The Correlation of Serum Calpain 1 Activity and Concentrations of Interleukin 33 in COVID-19 Acute Respiratory Distress Syndrome
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gibson, P.G.; Qin, L.; Puah, S.H. COVID-19 acute respiratory distress syndrome (ARDS): Clinical features and differences from typical pre-COVID-19 ARDS. Med. J. Aust. 2020, 213, 54–56.e1. [Google Scholar] [CrossRef]
- Zhang, J.J.; Dong, X.; Liu, G.H.; Gao, Y.D. Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clin. Rev. Allergy Immunol. 2023, 64, 90–107. [Google Scholar] [CrossRef] [PubMed]
- Gosangi, B.; Rubinowitz, A.N.; Irugu, D.; Gange, C.; Bader, A.; Cortopassi, I. COVID-19 ARDS: A review of imaging features and overview of mechanical ventilation and its complications. Emerg. Radiol. 2022, 29, 23–34. [Google Scholar] [CrossRef]
- Meyer, N.J.; Gattinoni, L.; Calfee, C.S. Acute respiratory distress syndrome. Lancet 2021, 398, 622–637. [Google Scholar] [CrossRef] [PubMed]
- Aslan, A.; Aslan, C.; Zolbanin, N.M.; Jafari, R. Acute respiratory distress syndrome in COVID-19: Possible mechanisms and therapeutic management. Pneumonia 2021, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Gavrielatou, E.; Vaporidi, K.; Tsolaki, V.; Tserlikakis, N.; Zakynthinos, G.E.; Papoutsi, E.; Maragkuti, A.; Mantelou, A.G.; Karayiannis, D.; Mastora, Z.; et al. Rapidly improving acute respiratory distress syndrome in COVID-19: A multi-centre observational study. Respir. Res. 2022, 23, 94. [Google Scholar] [CrossRef]
- Tolossa, T.; Merdassa Atomssa, E.; Fetensa, G.; Bayisa, L.; Ayala, D.; Turi, E.; Wakuma, B.; Mulisa, D.; Seyoum, D.; Getahun, A.; et al. Acute respiratory distress syndrome among patients with severe COVID-19 admitted to treatment center of Wollega University Referral Hospital, Western Ethiopia. PLoS ONE 2022, 17, e0267835. [Google Scholar] [CrossRef] [PubMed]
- Gujski, M.; Jankowski, M.; Rabczenko, D.; Goryński, P.; Juszczyk, G. The Prevalence of Acute Respiratory Distress Syndrome (ARDS) and Outcomes in Hospitalized Patients with COVID-19—A Study Based on Data from the Polish National Hospital Register. Viruses 2022, 14, 76. [Google Scholar] [CrossRef]
- Hasan, S.S.; Capstick, T.; Ahmed, R.; Kow, C.S.; Mazhar, F.; Merchant, H.A.; Zaidi, S.T.R. Mortality in COVID-19 patients with acute respiratory distress syndrome and corticosteroids use: A systematic review and meta-analysis. Expert Rev. Respir. Med. 2020, 14, 1149–1163. [Google Scholar] [CrossRef]
- Swenson, K.E.; Swenson, E.R. Pathophysiology of Acute Respiratory Distress Syndrome and COVID-19 Lung Injury. Crit. Care Clin. 2021, 37, 749–776. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, J.Y.; Yang, J.W.; Lee, K.H.; Effenberger, M.; Szpirt, W.; Kronbichler, A.; Shin, J.I. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics 2021, 11, 316–329. [Google Scholar] [CrossRef]
- Fu, J.; Lin, S.H.; Wang, C.J.; Li, S.Y.; Feng, X.Y.; Liu, Q.; Xu, F. HMGB1 regulates IL-33 expression in acute respiratory distress syndrome. Int. Immunopharmacol. 2016, 38, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Wang, C.J.; Yu, F.; Xie, K.; Lin, S.H.; Xu, F. Different intensity of autophagy regulate interleukin-33 to control the uncontrolled inflammation of acute lung injury. Inflamm. Res. 2019, 68, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.H.; Fu, J.; Wang, C.J.; Gao, F.; Feng, X.Y.; Liu, Q.; Cao, J.; Xu, F. Inflammation elevated IL-33 originating from the lung mediates inflammation in acute lung injury. Clin. Immunol. 2016, 173, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Halát, G.; Haider, T.; Dedeyan, M.; Heinz, T.; Hajdu, S.; Negrin, L.L. IL-33 and its increased serum levels as an alarmin for imminent pulmonary complications in polytraumatized patients. World J. Emerg. Surg. 2019, 14, 36. [Google Scholar] [CrossRef]
- Liu, Q.; Dwyer, G.K.; Zhao, Y.; Li, H.; Mathews, L.R.; Chakka, A.B.; Chandran, U.R.; Demetris, J.A.; Alcorn, J.F.; Robinson, K.M.; et al. IL-33-mediated IL-13 secretion by ST2+ Tregs controls inflammation after lung injury. JCI Insight 2019, 4, e123919. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Y. Interleukin-33 and its Receptor in Pulmonary Inflammatory Diseases. Crit. Rev. Immunol. 2015, 35, 451–461. [Google Scholar] [CrossRef]
- Yang, S.H.; Lin, J.C.; Wu, S.Y.; Huang, K.L.; Jung, F.; Ma, M.C.; Wang Hsu, G.S.; Jow, G.M. Membrane translocation of IL-33 receptor in ventilator induced lung injury. PLoS ONE 2015, 10, e0121391. [Google Scholar] [CrossRef]
- Gao, Y.; Cai, L.; Li, L.; Zhang, Y.; Li, J.; Luo, C.; Wang, Y.; Tao, L. Emerging Effects of IL-33 on COVID-19. Int. J. Mol. Sci. 2022, 23, 13656. [Google Scholar] [CrossRef]
- Liang, Y.; Ge, Y.; Sun, J. IL-33 in COVID-19: Friend or foe? Cell. Mol. Immunol. 2021, 18, 1602–1604. [Google Scholar] [CrossRef]
- Gaurav, R.; Anderson, D.R.; Radio, S.J.; Bailey, K.L.; England, B.R.; Mikuls, T.R.; Thiele, G.M.; Strah, H.M.; Romberger, D.J.; Wyatt, T.A.; et al. IL-33 Depletion in COVID-19 Lungs. Chest 2021, 160, 1656–1659. [Google Scholar] [CrossRef]
- Furci, F.; Murdaca, G.; Allegra, A.; Gammeri, L.; Senna, G.; Gangemi, S. IL-33 and the Cytokine Storm in COVID-19: From a Potential Immunological Relationship towards Precision Medicine. Int. J. Mol. Sci. 2022, 23, 14532. [Google Scholar] [CrossRef]
- Zizzo, G.; Cohen, P.L. Imperfect storm: Is interleukin-33 the Achilles heel of COVID-19? Lancet Rheumatol. 2020, 2, e779–e790. [Google Scholar] [CrossRef] [PubMed]
- Du, P.R.; Lu, H.T.; Lin, X.X.; Wang, L.F.; Wang, Y.X.; Gu, X.M.; Bai, X.Z.; Tao, K.; Zhou, J.J. Calpain inhibition ameliorates scald burn-induced acute lung injury in rats. Burn. Trauma 2018, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Zeng, Q.; Zhao, H.; Wu, P.; Cai, S.; Deng, L.; Jiang, W. Effect and mechanism of calpains on pediatric lobar pneumonia. Bioengineered 2017, 8, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Kovacs, L.; Han, W.; Liu, G.; Huo, Y.; Lucas, R.; Fulton, D.; Greer, P.A.; Su, Y. Reactive Oxygen Species-Dependent Calpain Activation Contributes to Airway and Pulmonary Vascular Remodeling in Chronic Obstructive Pulmonary Disease. Antioxid. Redox Signal. 2019, 31, 804–818. [Google Scholar] [CrossRef]
- Liu, D.; Yan, Z.; Minshall, R.D.; Schwartz, D.E.; Chen, Y.; Hu, G. Activation of calpains mediates early lung neutrophilic inflammation in ventilator-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 302, L370–L379. [Google Scholar] [CrossRef]
- Del Carmen Lafita-Navarro, M.; Conacci-Sorrell, M. Identification of Calpain-Activated Protein Functions. Methods Mol. Biol. 2019, 1915, 149–160. [Google Scholar]
- Hayakawa, M.; Hayakawa, H.; Matsuyama, Y.; Tamemoto, H.; Okazaki, H.; Tominaga, S. Mature interleukin-33 is produced by calpain-mediated cleavage in vivo. Biochem. Biophys. Res. Commun. 2009, 387, 218–222. [Google Scholar] [CrossRef]
- Juibari, A.D.; Rezadoost, M.H.; Soleimani, M. The key role of Calpain in COVID-19 as a therapeutic strategy. Inflammopharmacology 2022, 30, 1479–1491. [Google Scholar] [CrossRef]
- Inal, J.; Paizuldaeva, A.; Terziu, E. Therapeutic use of calpeptin in COVID-19 infection. Clin. Sci. 2022, 136, 1439–1447. [Google Scholar] [CrossRef]
- Mihić, D.; Loinjak, D.; Maričić, L.; Smolić, R.; Šahinović, I.; Steiner, K.; Viland, S.; Šerić, V.; Duvnjak, M. The Relationship between Nrf2 and HO-1 with the Severity of COVID-19 Disease. Medicina 2022, 58, 1658. [Google Scholar] [CrossRef]
- Vandenbrande, J.; Verbrugge, L.; Bruckers, L.; Geebelen, L.; Geerts, E.; Callebaut, I.; Gruyters, I.; Heremans, L.; Dubois, J.; Stessel, B. Validation of the Acute Physiology and Chronic Health Evaluation (APACHE) II and IV Score in COVID-19 Patients. Crit. Care Res. Pract. 2021, 2021, 5443083. [Google Scholar] [CrossRef]
- Liang, Y.; Yang, N.; Pan, G.; Jin, B.; Wang, S.; Ji, W. Elevated IL-33 promotes expression of MMP2 and MMP9 via activating STAT3 in alveolar macrophages during LPS-induced acute lung injury. Cell. Mol. Biol. Lett. 2018, 23, 52. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Jiao, Y.; Jiang, W.; Zhang, X.; Zhang, L.; Jia, G. IL-33 Deficiency Attenuates Lung Inflammation by Inducing Th17 Response and Impacting the Th17/Treg Balance in LPS-Induced ARDS Mice via Dendritic Cells. J. Immunol. Res. 2022, 2022, 9543083. [Google Scholar] [CrossRef] [PubMed]
- Markovic, S.S.; Jovanovic, M.; Gajovic, N.; Jurisevic, M.; Arsenijevic, N.; Jovanovic, M.; Jovanovic, M.; Mijailovic, Z.; Lukic, S.; Zornic, N.; et al. IL 33 Correlates With COVID-19 Severity, Radiographic and Clinical Finding. Front. Med. 2021, 8, 749569. [Google Scholar] [CrossRef]
- Yi, C.; Chen, F.; Ma, R.; Fu, Z.; Song, M.; Zhang, Z.; Chen, L.; Tang, X.; Lu, P.; Li, B.; et al. Serum level of calpains product as a novel biomarker of acute lung injury following cardiopulmonary bypass. Front. Cardiovasc. Med. 2022, 9, 1000761. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, L.; Su, Y. Redox-Dependent Calpain Signaling in Airway and Pulmonary Vascular Remodeling in COPD. Adv. Exp. Med. Biol. 2017, 967, 139–160. [Google Scholar]
- Zhu, J.; Han, W.; Su, Y. Inhibition of Calpain Attenuates Airway and Pulmonary Vascular Remodeling in COPD. Am. J. Respir. Crit. Care Med. 2023, 207, A7132. [Google Scholar]
- Rao, S.S.; Mu, Q.; Zeng, Y.; Cai, P.C.; Liu, F.; Yang, J.; Xia, Y.; Zhang, Q.; Song, L.J.; Zhou, L.L.; et al. Calpain-activated mTORC2/Akt pathway mediates airway smooth muscle remodelling in asthma. Clin. Exp. Allergy 2017, 47, 176–189. [Google Scholar] [CrossRef]
- Scott, I.C.; Majithiya, J.B.; Sanden, C.; Thornton, P.; Sanders, P.N.; Moore, T.; Guscott, M.; Corkill, D.J.; Erjefält, J.S.; Cohen, E.S. Interleukin-33 is activated by allergen- and necrosis-associated proteolytic activities to regulate its alarmin activity during epithelial damage. Sci. Rep. 2018, 8, 3363. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, P.C.; Phair, I.R.; Greger, C.; Pardali, K.; McGuire, V.A.; Clark, A.R.; Gaestel, M.; Arthur, J.S.C. IL-33 regulates cytokine production and neutrophil recruitment via the p38 MAPK-activated kinases MK2/3. Immunol. Cell. Biol. 2019, 97, 54–71. [Google Scholar] [CrossRef] [PubMed]
- Burke, H.; Freeman, A.; Cellura, D.C.; Stuart, B.L.; Brendish, N.J.; Poole, S.; Borca, F.; Phan, H.T.T.; Sheard, N.; Williams, S.; et al. Inflammatory phenotyping predicts clinical outcome in COVID-19. Respir. Res. 2020, 21, 245. [Google Scholar] [CrossRef] [PubMed]
- Makaremi, S.; Asgarzadeh, A.; Kianfar, H.; Mohammadnia, A.; Asghariazar, V.; Safarzadeh, E. The role of IL-1 family of cytokines and receptors in pathogenesis of COVID-19. Inflamm. Res. 2022, 71, 923–947. [Google Scholar] [CrossRef]
- Ragab, D.; Salah Eldin, H.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020, 11, 1446. [Google Scholar] [CrossRef]
- Majeed, A.Y.; Zulkafli, N.E.S.; Ad'hiah, A.H. Interleukin-22 and interleukin-33 show up-regulated levels in the serum of patients with mild/moderate Coronavirus disease 2019. Beni Suef Univ. J. Basic Appl. Sci. 2023, 12, 24. [Google Scholar] [CrossRef]
- Ji, J.; Su, L.; Liu, Z. Critical role of calpain in inflammation. Biomed. Rep. 2016, 5, 647–652. [Google Scholar] [CrossRef]
- Ding, X.; Jin, S.; Shao, Z.; Xu, L.; Yu, Z.; Tong, Y.; Chen, Z.; Turnquist, H.; Pitt, B.R.; Billiar, T.R.; et al. The IL-33-ST2 Pathway Contributes to Ventilator-Induced Lung Injury in Septic Mice in a Tidal Volume-Dependent Manner. Shock 2019, 52, e1–e11. [Google Scholar] [CrossRef]
- Liu, S.; Deng, M.; Pan, P.; Turnquist, H.R.; Pitt, B.R.; Billiar, T.R.; Zhang, L.M. Mechanical Ventilation with Moderate Tidal Volume Exacerbates Extrapulmonary Sepsis-Induced Lung Injury via IL33-WISP1 Signaling Pathway. Shock 2021, 56, 461–472. [Google Scholar] [CrossRef]
- Aizawa, H.; Koarai, A.; Shishikura, Y.; Yanagisawa, S.; Yamaya, M.; Sugiura, H.; Numakura, T.; Yamada, M.; Ichikawa, T.; Fujino, N.; et al. Oxidative stress enhances the expression of IL-33 in human airway epithelial cells. Respir. Res. 2018, 19, 52. [Google Scholar] [CrossRef]
- Uchida, M.; Anderson, E.L.; Squillace, D.L.; Patil, N.; Maniak, P.J.; Iijima, K.; Kita, H.; O’Grady, S.M. Oxidative stress serves as a key checkpoint for IL-33 release by airway epithelium. Allergy 2017, 72, 1521–1531. [Google Scholar] [CrossRef]
All Subjects (n = 80) | Control Group (n = 40) | Examined Group (n = 40) | p-Value | |
---|---|---|---|---|
Age (M ± SD) | 60.47 ± 10.79 | 56.28 ± 11.42 | 64.68 ± 8.34 | 0.001 |
Gender | ||||
Men | 48 (60.0%) | 23 (57.5%) | 25 (62.5%) | 0.648 |
Women | 32 (40.0%) | 17 (42.5%) | 15 (37.5%) | |
Comorbidities | ||||
Without comorbidities | 14 (17.5%) | 11 (27.5%) | 3 (7.5%) | 0.019 |
With comorbidities | 66 (82.5%) | 29 (72.5%) | 37 (92.5%) | |
Disease severity | ||||
MEWS * 2 | 32 (40.0%) | 32 (80.0%) | 0 (0.0%) | 0.001 |
MEWS * 3 | 8 (10.0%) | 8 (20.0%) | 0 (0.0%) | |
MEWS * 4 | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | |
MEWS * 5 | 40 (50.0%) | 0 (0.0%) | 40 (100%) | |
Outcome | ||||
Survived | 52 (65.0%) | 40 (100%) | 12 (30.0%) | 0.001 |
Died | 28 (35.0%) | 0 (0.0%) | 28 (70.0%) |
All Subjects (n = 80) | Control Group (n = 40) | Examined Group (n = 40) | ANCOVA | Simple Size | ||||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | F-Ratio | ηp2 | |
Calpain 1 activity (RFU/µL) | 2.72 | 2.41 | 0.99 | 0.35 | 4.46 | 2.33 | 66.24 *** | 0.462 |
IL-33 concentration (µg/L) | 5.28 | 1.49 | 4.12 | 0.55 | 6.45 | 1.18 | 95.83 *** | 0.554 |
Mild ARDS (n = 2) | Moderate ARDS (n = 21) | Severe ARDS (n = 16) | ANOVA | Post Hoc Test | ||||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | F-Ratio | Bonferroni | |
Calpain 1 activity (RFU/µL) | 2.39 | 0.41 | 3.23 | 1.02 | 6.09 | 2.44 | 12.45 *** | Severe > Mild * Severe > Moderate *** |
IL-33 concentration (µg/L) | 5.21 | 0.15 | 5.81 | 0.64 | 7.35 | 1.12 | 14.86 *** | Severe > Mild ** Severe > Moderate *** |
Mild/Moderate Disease (n = 32) | Severe Disease (n = 8) | Critical Disease (n = 40) | ANOVA | Post Hoc Test | ||||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | F-Ratio | Bonferroni | |
Calpain 1 activity (RFU/µL) | 0.88 | 0.31 | 1.41 | 0.05 | 4.47 | 2.33 | 43.65 *** | Critical > Mild *** Critical > Severe *** |
IL-33 concentration (µg/L) | 3.96 | 0.50 | 4.75 | 0.08 | 6.45 | 1.18 | 70.12 *** | Critical > Mild *** Critical > Severe *** |
All Subjects (n = 80) | Control Group (n = 40) | Examined Group (n = 40) | ANCOVA | Simple Size | ||||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | F-Ratio | ηp2 | |
CRP (mg/L) | 120.12 | 71.33 | 70.34 | 20.77 | 169.90 | 69.24 | 60.13 *** | 0.439 |
Ferritin (µg/L) | 692.65 | 358.08 | 444.24 | 148.18 | 941.05 | 333.47 | 67.18 *** | 0.466 |
Fibrinogen (g/L) | 5.62 | 2.41 | 3.64 | 1.51 | 7.60 | 1.20 | 128.89 *** | 0.626 |
IL-6 (ng/L) | 279.60 | 237.14 | 124.17 | 44.29 | 435.04 | 249.79 | 45.25 *** | 0.370 |
IL-33/IL-6 | 28.45 | 15.99 | 37.01 | 13.26 | 19.89 | 13.84 | 18.46 *** | 0.193 |
IL-33/CRP | 0.51 | 0.18 | 0.62 | 0.17 | 0.41 | 0.10 | 30.62 *** | 0.285 |
All Subjects (N = 80) | Control Group (n = 40) | Examined Group (n = 40) | ||||
---|---|---|---|---|---|---|
Calpain 1 Activity (RFU/µL) | IL-33 Concentration (µg/L) | Calpain 1 Activity (RFU/µL) | IL-33 Concentration (µg/L) | Calpain 1 Activity (RFU/µL) | IL-33 Concentration (µg/L) | |
IL-33 (µg/L) | 0.97 *** | ─ | 0.95 *** | ─ | 0.97 *** | ─ |
CRP (mg/L) | 0.78 *** | 0.80 *** | 0.39 *** | 0.43 *** | 0.61 *** | 0.64 *** |
Ferritin (µg/L) | 0.63 *** | 0.64 *** | 0.21 | 0.20 | 0.33 * | 0.27 |
Fibrinogen (g/L) | 0.67 *** | 0.74 *** | 0.57 *** | 0.59 *** | 0.38 * | 0.36 * |
IL-6 (ng/L) | 0.69 *** | 0.69 *** | 0.72 *** | 0.67 *** | 0.47 *** | 0.44 *** |
IL-33/IL-6 | −0.29 ** | −0.36 ** | −0.49 *** | −0.40 ** | 0.08 | 0.06 |
IL-33/CRP | −0.45 *** | −0.49 *** | −0.06 | −0.09 | −0.25 | −0.26 |
Without the Use of Oxygen (n = 40) | Classic Oxygen Therapy (n = 16) | Mechanical Ventilation (n = 24) | ANCOVA | Simple Size | ||||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | F-Ratio | ηp2 | |
Calpain 1 activity (RFU/µL) | 0.99 | 0.35 | 2.60 | 0.51 | 5.71 | 2.24 | 84.18 *** | 0.69 |
IL-33 concentration (µg/L) | 4.12 | 0.55 | 5.40 | 0.27 | 7.16 | 1.02 | 117.16 *** | 0.76 |
Ventilation Modality * | Number of Subjects (n) | Calpain 1 Activity (RFU/µL) | IL-33 Concentration (µg/L) | ||
---|---|---|---|---|---|
M | SD | M | SD | ||
CPAP + PS | 2 | 1.95 | 0.07 | 5.10 | 0.00 |
BiPAP | 6 | 5.92 | 2.26 | 7.23 | 0.74 |
SIMV | 13 | 5.82 | 2.42 | 7.24 | 1.23 |
MMV | 3 | 5.70 | 2.69 | 7.02 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loinjak, D.; Mihić, D.; Smolić, R.; Maričić, L.; Šahinović, I.; Smolić, M.; Sikora, R.; Loinjak, S.; Dinjar, K.; Včev, A. The Correlation of Serum Calpain 1 Activity and Concentrations of Interleukin 33 in COVID-19 Acute Respiratory Distress Syndrome. Biomedicines 2023, 11, 1847. https://doi.org/10.3390/biomedicines11071847
Loinjak D, Mihić D, Smolić R, Maričić L, Šahinović I, Smolić M, Sikora R, Loinjak S, Dinjar K, Včev A. The Correlation of Serum Calpain 1 Activity and Concentrations of Interleukin 33 in COVID-19 Acute Respiratory Distress Syndrome. Biomedicines. 2023; 11(7):1847. https://doi.org/10.3390/biomedicines11071847
Chicago/Turabian StyleLoinjak, Domagoj, Damir Mihić, Robert Smolić, Lana Maričić, Ines Šahinović, Martina Smolić, Renata Sikora, Sanja Loinjak, Kristijan Dinjar, and Aleksandar Včev. 2023. "The Correlation of Serum Calpain 1 Activity and Concentrations of Interleukin 33 in COVID-19 Acute Respiratory Distress Syndrome" Biomedicines 11, no. 7: 1847. https://doi.org/10.3390/biomedicines11071847
APA StyleLoinjak, D., Mihić, D., Smolić, R., Maričić, L., Šahinović, I., Smolić, M., Sikora, R., Loinjak, S., Dinjar, K., & Včev, A. (2023). The Correlation of Serum Calpain 1 Activity and Concentrations of Interleukin 33 in COVID-19 Acute Respiratory Distress Syndrome. Biomedicines, 11(7), 1847. https://doi.org/10.3390/biomedicines11071847