Chronic Obstructive Pulmonary Disease Is Associated with Worse Oncologic Outcomes in Early-Stage Resected Pancreatic and Periampullary Cancers
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Collection and Cohort Selection
2.3. Statistical Analysis
2.4. Ethical Approval
3. Results
3.1. Patient Cohort Characteristics
3.2. COPD Status Does Not Correlate with TNM Staging or Histopathological Risk Factors
3.3. OSA Status Does Not Correlate with TNM Staging
3.4. Survival Analysis Reveals COPD to Be a Negative Risk Factor for Overall Survival
3.5. COPD Treatment-Dependent Subpopulations Correlate with Survival
3.6. Survival Analysis Reveals OSA to Be a Possible Risk Factor for Overall Survival
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kleeff, J.; Korc, M.; Apte, M.; La Vecchia, C.; Johnson, C.D.; Biankin, A.V.; Neale, R.E.; Tempero, M.; Tuveson, D.A.; Hruban, R.H.; et al. Pancreatic cancer. Nat. Rev. Dis. Prim. 2016, 2, 16022. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.L. Hypoxia—A key regulatory factor in tumour growth. Nat. Rev. Cancer 2002, 2, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Bennewith, K.L.; Dedhar, S. Targeting hypoxic tumour cells to overcome metastasis. BMC Cancer 2011, 11, 504. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Hu, Q.; Chen, H.; Liang, K.; Yuan, Y.; Xiang, Y.; Ruan, H.; Zhang, Z.; Song, A.; Zhang, H.; et al. Characterization of Hypoxia-associated Molecular Features to Aid Hypoxia-Targeted Therapy. Nat. Metab. 2019, 1, 431–444. [Google Scholar] [CrossRef]
- Toledo, R.A.; Jimenez, C.; Armaiz-Pena, G.; Arenillas, C.; Capdevila, J.; Dahia, P.L.M. Hypoxia-Inducible Factor 2 Alpha (HIF2α) Inhibitors: Targeting Genetically Driven Tumor Hypoxia. Endocr. Rev. 2023, 44, 312–322. [Google Scholar] [CrossRef]
- Nevler, A.; Khalilieh, S.; Lavu, H.; Bowne, W.; Yeo, C.J. Hypercapnic Tissue Gene Expression and Survival in Early-Stage Pancreatic Ductal Adenocarcinoma. J. Am. Coll. Surg. 2023, 236, 913–922. [Google Scholar] [CrossRef]
- Nevler, A.; Brown, S.Z.; Nauheim, D.; Portocarrero, C.; Rodeck, U.; Bassig, J.; Schultz, C.W.; McCarthy, G.A.; Lavu, H.; Yeo, T.P.; et al. Effect of hypercapnia, an element of obstructive respiratory disorder, on pancreatic cancer chemoresistance and progression. J. Am. Coll. Surg. 2020, 230, 659–667. [Google Scholar] [CrossRef]
- Kikuchi, R.; Iwai, Y.; Tsuji, T.; Watanabe, Y.; Koyama, N.; Yamaguchi, K.; Nakamura, H.; Aoshiba, K. Hypercapnic tumor microenvironment confers chemoresistance to lung cancer cells by reprogramming mitochondrial metabolism in vitro. Free. Radic. Biol. Med. 2019, 134, 200–214. [Google Scholar] [CrossRef]
- Obata, S.; Goi, T.; Nakazawa, T.; Kimura, Y.; Katayama, K.; Yamaguchi, A. Changes in CO2 concentration increase the invasive ability of colon cancer cells. Anticancer Res. 2013, 33, 1881–1885. [Google Scholar]
- Wang, W.; Dou, S.; Dong, W.; Xie, M.; Cui, L.; Zheng, C.; Xiao, W. Impact of COPD on prognosis of lung cancer: From a perspective on disease heterogeneity. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 3767–3776. [Google Scholar] [CrossRef]
- Kornum, J.B.; Sværke, C.; Thomsen, R.W.; Lange, P.; Sørensen, H.T. Chronic obstructive pulmonary disease and cancer risk: A Danish nationwide cohort study. Respir. Med. 2012, 106, 845–852. [Google Scholar] [CrossRef]
- Ho, C.-H.; Chen, Y.-C.; Wang, J.-J.; Liao, K.-M. Incidence and relative risk for developing cancer among patients with COPD: A nationwide cohort study in Taiwan. BMJ Open 2017, 7, e013195. [Google Scholar] [CrossRef]
- Chiang, C.-L.; Hu, Y.-W.; Wu, C.-H.; Chen, Y.-T.; Liu, C.-J.; Luo, Y.-H.; Chen, Y.-M.; Chen, T.-J.; Su, K.-C.; Chou, K.-T. Spectrum of cancer risk among Taiwanese with chronic obstructive pulmonary disease. Int. J. Clin. Oncol. 2016, 21, 1014–1020. [Google Scholar] [CrossRef]
- Ream, C.; Sabitsky, M.; Huang, R.; Hammelef, E.; Yeo, T.P.; Lavu, H.; Yeo, C.J.; Bowne, W.; Nevler, A. Association of Smoking and Respiratory Disease History with Pancreatic Pathologies Requiring Surgical Resection. Cancers 2023, 15, 2935. [Google Scholar] [CrossRef]
- King, P.T. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin. Transl. Med. 2015, 4, 68. [Google Scholar] [CrossRef]
- Barnes, P.J. Oxidative stress in chronic obstructive pulmonary disease. Antioxidants 2022, 11, 965. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Hiroshima, Y.; Matsuyama, R.; Homma, Y.; Hoffman, R.M.; Endo, I. Role of the tumor microenvironment in pancreatic cancer. Ann. Gastroenterol. Surg. 2019, 3, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, B.; Correa, A.M.; Ho, L. Survival in pancreatic carcinoma based on tumor size. Pancreas 2008, 36, e15–e20. [Google Scholar] [CrossRef] [PubMed]
- Aslanian, H.R.; Lee, J.H.; Canto, M.I. AGA Clinical Practice Update on Pancreas Cancer Screening in High-Risk Individuals: Expert Review. Gastroenterology 2020, 159, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.H.; Yoon, S.B.; Lee, K.; Song, M.; Lee, I.S.; Lee, M.A.; Hong, T.H.; Choi, M.G. Preoperative sarcopenia and post-operative accelerated muscle loss negatively impact survival after resection of pancreatic cancer. J. Cachexia Sarcopenia Muscle 2018, 9, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Okumura, S.; Kaido, T.; Hamaguchi, Y.; Fujimoto, Y.; Masui, T.; Mizumoto, M.; Hammad, A.; Mori, A.; Takaori, K.; Uemoto, S. Impact of preoperative quality as well as quantity of skeletal muscle on survival after resection of pancreatic cancer. Surgery 2015, 157, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.I.; Shia, J.; Stadler, Z.K.; Varghese, A.M.; Capanu, M.; Salo-Mullen, E.; Lowery, M.A.; Diaz, L.A., Jr.; Mandelker, D.; Yu, K.H.; et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: Challenges and recommendations. Clin. Cancer Res. 2018, 24, 1326–1336. [Google Scholar] [CrossRef]
- Mathot, L.; Stenninger, J. Behavior of seeds and soil in the mechanism of metastasis: A deeper understanding. Cancer Sci. 2012, 103, 626–631. [Google Scholar] [CrossRef]
- Bissell, M.J.; Radisky, D. Putting tumours in context. Nat. Rev. Cancer 2001, 1, 46–54. [Google Scholar] [CrossRef]
- Wu, J.; Liang, C.; Chen, M.; Su, W. Association between tumor-stroma ratio and prognosis in solid tumor patients: A systematic review and meta-analysis. Oncotarget 2016, 7, 68954–68965. [Google Scholar] [CrossRef]
- Vasseur, S.; Tomasini, R.; Tournaire, R.; Iovanna, J.L. Hypoxia induced tumor metabolic switch contributes to pancreatic cancer aggressiveness. Cancers 2010, 2, 2138–2152. [Google Scholar] [CrossRef]
- Tao, J.; Yang, G.; Zhou, W.; Qiu, J.; Chen, G.; Luo, W.; Zhao, F.; You, L.; Zheng, L.; Zhang, T.; et al. Targeting hypoxic tumor microenvironment in pancreatic cancer. J. Hematol. Oncol. 2021, 14, 14. [Google Scholar] [CrossRef]
- Miller, B.W.; Morton, J.P.; Pinese, M.; Saturno, G.; Jamieson, N.B.; McGhee, E.; Timpson, P.; Leach, J.; McGarry, L.; Shanks, E.; et al. Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: Inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Mol. Med. 2015, 7, 1063–1076. [Google Scholar] [CrossRef]
- Cummins, E.P.; Oliver, K.M.; Lenihan, C.R.; Fitzpatrick, S.F.; Bruning, U.; Scholz, C.C.; Slattery, C.; Leonard, M.O.; McLoughlin, P.; Taylor, C.T. NF-κB links CO2 sensing to innate immunity and inflammation in mammalian cells. J. Immunol. 2010, 185, 4439–4445. [Google Scholar] [CrossRef]
- Keogh, C.E.; Scholz, C.C.; Rodriguez, J.; Selfridge, A.C.; von Kriegsheim, A.; Cummins, E.P. Carbon dioxide-dependent regulation of NF-κB family members RelB and p100 gives molecular insight into CO2-dependent immune regulation. J. Biol. Chem. 2017, 292, 11561–11571. [Google Scholar] [CrossRef] [PubMed]
- National Trends-Chronic Obstructive Pulmonary Disease (COPD)|CDC. Available online: https://www.cdc.gov/copd/data-and-statistics/national-trends.html (accessed on 7 January 2023).
- Orozco-Levi, M.; Garcia-Aymerich, J.; Villar, J.; Ramírez-Sarmiento, A.; Antó, J.M.; Gea, J. Wood smoke exposure and risk of chronic obstructive pulmonary disease. Eur. Respir. J. 2006, 27, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Paulin, L.M.; Diette, G.B.; Blanc, P.D.; Putcha, N.; Eisner, M.D.; Kanner, R.E.; Belli, A.J.; Christenson, S.; Tashkin, D.P.; Han, M.; et al. Occupational exposures are associated with worse morbidity in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2015, 191, 557–565. [Google Scholar] [CrossRef]
- de Marco, R.; Accordini, S.; Marcon, A.; Cerveri, I.; Antó, J.M.; Gislason, T.; Heinrich, J.; Janson, C.; Jarvis, D.; Kuenzli, N.; et al. Risk factors for chronic obstructive pulmonary disease in a European cohort of young adults. Am. J. Respir. Crit. Care Med. 2011, 183, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Qiang, G.; Liang, C.; Xiao, F.; Yu, Q.; Wen, H.; Song, Z.; Tian, Y.; Shi, B.; Guo, Y.; Liu, D. Impact of chronic obstructive pulmonary disease on postoperative recurrence in patients with resected non-small-cell lung cancer. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 43–49. [Google Scholar] [CrossRef][Green Version]
- Chen, Y.-C.; Li, M.-C.; Yu, Y.-H.; Lin, C.-M.; Wu, S.-Y. Chronic Obstructive Pulmonary Disease and Its Acute Exacerbation before Colon Adenocarcinoma Treatment Are Associated with Higher Mortality: A Propensity Score-Matched, Nationwide, Population-Based Cohort Study. Cancers 2021, 13, 4728. [Google Scholar] [CrossRef]
- Newcomb, P.A.; Carbone, P.P. The health consequences of smoking. Cancer Med. Clin. N. Am. 1992, 76, 305–331. [Google Scholar] [CrossRef]
- Shah, S.; Blanchette, C.M.; Coyle, J.C.; Kowalkowski, M.; Arthur, S.T.; Howden, R. Survival associated with chronic obstructive pulmonary disease among SEER-Medicare beneficiaries with non-small-cell lung cancer. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 893–903. [Google Scholar] [CrossRef]
- Agustí, A.; Celli, B.R.; Criner, G.J.; Halpin, D.; Anzueto, A.; Barnes, P.; Bourbeau, J.; Han, M.K.; Martinez, F.J.; Montes de Oca, M.; et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Eur. Respir. J. 2023, 61, 2300239. [Google Scholar] [CrossRef]
- Shadhu, K.; Xi, C. Inflammation and pancreatic cancer: An updated review. Saudi J. Gastroenterol. 2019, 25, 3–13. [Google Scholar] [CrossRef]
- Piehl-Aulin, K.; Jones, I.; Lindvall, B.; Magnuson, A.; Abdel-Halim, S.M. Increased serum inflammatory markers in the absence of clinical and skeletal muscle inflammation in patients with chronic obstructive pulmonary disease. Respiration 2009, 78, 191–196. [Google Scholar] [CrossRef]
- Prabhu, L.; Mundade, R.; Korc, M.; Loehrer, P.J.; Lu, T. Critical role of NF-κB in pancreatic cancer. Oncotarget 2014, 5, 10969–10975. [Google Scholar] [CrossRef]
- Escribese, M.M.; Casas, M.; Corbí, A.L. Influence of low oxygen tensions on macrophage polarization. Immunobiology 2012, 217, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Martinez, F.O.; Helming, L.; Gordon, S. Alternative activation of macrophages: An immunologic functional perspective. Annu. Rev. Immunol. 2009, 27, 451–483. [Google Scholar] [CrossRef]
- Grundy, S.; Plumb, J.; Lea, S.; Kaur, M.; Ray, D.; Singh, D. Down regulation of T cell receptor expression in COPD pulmonary CD8 cells. PLoS ONE 2013, 8, e71629. [Google Scholar] [CrossRef]
- Xiong, H.; Lao, M.; Wang, L.; Xu, Y.; Pei, G.; Lu, B.; Shi, Q.; Chen, J.; Zhang, S.; Ou, Q. The incidence of cancer is increased in hospitalized adult patients with obstructive sleep apnea in china: A retrospective cohort study. Front. Oncol. 2022, 12, 856121. [Google Scholar] [CrossRef] [PubMed]
- Nieto, F.J.; Peppard, P.E.; Young, T.; Finn, L.; Hla, K.M.; Farré, R. Sleep-disordered breathing and cancer mortality: Results from the Wisconsin Sleep Cohort Study. Am. J. Respir. Crit. Care Med. 2012, 186, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Ning, P.; Li, Q.; Wu, S. Cancer and obstructive sleep apnea: An updated meta-analysis. Medicine 2022, 101, e28930. [Google Scholar] [CrossRef]
- Dal Molin, M.; Brant, A.; Blackford, A.L.; Griffin, J.F.; Shindo, K.; Barkley, T.; Rezaee, N.; Hruban, R.H.; Wolfgang, C.L.; Goggins, M. Obstructive sleep apnea and pathological characteristics of resected pancreatic ductal adenocarcinoma. PLoS ONE 2016, 11, e0164195. [Google Scholar] [CrossRef]
- Brenner, R.; Kivity, S.; Peker, M.; Reinhorn, D.; Keinan-Boker, L.; Silverman, B.; Liphsitz, I.; Kolitz, T.; Levy, C.; Shlomi, D.; et al. Increased Risk for Cancer in Young Patients with Severe Obstructive Sleep Apnea. Respiration 2019, 97, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Palamaner Subash Shantha, G.; Kumar, A.A.; Cheskin, L.J.; Pancholy, S.B. Association between sleep-disordered breathing, obstructive sleep apnea, and cancer incidence: A systematic review and meta-analysis. Sleep Med. 2015, 16, 1289–1294. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Overall (n = 503) | No COPD (n = 461) | COPD (n = 42) | p-Value |
---|---|---|---|---|
Age, y, median (IQR) | 68 (29–95) | 68 (29–95) | 69 (53–86) | NS |
Sex, n (%) | NS | |||
Male | 257 (51%) | 236 (51%) | 21 (50%) | |
Female | 246 (49%) | 225 (49%) | 21 (50%) | |
BMI (range), kg/m2 | 25.8 (17.5–49) | 25.8 (17.5–49) | 25.5 (19.1–36.6) | NS |
Race, n (%) | NS | |||
White | 418 (83.1%) | 382 (82.9%) | 36 (85.7%) | |
Black | 47 (9.3%) | 42 (9.1%) | 5 (11.9%) | |
Asian | 15 (2.9%) | 14 (3.0%) | 1 (2.4%) | |
Other | 16 (3.1%) | 16 (3.5%) | 0 (0%) | |
Unknown | 7 (1.4%) | 7 (1.5%) | 0 (0%) | |
Smoking History, n (%) | ||||
Nonsmoker | 241 (47.9%) | 235 (51%) | 6 (14.3%) | 0.001 |
Past Smoker | 215 (42.7%) | 190 (41.2%) | 25 (59.5%) | 0.022 |
Current Smoker | 47 (9.3%) | 36 (7.8%) | 11 (26.2%) | 0.001 |
Neoadjuvant Chemotherapy | 106 (21%) | 102 (22.1%) | 4 (9.5%) | NS |
Tumor type, n (%) | ||||
PDAC | 426 (84.6%) | 388 (84.2%) | 38 (90.5%) | NS |
Periampullary | 77 (15.3%) | 73 (15.8%) | 4 (9.5%) | NS |
Tumor Size, mean (cm) | 2.9 ± 1.4 | 2.9 ± 1.4 | 2.9 ± 1.4 | NS |
Lymph Node Involvement, n (%) | 329 (65.4%) | 300 (65.1%) | 29 (69.0%) | NS |
Positive Margins, n (%) | 59 (11.7%) | 53 (11.5%) | 6 (14.3%) | NS |
LVI, n (%) | 266 (52.9%) | 244 (52.9%) | 22 (52.4%) | NS |
PNI, n (%) | 408 (81.1%) | 370 (80.3%) | 38 (90.5%) | NS |
Tumor Staging, n (%) | ||||
T | NS | |||
T1 | 62 (12.3%) | 58 (12.6%) | 4 (9.5%) | |
T2 | 152 (30.2%) | 137 (29.7%) | 15 (35.7%) | |
T3 | 272 (54.1%) | 249 (54.0%) | 23 (54.8%) | |
T4 | 13 (2.6%) | 13 (2.9%) | 0 (0%) | |
TX | 4 (0.8%) | 4 (0.9%) | 0 (0%) | |
N | NS | |||
N0 | 170 (33.8%) | 158 (34.3%) | 13 (31.0%) | |
N1 | 268 (53.3%) | 247 (52.6%) | 21 (50.0%) | |
N2 | 63 (12.5%) | 55 (11.9%) | 8 (19.0%) |
Factor | HR | p-Value | |
---|---|---|---|
Overall survival | Lymphovascular invasion | 1.1 (1.01–1.18) | 0.024 |
Lymph node metastasis | 1.6 (0.96–2.81) | 0.070 | |
Tumor margin positivity | 2.5 (1.47–4.19) | <0.001 | |
COPD | 1.8 (1.13–2.79) | 0.012 | |
Disease-specific survival | Lymphovascular invasion | 1.1 (1.01–1.18) | 0.028 |
Lymph node metastasis | 1.7 (0.96–3.01) | 0.067 | |
Tumor margin positivity | 2.5 (1.42–4.54) | <0.001 | |
COPD | 1.6 (1.01–2.54) | 0.045 |
Factor | HR | p-Value | |
---|---|---|---|
Overall survival | Lymphovascular invasion | 1.4 (1.06–1.81) | 0.016 |
Perineural invasion | 2.2 (1.45–3.41) | <0.001 | |
Tumor margin positivity | 1.7 (1.24–2.41) | 0.001 | |
Neoadjuvant treatment | 1.38 (1.01–1.88) | 0.046 | |
Tumor size (cm) | 1.10 (0.99–1.20) | 0.068 | |
COPD * | 0.328 | ||
Non-steroid dependent | 1.3 (0.82–2.11) | 0.264 | |
Steroid Dependent | 1.5 (0.67–3.48) | 0.308 | |
Disease-specific survival | Lymphovascular invasion | 1.4 (1.04–1.98) | 0.029 |
Perineural invasion | 3.1 (1.78–5.50) | <0.001 | |
Tumor margin positivity | 1.6 (1.08–2.46) | 0.019 | |
Neoadjuvant treatment | 1.92 (1.37–2.70) | <0.001 | |
COPD * | 0.058 | ||
Non-steroid dependent | 1.7 (0.97–2.94) | 0.066 | |
Steroid Dependent | 2.1 (0.84–5.13) | 0.110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Hammelef, E.; Sabitsky, M.; Ream, C.; Khalilieh, S.; Zohar, N.; Lavu, H.; Bowne, W.B.; Yeo, C.J.; Nevler, A. Chronic Obstructive Pulmonary Disease Is Associated with Worse Oncologic Outcomes in Early-Stage Resected Pancreatic and Periampullary Cancers. Biomedicines 2023, 11, 1684. https://doi.org/10.3390/biomedicines11061684
Huang R, Hammelef E, Sabitsky M, Ream C, Khalilieh S, Zohar N, Lavu H, Bowne WB, Yeo CJ, Nevler A. Chronic Obstructive Pulmonary Disease Is Associated with Worse Oncologic Outcomes in Early-Stage Resected Pancreatic and Periampullary Cancers. Biomedicines. 2023; 11(6):1684. https://doi.org/10.3390/biomedicines11061684
Chicago/Turabian StyleHuang, Rachel, Emma Hammelef, Matthew Sabitsky, Carolyn Ream, Saed Khalilieh, Nitzan Zohar, Harish Lavu, Wilbur B. Bowne, Charles J. Yeo, and Avinoam Nevler. 2023. "Chronic Obstructive Pulmonary Disease Is Associated with Worse Oncologic Outcomes in Early-Stage Resected Pancreatic and Periampullary Cancers" Biomedicines 11, no. 6: 1684. https://doi.org/10.3390/biomedicines11061684
APA StyleHuang, R., Hammelef, E., Sabitsky, M., Ream, C., Khalilieh, S., Zohar, N., Lavu, H., Bowne, W. B., Yeo, C. J., & Nevler, A. (2023). Chronic Obstructive Pulmonary Disease Is Associated with Worse Oncologic Outcomes in Early-Stage Resected Pancreatic and Periampullary Cancers. Biomedicines, 11(6), 1684. https://doi.org/10.3390/biomedicines11061684