6 in Colorectal Cancer. Medicine 2016, 95, e2502. [Google Scholar] [CrossRef]
- Cui, G.; Yuan, A.; Sun, Z.; Zheng, W.; Pang, Z. IL-1_/IL-6 network in the tumor microenvironment of human colorectal cancer. Pathol. Res. Pract. 2018, 214, 986–992. [Google Scholar] [CrossRef]
- Chonov, D.C.; Ignatova, M.M.K.; Ananiev, J.R.; Gulubova, M.V. IL-6 Activities in the Tumour Microenvironment. Part 1. Open Access Maced. J. Med. Sci. 2019, 7, 2391–2398. [Google Scholar] [CrossRef] [Green Version]
- Waniczek, D.; Lorenc, Z.; Snietura, M.; Wesecki, M.; Kopec, A.; Muc-Wierzgo, M. Tumor-Associated Macrophages and Regulatory T Cells Infiltration and the Clinical Outcome in Colorectal Cancer. Arch. Immunol. Ther. Exp. 2017, 65, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Kasprzak, A. The Role of Tumor Microenvironment Cells in Colorectal Cancer (CRC) Cachexia. Int. J. Mol. Sci. 2021, 22, 1565. [Google Scholar] [CrossRef]
- Xu, W.; He, Y.; Wang, Y.; Li, X.; Young, J.; Ioannidis, J.P.A.; Dunlop, M.G.; Theodoratou, E. Risk factors and risk prediction models for colorectal cancer metastasis and recurrence: An umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med. 2020, 18, 172. [Google Scholar] [CrossRef]
All | Non-Rapid Progression | Rapid Progression | p | |
---|---|---|---|---|
N (%) | 51 (100%) | 32 (62.7) | 19 (37.3) | |
Female, N (%) | 28 (54.9%) | 20 (62.5%) | 8 (42.1) | 0.16 |
Age [years] | 66 ± 9 | 64 ± 7 | 68 ± 10 | 0.11 |
BMI [kg/m2] | 26.1 ± 4.5 | 26.4 ± 4.6 | 25.8 ± 4.5 | 0.66 |
WHO, N (%) | ||||
0 | 37 (72.6) | 25 (78.1) | 12 (63.2) | 0.51 |
1 | 12 (23.5) | 6 (18.8) | 6 (31.6) | |
2 | 2 (3.9) | 1 (3.1) | 1 (5.2) | |
Cancer location, N (%) | 0.28 | |||
Right colon | 13 (25.5) | 7 (21.9) | 6 (31.6) | |
Left colon | 12 (23.5) | 9 (28.1) | 3 (15.8) | |
Sigmoid | 13 (25.5) | 10 (31.2) | 3 (15.8) | |
Rectum | 13 (25.5) | 6 (18.8) | 7 (36.8) | |
Clinical stage, N (%) | ||||
II/III | 16 (31.40 | 10 (31.2) | 6 (31.6) | 0.98 |
IV | 35 (68.6) | 22 (68.8) | 13 (68.4) | |
Grade, N (%) | ||||
1 + 2 | 39 (76.5) | 29 (90.6) | 10 (52.6) | <0.01 |
3 | 12 (23.5) | 3 (9.4) | 9 (47.4) | |
RAS mutation, N (%) | 18 (75.0) | 14 (73.7) | 4 (80.0) | 1.00 |
Surgery type, N (%) | ||||
Hemicolectomy | 17 (33.3) | 9 (28.1) | 8 (42.1) | 0.06 |
Segmental resection | 14 (27.4) | 13 (40.6) | 1 (5.3) | |
Lower anterior resection | 12 (23.5) | 6 (18.8) | 6 (31.6) | |
Colostomy | 8 (15.7) | 4 (12.5) | 4 (21.0) | |
Radiation therapy, N (%) | 12 (23.53) | 7 (21.9) | 5 (26.3) | 0.72 |
Chemotherapy, N (%) | ||||
Initially palliative | 23 (45.1) | 15 (46.9) | 8 (42.1) | 0.74 |
Palliative after radical therapy | 28 (54.9) | 17 (53.1) | 11 (57.9) | |
5-FU monotherapy | 11 (21.6) | 5 (15.6) | 6 (31.6) | 0.55 |
FOLFIRI | 31 (60.8) | 21 (65.6) | 10 (52.6) | |
FOLFOX-4 | 7 (13.7) | 5 (15.6) | 2 (10.5) | |
FOLFOX4+bevacizumab | 2 (3.9) | 1 (3.1) | 1 (5.3) |
All Patients [N = 51] | Non-Rapid Progressors [N = 32] | Rapid Progressors [N = 19] | p | |
---|---|---|---|---|
Hemoglobin [g/dL] | 12.2 ± 1.6 | 12.4 ± 1.6 | 11.8 ± 1.6 | 0.26 |
Red blood cells [106/μL] | 4.34 ± 0.45 | 4.38 ± 0.49 | 4.28 ± 0.38 | 0.46 |
White blood cells [103/μL] | 7.7 ± 3.2 | 7.8 ± 3.2 | 7.6 ± 3.2 | 0.86 |
Platelets [103/μL] | 291 ± 133 | 300 ± 125 | 276 ± 147 | 0.53 |
CEA [ng/mL] | 22.8 (4.8–100.8) | 29.5 (4.8–92.1) | 20.4 (5.3–335.5) | 0.99 |
Ca19-9 [U/mL] | 15.2 (7.2–92.2) | 31.9 (7.2–122.0) | 11.1 (5.8–40.3) | 0.26 |
AST [IU/L] | 23 (16–39) | 21 (14–34) | 24 (17–44) | 0.16 |
ALT [IU/L] | 21 (16–37) | 20 (15–38) | 21 (16–27) | 0.84 |
Parameter | Non-Rapid Progressors [N = 32] | Rapid Progressors [N = 19] | p |
---|---|---|---|
IL-8 [pg/mL] | 19.8 (15.6–29.3) | 21.7 (16.6–44.4) | 0.08 |
IP-10 [pg/dL] | 6.6 (4.4–81.3) | 7.4 (6.2–103.4) | 0.08 |
PRL [ng/mL] | 19.5 (13.6–50.7) | 17.9 (10.0–29.4) | <0.05 |
Progression | ||
---|---|---|
HR | ±95% CI | |
Male vs. Female | 1.04 | 0.59–1.85 |
Age [per decade] | 1.49 $ | 1.00–2.22 |
BMI [per kg/m2] | 0.99 | 0.93–1.05 |
WHO 1/2 vs. 0 | 1.54 | 0.82–2.89 |
Cancer location | ||
Right colon | 1.65 | 0.72–3.80 |
Left colon | 0.86 | 0.37–2.00 |
Sigmoid | Ref. | |
Rectum | 2.88 * | 1.23–6.76 |
Clinical Stage VI vs. II/III | 1.14 | 0.61–2.12 |
Grade 3 vs. 1/2 | 3.28 # | 1.64–6.59 |
RAS mutation | 1.22 | 0.45–3.33 |
Surgery type | ||
Hemicolectomy | Ref. | |
Segmental resection | 0.64 | 0.30–1.37 |
Lower anterior resection | 1.60 | 0.75–3.42 |
Abdominoperineal resection | 1.62 | 0.68–3.86 |
Radiation therapy | 1.15 | 0.58–2.26 |
Chemotherapy | ||
Initially palliative | Ref. | |
Palliative after radical therapy | 0.84 | 0.47–1.51 |
Rapid progression | – | – |
Initial values of: | ||
CEA [per ng/dL] | 1.02 | 0.98–1.07 |
Ca19-9 [per U/dL] | 1.03 | 0.83–1.28 |
Baseline values | ||
IL-6 [per pg/mL] | 1.27 * | 1.03–1.56 |
IL-8 [per 10 pg/mL] | 1.10 ** | 1.03–1.17 |
IP-10 [per pg/dL] | 1.08 * | 1.01–1.16 |
sHER2 [per ng/mL] | 1.05 * | 1.01–1.09 |
PRL [per 10 ng/mL] | 0.95 $ | 0.90–1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cisoń-Jurek, S.; Czajka-Francuz, P.; Francuz, T.; Owczarek, A.J.; Szymczak, B.; Wojnar, J.; Chudek, J. The Value of Prolactin, a Panel of Cytokines, and the Soluble Human Epidermal Growth Factor Receptor 2 in the Prediction of Rapid Progression and Shorter Survival during Palliative Chemotherapy of Colorectal Cancer Patients. Biomedicines 2023, 11, 2014. https://doi.org/10.3390/biomedicines11072014
Cisoń-Jurek S, Czajka-Francuz P, Francuz T, Owczarek AJ, Szymczak B, Wojnar J, Chudek J. The Value of Prolactin, a Panel of Cytokines, and the Soluble Human Epidermal Growth Factor Receptor 2 in the Prediction of Rapid Progression and Shorter Survival during Palliative Chemotherapy of Colorectal Cancer Patients. Biomedicines. 2023; 11(7):2014. https://doi.org/10.3390/biomedicines11072014
Chicago/Turabian StyleCisoń-Jurek, Sylwia, Paulina Czajka-Francuz, Tomasz Francuz, Aleksander J. Owczarek, Bożena Szymczak, Jerzy Wojnar, and Jerzy Chudek. 2023. "The Value of Prolactin, a Panel of Cytokines, and the Soluble Human Epidermal Growth Factor Receptor 2 in the Prediction of Rapid Progression and Shorter Survival during Palliative Chemotherapy of Colorectal Cancer Patients" Biomedicines 11, no. 7: 2014. https://doi.org/10.3390/biomedicines11072014
APA StyleCisoń-Jurek, S., Czajka-Francuz, P., Francuz, T., Owczarek, A. J., Szymczak, B., Wojnar, J., & Chudek, J. (2023). The Value of Prolactin, a Panel of Cytokines, and the Soluble Human Epidermal Growth Factor Receptor 2 in the Prediction of Rapid Progression and Shorter Survival during Palliative Chemotherapy of Colorectal Cancer Patients. Biomedicines, 11(7), 2014. https://doi.org/10.3390/biomedicines11072014