Heart Failure and Major Adverse Cardiovascular Events in Atrial Fibrillation Patients: A Retrospective Primary Care Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Scope
2.3. Data Collection and Information Sources
- The Health Plan of the Terres de l’Ebre Healthcare Region 2021–2025 [14] outlines healthcare goals, priorities, and actions for the region.
- The HC3 Patient Episode Dataset contains demographic and clinical information on inpatient and outpatient care in Catalan hospitals.
- The 11 EAPs managed by the Catalonian Health Institute share a clinical information database for general practice and hospital interactions, including clinical data, diagnoses, medication, referrals, and patient status as of 31 December 2021.
2.4. Ethical Aspects and Data Protection
2.5. Study Population
- Outcomes: The new diagnosis of AF was the primary outcome. Secondary outcomes were major adverse cardiovascular events, cognitive impairment, and all-cause mortality.
- Inclusion criteria: Subjects 65–95 years of age who met the inclusion criteria: high-risk AF (according to the risk model and belonging to Q4) [18,19], active medical history in any of the health centers in the territory with information accessible through the shared history (HC3), without prior AF, residence in the territory, and assignment to any of the Primary Care Teams (EAP) of the same.
- Exclusion criteria: Persons under 65 or over 95 years of age; population who are not from Terres de l’Ebre; patients without a previous diagnosis of AF; treatment with anticoagulants; impairment of cognitive status; Barthel score <55 points; pacemaker or defibrillator wearer. The non-availability or loss of accessibility to the information necessary for the study was considered a reason for exclusion.
2.6. Variables
- Sociodemographic: age, sex, primary care team, and region.
- Cardiovascular risk factors and diagnostics using specific ICD–10 code prefixes for hypertension (I10–I15), hypercholesterolemia (E78), smoking (F17.203, Z72), body mass index (BMI), diabetes mellitus (E10–E14), sleep apnea-hypopnea syndrome (G47.3), heart failure (I50-51), ischemic heart disease (myocardial infarction, percutaneous coronary intervention, stable or unstable angina or coronary artery bypass grafting) (I20–I25), chronic kidney disease (CKD) (N18), and estimated glomerular filtration rate (eGFR mL/min/1.73 m2), cerebrovascular illness (transient ischemic attack or ischemic stroke) (I63, G45), COPD, asthma, chronic bronchitis (J40–J45), cancer (C00–C96), and COVID-19 (U07.1). Coronary artery disease was defined as either a history of myocardial infarction, coronary bypass graft surgery, and/or percutaneous transluminal coronary angioplasty. Data on COVID-19 was collected from 15 March 2020 (first wave in Spain) to 31 December 2021.
- Clinical scores: risk-index AF [18,19], stroke risk by CHA2DS2-VASc score, Barthel Index for Activities of Daily Living (ADL), controlling nutritional status (CONUT) score, and Adjusted Morbidity Groups (GMA) score as recommended by current guidelines [20]. The model to categorize the risk of suffering AF at five years among community members ≥65 years old was previously published [18,19]. It includes the following variables: sex, age, average heart rate, average weight, and CHA2DS2VASc score. The mathematical formula of the model was applied to the target population without a diagnosis of AF, and the quartiles of the distribution from lowest to highest risk were defined (Q1–Q4), with Q4 (high risk) being of interest, though the AF incidence density/1000 people-years (ID) was calculated for each group, as was the incidence of MACEs and the registered prevalence of cognitive decline.
- Pharmacological treatment: antiplatelet agents, new anticoagulants, and antivitamin K.
- Final status: dead/alive.
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. AF Incidence
3.3. MACE Incidence among AF vs. No-AF Patients
3.4. Nutritional Status Assessed by CONUT Score
3.5. Regression Cox Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bosco, E.; Hsueh, L.; McConeghy, K.W.; Gravenstein, S.; Saade, E. Major adverse cardiovascular event definitions used in observational analysis of administrative databases: A systematic review. BMC Med. Res. Methodol. 2021, 21, 241. [Google Scholar] [CrossRef]
- Albayrak, S.; Ozhan, H.; Aslantas, Y.; Ekinozu, I.; Tibilli, H.; Kayapinar, O. Melen Study Investigators. Predictors of major adverse cardiovascular events; results of population based MELEN study with prospective follow-up. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 1446–1451. [Google Scholar]
- He, W.; Chu, Y. Atrial fibrillation as a prognostic indicator of myocardial infarction and cardiovascular death: A systematic review and meta-analysis. Sci. Rep. 2017, 7, 3360. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, S.C.; Yiin, D.P.J.; Nicola, L.M. Rothwell, on behalf of the Oxford Vascular Study. Age-specific incidence, outcome, cost, and projected future burden of atrial fibrillation-related embolic vascular events: A population-based study. Circulation 2014, 130, 1236–1244. [Google Scholar] [CrossRef] [Green Version]
- Santhanakrishnan, R.; Wang, N.; Larson, M.G.; Magnani, J.W.; McManus, D.D.; Lubitz, S.A.; Ellinor, P.T.; Cheng, S.; Vasan, R.S.; Lee, D.S.; et al. Atrial Fibrillation Begets Heart Failure and Vice Versa: Temporal Associations and Differences in Preserved Versus Reduced Ejection Fraction. Circulation 2016, 133, 484–492. [Google Scholar] [CrossRef] [Green Version]
- Bragazzi, N.L.; Zhong, W.; Shu, J.; Abu Much, A.; Lotan, D.; Grupper, A.; Younis, A.; Dai, H. Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017. Eur. J. Prev. Cardiol. 2021, 28, 1682–1690. [Google Scholar] [CrossRef]
- Romiti, G.F.; Proietti, M.; Bonini, N.; Ding, W.Y.; Boriani, G.; Huisman, M.V.; Lip, G.Y.H. GLORIA-AF Investigators. Adherence to the Atrial Fibrillation Better Care (ABC) pathway and the risk of major outcomes in patients with atrial fibrillation: A post-hoc analysis from the prospective GLORIA-AF Registry. EClinicalMedicine 2022, 55, 101757. [Google Scholar] [CrossRef]
- Ding, W.Y.; Proietti, M.; Romiti, G.F.; Vitolo, M.; Fawzy, A.M.; Boriani, G.; Marin, F.; Blomström-Lundqvist, C.; Potpara, T.S.; Fauchier, L.; et al. ESC-EHRA EORP-AF Long-Term General Registry Investigators. Impact of ABC (Atrial Fibrillation Better Care) pathway adherence in high-risk subgroups with atrial fibrillation: A report from the ESC-EHRA EORP-AF long-term general registry. Eur. J. Intern. Med. 2022, 10, S0953–S6205. [Google Scholar] [CrossRef]
- Ruff, C.T.; Bhatt, D.L.; Steg, P.G.; Gersh, B.J.; Alberts, M.J.; Hoffman, E.B.; Ohman, E.M.; Eagle, K.A.; Lip, G.Y.; Goto, S. Reach Registry Investigators. Long-term cardiovascular outcomes in patients with atrial fibrillation and atherothrombosis in the REACH Registry. Int. J. Cardiol. 2014, 170, 413–418. [Google Scholar] [CrossRef]
- Raposeiras-Roubín, S.; Abu-Assi, E.; Lizancos Castro, A.; Barreiro Pardal, C.; Melendo Viu, M.; Cespón Fernández, M.; Blanco Prieto, S.; Rosselló, X.; Ibáñez, B.; Filgueiras-Rama, D.; et al. Nutrition status, obesity and outcomes in patients with atrial fibrillation. Rev. Esp. Cardiol. 2022, 75, 825–832. [Google Scholar] [CrossRef]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar] [PubMed]
- Miao, B.; Hernandez, A.V.; Roman, Y.M.; Alberts, M.J.; Coleman, C.I.; Baker, W.L. Four-year incidence of major adverse cardiovascular events in patients with atherosclerosis and atrial fibrillation. Clin. Cardiol. 2020, 43, 524–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harb, S.C.; Wang, T.K.M.; Nemer, D.; Wu, Y.; Cho, L.; Menon, V.; Wazni, O.; Cremer, P.C.; Jaber, W. CHA2DS2-VASc score stratifies mortality risk in patients with and without atrial fibrillation. Open Heart 2021, 8, e001794. [Google Scholar] [CrossRef]
- Ictus: Plan de Actuación en Europa (2018–2030). Ed Stroke Alliance for Europe (SAFE). 2018. Available online: www.safestroke.eu (accessed on 25 November 2022).
- Pla de salut de la Regió Sanitària Terres de l’Ebre 2021-2025. Tortosa: Direcció General de Planificació i Recerca en Salut. 2022. Available online: https://scientiasalut.gencat.cat/handle/11351/7964 (accessed on 5 December 2022).
- Idescat. Indicadors Demogràfics i de Territori. Estructura per Edats, Envelliment i Dependència. Comarques i Aran. Available online: http://www.idescat.cat/pub/?id=inddt&n=915&by=com (accessed on 5 December 2022).
- Generalitat de Catalunya. Projeccions de Població Principals Resultats 2013–2051. 2008. Available online: https://www.idescat.cat/serveis/biblioteca/docs/cat/pp2021-2041pr.pdf (accessed on 5 December 2022).
- Idescat. Anuario Estadístico de Cataluña. Renda Familiar Disponible Bruta. Índex. Comarques i Aran, i Àmbits. Available online: http://www.idescat.cat/pub/?id=aec&n=941 (accessed on 5 December 2022).
- Muria-Subirats, E.; Clua-Espuny, J.L.; Ballesta-Ors, J.; Lorman-Carbó, B.; Lechuga-Durán, I.; Fernández-Sáez, J.; Pla-Farnós, R. Incidence and Risk Assessment for Atrial Fibrillation at 5 Years: hypertensive Diabetic Retrospective Cohort. Int. J. Environ. Res. 2020, 17, 3491. [Google Scholar] [CrossRef] [PubMed]
- Abellana, R.; Gonzalez-Loyola, F.; Verdu-Rotellar, J.M.; Bustamante, A.; Palà, E.; Clua-Espuny, J.L.; Montaner, J.; Pedrote, A.; Del Val-Garcia, J.L.; Ribas Segui, D.; et al. Predictive model for atrial fibrillation in hypertensive diabetic patients. Eur J. Clin. Invest. 2021, 12, e13633. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Thomas, K.L.; Go, A.S.; Desvigne-Nickens, P.; Albert, C.M.; Alonso, A.; Chamberlain, A.M.; Essien, U.R.; Hernandez, I.; Hills, M.T.; et al. Transforming Atrial Fibrillation Research to Integrate Social Determinants of Health: A National Heart, Lung, and Blood Institute Workshop Report. JAMA Cardiol. 2023, 8, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Clua-Espuny, J.L.; Lechuga-Duran, I.; Bosch-Princep, R.; Roso-Llorach, A.; Panisello-Tafalla, A.; Lucas-Noll, J.; López-Pablo, C.; Queralt-Tomas, L.; Giménez-Garcia, E.; González-Rojas, N.; et al. Prevalence of undiagnosed atrial fibrillation and of that not being treated with anticoagulant drugs: The AFABE study. Rev. Esp. Cardiol. 2013, 66, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Luengo-Fernandez, R.; Violato, M.; Candio, P.; Leal, J. Economic burden of stroke across Europe: A population-based cost analysis. Eur. Stroke J. 2020, 5, 17–25. [Google Scholar] [CrossRef]
- Contreras, J.P.; Hong, K.N.; Castillo, J.; Marzec, L.N.; Hsu, J.C.; Cannon, C.P.; Yang, S.; Maddox, T.M. Anticoagulation in patients with atrial fibrillation and heart failure: Insights from the NCDR PINNACLE-AF registry. Clin. Cardiol. 2019, 42, 339–345. [Google Scholar] [CrossRef]
- Tsigkas, G.; Apostolos, A.; Despotopoulos, S.; Vasilagkos, G.; Papageorgiou, A.; Kallergis, E.; Leventopoulos, G.; Mplani, V.; Koniari, I.; Velissaris, D.; et al. Anticoagulation for atrial fibrillation in heart failure patients: Balancing between Scylla and Charybdis. J. Geriatr. Cardiol. 2021, 18, 352–361. [Google Scholar] [CrossRef]
- Gopinathannair, R.; Chen, L.Y.; Chung, M.K.; Cornwell, W.K.; Furie, K.L.; Lakkireddy, D.R.; Marrouche, N.F.; Natale, A.; Olshansky, B.; Joglar, J.A. American Heart Association Electrocardiography and Arrhythmias Committee and Heart Failure and Transplantation Committee of the Council on Clinical Cardiology; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Hypertension; Council on Lifestyle and Cardiometabolic Health; and the Stroke Council. Managing Atrial Fibrillation in Patients With Heart Failure and Reduced Ejection Fraction: A Scientific Statement From the American Heart Association. Circ. Arrhythm. Electrophysiol. 2021, 14. [Google Scholar] [CrossRef]
- López-López, J.A.; Sterne, J.A.C.; Thom, H.H.Z.; Higgins, J.P.T.; Hingorani, A.D.; Okoli, G.N.; Davies, P.A.; Bodalia, P.N.; Bryden, P.A.; Welton, N.J.; et al. Oral anticoagulants for prevention of stroke in atrial fibrillation: Systematic review, network meta-analysis, and cost effectiveness analysis. BMJ 2017, 359, j5058. [Google Scholar] [CrossRef] [Green Version]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. ESC Scientific Document Group. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef]
- Ran, M.; Yan-min, Y.; Han, Z.; Ni, S.; Jing-yang, W.; Si-qi, L. Clinical Application of CHA2DS2-VASc versus GRACE Scores for Assessing the Risk of Long-term Ischemic Events in Atrial Fibrillation and Acute Coronary Syndrome or PCI. Rev. Cardiovasc. Med. 2022, 23, 168. [Google Scholar] [CrossRef]
- Ye, S.; Qian, M.; Zhao, B.; Buchsbaum, R.; Sacco, R.L.; Levin, B.; Di Tullio, M.R.; Mann, D.L.; Pullicino, P.M.; Freudenberger, R.S.; et al. WARCEF Investigators. CHA2 DS2 -VASc score and adverse outcomes in patients with heart failure with reduced ejection fraction and sinus rhythm. Eur. J. Heart Fail. 2016, 18, 1261–1266. [Google Scholar] [CrossRef] [Green Version]
- Healey, J.S.; Connolly, S.J.; Gold, M.R.; Israel, C.W.; Van Gelder, I.C.; Capucci, A.; Lau, C.P.; Fain, E.; Yang, S.; Bailleul, C.; et al. ASSERT Investigators. Subclinical atrial fibrillation and the risk of stroke. N. Engl. J. Med. 2012, 366, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Emdin, C.A.; Wong, C.X.; Hsiao, A.J.; Altman, D.G.; Peters, S.A.; Woodward, M.; Odutayo, A.A. Atrial fibrillation as risk factor for cardiovascular disease and death in women compared with men: Systematic review and meta-analysis of cohort studies. BMJ 2016, 532, h7013. [Google Scholar] [CrossRef] [Green Version]
- Anaszewicz, M.; Budzyński, J. Clinical significance of nutritional status in patients with atrial fibrillation: An overview of current evidence. J. Cardiol. 2017, 69, 719–730. [Google Scholar] [CrossRef]
- Arenas Miquélez, A.; Requena Calleja, M.A.; Gullón, A.; Pose Reino, A.; Formiga, F.; Camafort, M.; Cepeda Rodrigo, J.M.O.; Mostaza, J.M.; Suárez Fernández, C.; Díez-Manglan, J. Nutritional Risk and Mortality at One Year for Elderly Patients Hospitalized with Nonvalvular Atrial Fibrillation. Nonavasc Registry. J. Nutr. Health. Aging. 2020, 24, 981–986. [Google Scholar] [CrossRef]
- Kalyoncuoğlu, M.; Katkat, F.; Biter, H.I.; Cakal, S.; Tosu, A.R.; Can, M.M. Predicting One-Year Deaths and Major Adverse Vascular Events with the Controlling Nutritional Status Score in Elderly Patients with Non-ST-Elevated Myocardial Infarction Undergoing Percutaneous Coronary Intervention. J. Clin. Med. 2021, 10, 2247. [Google Scholar] [CrossRef]
- Arero, G.; Arero, A.G.; Mohammed, S.H.; Vasheghani-Farahani, A. Prognostic Potential of the Controlling Nutritional Status (CONUT) Score in Predicting All-Cause Mortality and Major Adverse Cardiovascular Events in Patients with Coronary Artery Disease: A Meta-Analysis. Front Nutr. 2022, 9, 850641. [Google Scholar] [CrossRef]
- Essien, U.R.; Kornej, J.; Johnson, A.E.; Schulson, L.B.; Benjamin, E.J.; Magnani, J.W. Social determinants of atrial fibrillation. Nat. Rev. Cardiol. 2021, 18, 763–773. [Google Scholar] [CrossRef]
- Bansal, N.; Xie, D.; Tao, K.; Chen, J.; Deo, R.; Horwitz, E.; Hsu, C.Y.; Kallem, R.K.; Keane, M.G.; Lora, C.M.; et al. CRIC Study. Atrial Fibrillation and Risk of ESRD in Adults with CKD. Clin. J. Am. Soc. Nephrol. 2016, 11, 1189–1196. [Google Scholar] [CrossRef] [Green Version]
- Brambatti, M.; Connolly, S.J.; Gold, M.R.; Morillo, C.A.; Capucci, A.; Muto, C.; Lau, C.P.; Van Gelder, I.C.; Hohnloser, S.H.; Carlson, M.; et al. ASSERT Investigators. Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation 2014, 129, 2094–2099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Tan, X.; Zhou, J.Z. Peripheral artery disease and clinical outcomes in patients with atrial fibrillation: A systematic review and meta-analysis. Clin. Cardiol. 2021, 44, 1050–1057. [Google Scholar] [CrossRef]
- Panisello-Tafalla, A.; Clua-Espuny, J.L.; Gil-Guillen, V.F.; González-Henares, A.; Queralt-Tomas, M.L.; López-Pablo, C.; Lucas-Noll, J.; Lechuga-Duran, I.; Ripolles-Vicente, R.; Carot-Domenech, J.; et al. Results from the Registry of Atrial Fibrillation (AFABE): Gap between Undiagnosed and Registered Atrial Fibrillation in Adults--Ineffectiveness of Oral Anticoagulation Treatment with VKA. Biomed. Res. Int. 2015, 2015, 134756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef]
- Potpara, T.S.; Ferro, C.; Lip, G.Y.H.; Dan, G.A.; Lenarczyk, R.; Mallamaci, F.; Ortiz, A.; Sarafidis, P.; Ekart, R.; Dagres, N. Management of atrial fibrillation in patients with chronic kidney disease in clinical practice: A joint European Heart Rhythm Association (EHRA) and European Renal Association/European Dialysis and Transplantation Association (ERA/EDTA) physician-based survey. Europace 2020, 22, 496–505. [Google Scholar] [CrossRef]
- Rivard, L.; Friberg, L.; Conen, D.; Healey, J.S.; Berge, T.; Boriani, G.; Brandes, A.; Calkins, H.; Camm, A.J.; Yee Chen, L.; et al. Atrial Fibrillation and Dementia: A Report From the AF-SCREEN International Collaboration. Circulation 2022, 145, 392–409. [Google Scholar] [CrossRef] [PubMed]
- Wijesurendra, R.S.; Casadei, B. Mechanisms of atrial fibrillation. Heart 2019, 105, 1860–1867. [Google Scholar] [CrossRef]
- Xu, W.; Yang, Y.M.; Zhu, J.; Wu, S.; Wang, J.; Zhang, H.; Shao, X.H.; Mo, R.; Tan, J.S.; Wang, J.Y. Clinical characteristics and thrombotic risk of atrial fibrillation with obstructive sleep apnea: Results from a multi-center atrial fibrillation registry study. BMC Cardiovasc. Disord. 2022, 25, 331. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.E.; Uchôa, C.H.; Harmon, R.R.; Bortolotto, L.A.; Lorenzi-Filho, G.; Drager, L.F. Potential underdiagnosis of obstructive sleep apnoea in the cardiology outpatient setting. Heart 2015, 101, 1288–1292. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, A.M.; Agarwal, S.K.; Folsom, A.R.; Soliman, E.Z.; Chambless, L.E.; Crow, R.; Ambrose, M.; Alonso, A. A clinical risk score for atrial fibrillation in a biracial prospective cohort ARIC study. Am. J. Cardiol. 2011, 107, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Baruch, L.; Glazer, R.D.; Aknay, N.; Vanhaecke, J.; Heywood, J.T.; Anand, I.; Krum, H.; Hester, A.; Cohn, J.N. Morbidity, mortality, physiologic and functional parameters in elderly and non-elderly patients in the Valsartan Heart Failure Trial (Val-HeFT). Am. Heart J. 2004, 148, 951–957. [Google Scholar] [CrossRef]
- Piccini, J.P.; Hammill, B.G.; Sinner, M.F.; Jensen, P.N.; Hernandez, A.F.; Heckbert, S.R.; Benjamin, E.J.; Curtis, L.H. Incidence and prevalence of atrial fibrillation and associated mortality among Medicare beneficiaries, 1993–2007. Circ. Cardiovasc. Qual Outcomes. 2012, 5, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Kuck, K.H.; Fürnkranz, A.; Chun, K.R.; Metzner, A.; Ouyang, F.; Schlüter, M.; Elvan, A.; Lim, H.W.; Kueffer, F.J.; Arentz, T.; et al. Fire AND ICE Investigators. Cryoballoon or radiofrequency ablation for symptomatic paroxysmal atrial fibrillation: Reintervention, rehospitalization, and quality-of-life outcomes in the FIRE AND ICE trial. Eur. Heart J. 2016, 37, 2858–2865. [Google Scholar] [CrossRef] [Green Version]
- Cottin, Y.; Maalem Ben Messaoud, B.; Monin, A.; Guilleminot, P.; Bisson, A.; Eicher, J.-C.; Bodin, A.; Herbert, J.; Juillière, Y.; Zeller, M.; et al. Temporal Relationship between Atrial Fibrillation and Heart Failure Development Analysis from a Nationwide Database. J. Clin. Med. 2021, 10, 5101. [Google Scholar] [CrossRef]
- Malas, M.B.; Naazie, I.N.; Elsayed, N.; Mathlouthi, A.; Marmor, R.; Clary, B. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis. EClinicalMedicine 2020, 29, 100639. [Google Scholar] [CrossRef]
- Raisi-Estabragh, Z.; Cooper, J.; Salih, A.; Raman, B.; Lee, A.M.; Neubauer, S.; Harvey, N.C.; Petersen, S.E. Cardiovascular disease and mortality sequelae of COVID-19 in the UK Biobank. Heart 2022, 109, 119–126. [Google Scholar] [CrossRef]
- Kaye, A.D.; Spence, A.L.; Mayerle, M.; Sardana, N.; Clay, C.M.; Eng, M.R.; Luedi, M.M.; Carroll Turpin, M.A.; Urman, R.D.; Cornett, E.M. Impact of COVID-19 infection on the cardiovascular system: An evidence-based analysis of risk factors and outcomes. Best Pract. Res. Clin. Anaesthesiol. 2021, 35, 437–448. [Google Scholar] [CrossRef]
- Mouzarou, A.; Ioannou, M.; Leonidou, E.; Chaziri, I. Pulmonary Embolism in Post-CoviD-19 Patients, a Literature Review: Red Flag for Increased Awareness? SN Compr. Clin. Med. 2022, 4, 190. [Google Scholar] [CrossRef] [PubMed]
- Goyal, P.; Choi, J.J.; Pinheiro, L.C.; Schenck, E.J.; Chen, R.; Jabri, A.; Satlin, M.J.; Campion, T.R.; Nahid, M., Jr.; Ringel, J.B.; et al. Clinical Characteristics of Covid-19 in New York City. N. Engl. J. Med. 2020, 382, 2372–2374. [Google Scholar] [CrossRef]
- Harrison, S.L.; Fazio-Eynullayeva, E.; Lane, D.A.; Underhill, P.; Lip, G.Y.H. Atrial fibrillation and the risk of 30-day incident thromboembolic events, and mortality in adults ≥ 50 years with COVID-19. J. Arrhythm. 2020, 37, 231–237. [Google Scholar] [CrossRef]
Variables | No AF | (%) | AF | (%) | p | ALL |
---|---|---|---|---|---|---|
All (n %) | 37,723 | 93.6% | 2,574 | 6.4% | - | 40,297 |
Women | 17,535 | 46.5% | 1343 | 3.3% | <0.001 | 18,878 |
Age average | 77.6 ± 8.7 | 81.2 ± 7.9 | <0.001 | 77.9 ± 8.5 | ||
CHA2DS2-VASc | 3.2 ± 1.1 | 3.8 ± 1.2 | <0.001 | 3.2 ± 1.2 | ||
Hypertension arterial | 23,610 | 62.6% | 1945 | 75.6% | <0.001 | 25,555 |
Diabetes mellitus | 9689 | 25.7% | 769 | 30% | <0.001 | 10,458 |
Dyslipidemia | 17,913 | 47.5% | 1216 | 47.3% | 0.822 | 19,129 |
BMI 1 (kg/m2) | 28.7 ± 5.1 | 29.5 ± 5.4 | <0.001 | 28.7 ± 5.2 | ||
Ischemic cardiomyopathy | 2558 | 6.8% | 357 | 13.9% | <0.001 | 2915 |
Heart failure | 2096 | 5.6% | 676 | 26.·% | <0.001 | 2772 |
Stroke/TIA | 698 | 1.9% | 187 | 7.3% | <0.001 | 885 |
Vascular peripheral disease | 2431 | 6.4% | 345 | 13.4% | <0.001 | 2776 |
Dementia/cognitive impairment | 3471 | 9.2% | 310 | 12.1% | <0.001 | 3781 |
Liver disease | 72 | 0.2% | 10 | 0.4% | 0.04 | 82 |
Chronic kidney disease | 5158 | 13.7% | 676 | 26.3% | <0.001 | 5834 |
Glomerular filtration rate (mL/min/1.73 m2) | 72.9 ± 18.6 | 63.5 ± 20.4 | <0.001 | 72.2 ± 19 | ||
Thyroid disease | 2613 | 6.9% | 215 | 8.3% | 0.047 | 2828 |
OSAHS 2 | 1022 | 2.7% | 126 | 4.9% | <0.001 | 1148 |
COPD 3/asthma/bronchitis | 4591 | 12.2% | 447 | 17.4% | <0.001 | 5038 |
CONUT | 0.8 ± 1.3 | 1.3 ± 1.5 | <0.001 | 0.8 ± 1.3 | ||
Serum albumin (g/dL) | 5.5 ± 10.5 | 5 ± 10.7 | 0.029 | 5.5 ± 10.4 | ||
Lymphocytes (×103/μL) | 2.4 ± 17.5 | 2.1 ± 1.3 | 0.312 | 2.4 ± 16.8 | ||
Statins | 11,806 | 31.3% | 945 | 36.7% | <0.001 | 12,751 |
Antiaggregants | 6110 | 16.2% | 141 | 5.5% | <0.001 | 6251 |
Anticoagulation | 987 | 2.6% | 1994 | 77.5% | <0.001 | 2981 |
VKA 4 | 754 | 2% | 944 | 36.7% | <0.001 | 1698 |
NOAC 5 | 235 | 0.6% | 1053 | 40.9% | <0.001 | 1288 |
CHARLSON | 1.3 ± 1.3 | 1.8 ± 1.4 | <0.001 | 1.3 ± 1.3 | ||
Average follow-up time | 80.8 ± 9.3 | 78.6 ± 12.1 | <0.001 | 80.7 ± 9.5 | ||
COVID-19 | 2931 | 7.8% | 260 | 10.1% | <0.001 | 3191 |
Q4 | No-AF | New AF | HR AF/Q4 | HR AF/No-AF | |
---|---|---|---|---|---|
N | 10,239 | 37,723 | 2574 | ||
Age (average ± SD) | 84.8 ± 6.7 | 77.65 ± 8.4 | 81.2 ± 7.9 | ||
AF (n) Incidence/1000 people-years [CI95%] | 1148 17 [16.1–18.1] | - | 2574 8.9 [8.6–9.2] | ||
Chronic kidney disease (n %) Incidence/1000 people-years [CI95%] | 2748 (26.83%) 40.8 [39.3–42.3] | 5158 (13.67%) 20.3 [19.8–20.9] | 676 (26.26%) 40.1 [37.1–43.2] | 0.98 [0.90–1.06] p = 0.706 | 1.97 [1.82–2.13] p < 0.001 |
Cognitive impairment (n %) Incidence/1000 people-years [CI95%] | 1569 (15.32%) 23.3 [22.1–24.5] | 3471 (9.2%) 13.7 [13.2–14.1] | 310 (12.04%) 18.4 [16.4–20.6] | 0.78 [0.69–0.89] p = 0.002 | 1.34 [1.2–1.51] p < 0.001 |
Heart failure (n %) Incidence/1000 people-years [CI95%] | 1853 (18.1%) 27.5 [26.3–28.8] | 2096 (5.56%) 8.3 [7.9–8.6] | 676 (26.26%) 40.1 [37.1–43.2] | 1.45 [1.33–1.6] p < 0.0001 | 4.85 [4.5–5.3] p < 0.0001 |
Ischemic heart disease (n %) Incidence/1000 people-years [CI95%] | 1479 (14.44%) 22.0 [20.8–23.1] | 2558 (6.78%) 10.1 [9.7–10.5] | 367 (14.26%) 21.8 [19.6–24.1] | 0.99 [0.88–1.11] p = 0.908 | 2.16 [1.93–2.41] p < 0.001 |
Stroke/transient ischemic attack (n %) Incidence/1000 people-years [CI95%] | 459 (4.48%) 6.8 [6.2–7.5] | 698 (1.85%) 2.7 [2.5–3.0] | 187 (7.26%) 11.1 [9.6–12.8] | 1.62 [1.37–1.92] p < 0.001 | 4.03 [3.43–4.74] p < 0.001 |
Peripheral arteriopathy (n %) Incidence/1000 people-years [CI95%] | 1347 (13.15%) 20.0 [18.9–21.1] | 2431 (6.44%) 9.6 [9.2–10.0] | 345 (13.4%) 20.5 [18.4–22.7] | 1.02 [0.90–1.15] p = 0.724 | 2.13 [1.90–2.4] p < 0.001 |
Death (n %) Incidence/1000 people-years [CI95%] | 2861 (27.94%) 42.5 [40.9–44.0] | 6799 (18.02%) 26.8 [26.1–27.4] | 518 (20.12%) 30.7 [28.1–33.5] | 0.72 [0.65–0.79] p < 0.001 | 1.14 [1.04–1.25] p = 0.027 |
Total MACE (n%) Incidence/1000 people-years [CI95%] | 3791 (37.02%) 56.3 [54.5–58.1] | 5352 (14.11%) 21.1 [20.5–21.6] | 1748 (67.9%) 73.0 [68.9–77.1] | 1.29 [1.21–1.38] p < 0.001 | 3.52 [3.31–3.75] p < 0.001 |
CONUT Risk (n) | [AF + MACE+] 1748 | [AF+ MACE−] 826 |
---|---|---|
Normal (1–2) | 879 (50.3%) | 606 (73.4%) |
Light (2–4) | 671 (38.4%) | 187 (22.7%) |
Moderate (5–8) | 137 (7.8%) | 31 (3.7%) |
Severe (9–12) | 61 (3.5%) | 2 (0.2%) |
Variables | Hazard Ratio | CI95% | p |
---|---|---|---|
CHA2DS2-VASc score | 2.50 | 2.41–2.57 | <0.001 |
CONUT score | 1.06 | 1.04–1.08 | <0.001 |
Charlson score | 1.24 | 1.21–1.27 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moltó-Balado, P.; Reverté-Villarroya, S.; Monclús-Arasa, C.; Balado-Albiol, M.T.; Baset-Martínez, S.; Carot-Domenech, J.; Clua-Espuny, J.L. Heart Failure and Major Adverse Cardiovascular Events in Atrial Fibrillation Patients: A Retrospective Primary Care Cohort Study. Biomedicines 2023, 11, 1825. https://doi.org/10.3390/biomedicines11071825
Moltó-Balado P, Reverté-Villarroya S, Monclús-Arasa C, Balado-Albiol MT, Baset-Martínez S, Carot-Domenech J, Clua-Espuny JL. Heart Failure and Major Adverse Cardiovascular Events in Atrial Fibrillation Patients: A Retrospective Primary Care Cohort Study. Biomedicines. 2023; 11(7):1825. https://doi.org/10.3390/biomedicines11071825
Chicago/Turabian StyleMoltó-Balado, P., S. Reverté-Villarroya, C. Monclús-Arasa, M. T. Balado-Albiol, S. Baset-Martínez, J. Carot-Domenech, and J. L. Clua-Espuny. 2023. "Heart Failure and Major Adverse Cardiovascular Events in Atrial Fibrillation Patients: A Retrospective Primary Care Cohort Study" Biomedicines 11, no. 7: 1825. https://doi.org/10.3390/biomedicines11071825
APA StyleMoltó-Balado, P., Reverté-Villarroya, S., Monclús-Arasa, C., Balado-Albiol, M. T., Baset-Martínez, S., Carot-Domenech, J., & Clua-Espuny, J. L. (2023). Heart Failure and Major Adverse Cardiovascular Events in Atrial Fibrillation Patients: A Retrospective Primary Care Cohort Study. Biomedicines, 11(7), 1825. https://doi.org/10.3390/biomedicines11071825