DenseNet_ HybWWoA: A DenseNet-Based Brain Metastasis Classification with a Hybrid Metaheuristic Feature Selection Strategy
Abstract
:1. Introduction
2. Related Works
3. System Model
4. Dataset Description
5. Pre-Processing of Images
6. Feature Extraction Using U-Net
7. Feature Selection Using Hybrid Optimization Algorithm
8. Classification Using DenseNet
9. Performance Analysis
10. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nayak, L.; Lee, E.Q.; Wen, P.Y. Epidemiology of brain metastases. Curr. Oncol. Rep. 2012, 14, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Arvold, N.D.; Lee, E.Q.; Mehta, M.P.; Margolin, K.; Alexander, B.M.; Lin, N.U.; Anders, C.K.; Soffietti, R.; Camidge, D.R.; Vogelbaum, M.A.; et al. Updates in the management of brain metastases. Neuro-Oncology 2016, 18, 1043–1065. [Google Scholar] [CrossRef] [PubMed]
- Limon, D.; Shachar, E.; Wolf, I.; Adar, L.; Hasson, S.P.; Ferro, L.; Safra, T. Brain metastases in patients with ovarian cancer. Acta Oncol. 2022, 61, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Gierada, D.S.; Pinsky, P.F. Survival following detection of stage I lung cancer by screening in the national lung screening trial. Chest 2021, 159, 862–869. [Google Scholar] [CrossRef] [PubMed]
- Henderson, L.M.; Durham, D.D.; Tammemägi, M.C.; Benefield, T.; Marsh, M.W.; Rivera, M.P. Lung cancer screening with low dose computed tomography in patients wit and without prior history of cancer in the National Lung Screening Trial. J. Torac. Oncol. 2021, 16, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; The K-LUCAS Trial Investigators; Kim, Y.; Kim, H.Y.; Goo, J.M.; Lim, J.; Lee, C.-T.; Jang, S.H.; Lee, W.-C.; Lee, C.W.; et al. Feasibility of implementing a national lung cancer screening program: Interim results from the Korean Lung Cancer Screening Project (K-LUCAS). Transl. Lung Cancer Res. 2021, 10, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Shang, S.; Sun, J.; Yue, Z.; Wang, Y.; Wang, X.; Luo, Y.; Zhao, D.; Yu, T.; Jiang, X. Multi-parametric MRI based radiomics with tumor sub-region partitioning for differingiating benign and malignant soft-tissue tumors. Biomed. Signal Process. Control 2021, 67, 102522. [Google Scholar] [CrossRef]
- Lam, S.; Jimenez, C.; Boven, E. Breast cancer classification by proteomic technologies: Current state of knowledge. Cancer Treat. Rev. 2014, 40, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Hardesty, D.A.; Nakaji, P. The Current and Future Treatment of Brain Metastases. Front. Surg. 2016, 3, 30. [Google Scholar] [CrossRef] [PubMed]
- Cagney, D.N.; Martin, A.M.; Catalano, P.J.; Redig, A.J.; Lin, N.U.; Lee, E.Q.; Wen, P.Y.; Dunn, I.F.; Bi, W.L.; Weiss, S.E.; et al. Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: A population-based study. Neuro-Oncology 2017, 19, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Bekaert, L.; Emery, E.; Levallet, G.; Lechapt-Zalcman, E. Histopathologic diagnosis of brain metastases: Current trends in management and future considerations. Brain Tumor Pathol. 2017, 34, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Kurdi, S.Z.; Ali, M.H.; Jaber, M.M.; Saba, T.; Rehman, A.; Damaševičius, R. Brain Tumor Classification Using Meta-Heuristic Optimized Convolutional Neural Networks. J. Pers. Med. 2023, 13, 181. [Google Scholar] [CrossRef] [PubMed]
- Athisayamani, S.; Antonyswamy, R.S.; Sarveshwaran, V.; Almeshari, M.; Alzamil, Y.; Ravi, V. Feature Extraction Using a Residual Deep Convolutional Neural Network (ResNet-152) and Optimized Feature Dimension Reduction for MRI Brain Tumor Classification. Diagnostics 2023, 13, 668. [Google Scholar] [CrossRef] [PubMed]
- Alyami, J.; Rehman, A.; Almutairi, F.; Fayyaz, A.M.; Roy, S.; Saba, T.; Alkhurim, A. Tumor Localization and Classification from MRI of Brain using Deep Convolution Neural Network and Salp Swarm Algorithm. Cogn. Comput. 2023, 1–11. [Google Scholar] [CrossRef]
- Nawaz, S.A.; Khan, D.M.; Qadri, S. Brain tumor classification based on hybrid optimized multi-features analysis using magnetic resonance imaging dataset. Appl. Artif. Intell. 2022, 36, 2031824. [Google Scholar] [CrossRef]
- Stember, J.N.; Young, R.J.; Shalu, H. Direct Evaluation of Treatment Response in Brain Metastatic Disease with Deep Neuroevolution. J. Digit. Imaging 2022, 36, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Naidu, B.S.T.; Biswas, S.; Chatterjee, R.; Mandal, S.; Pratihar, S.; Chatterjee, A.; Raha, A.; Mukherjee, A.; Paluh, J. SCENIC: An Area and Energy-Efficient CNN-based Hardware Accelerator for Discernable Classification of Brain Pathologies using MRI. In Proceedings of the 2022 35th International Conference on VLSI Design and 2022 21st International Conference on Embedded Systems (VLSID), Bangalore, India, 26 February–2 March 2022; pp. 168–173. [Google Scholar]
- Irmak, E. Multi-classification of brain tumor MRI images using deep convolutional neural network with fully optimized framework. Iran. J. Sci. Technol. Trans. Electr. Eng. 2021, 45, 1015–1036. [Google Scholar] [CrossRef]
- Vijh, S.; Sharma, S.; Gaurav, P. Brain tumor segmentation using OTSU embedded adaptive particle swarm optimization method and convolutional neural network. In Data Visualization and Knowledge Engineering: Spotting Data Points with Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2020; pp. 171–194. [Google Scholar]
- Dandıl, E.; Karaca, S. Detection of pseudo brain tumors via stacked LSTM neural networks using MR spectroscopy signals. Biocybern. Biomed. Eng. 2021, 41, 173–195. [Google Scholar] [CrossRef]
- Alshammari, A. Construction of VGG16 Convolution Neural Network (VGG16_CNN) Classifier with NestNet-Based Segmentation Paradigm for Brain Metastasis Classification. Sensors 2022, 22, 8076. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J. Brain Tumor Dataset. Figshare. Available online: https://doi.org/10.6084/m9.figshare.1512427.v5 (accessed on 27 December 2022).
- Ronneberger, O.; Fischer, P.; Brox, T. UNet: Convolutional Networks for Biomedical Image Segmentation; University of Freiburg: Freiburg, Germany, 2015. [Google Scholar]
Layer/Channel | Output Size/Channel |
---|---|
Convolution | Kernel 8 × 8 s |
pooling | 4 × 4 max pooling |
Dense block-1 | 5 × 5 conv × 4 |
Transition 1 | Batch normalization 2 × 2 convolution layer |
Dense block-2 | 1 × 1 × conv |
Transition 2 | Batch normalization 4 × 4 convolution layer |
Dense block-3 | 5 × 5 × conv |
Transition 3 | Batch normalization 6 × 6 convolution layer |
Dense block-4 | 7 × 7 × conv |
Transition 4 | Batch normalization 8 × 8 convolution layer |
Classification layer | 7 × 7 global averages |
Number of Epochs | HHOCNN | ResNet-152 | DenseNet_ HybWWoA |
---|---|---|---|
100 | 85.6 | 83.6 | 98.5 |
200 | 83.7 | 86.4 | 99 |
300 | 84.9 | 84.6 | 98 |
400 | 83.6 | 89.6 | 98.5 |
500 | 81.6 | 84.3 | 98 |
Number of Epochs | HHOCNN | ResNet-152 | DenseNet_ HybWWoA |
---|---|---|---|
100 | 82.6 | 87.4 | 91.3 |
200 | 84.9 | 86.5 | 92.4 |
300 | 87.3 | 87.2 | 92.5 |
400 | 82.5 | 86.3 | 92.8 |
500 | 84.6 | 87.9 | 93.7 |
Number of Epochs | HHOCNN | ResNet-152 | DenseNet_ HybWWoA |
---|---|---|---|
100 | 78 | 86.4 | 97.45 |
200 | 77 | 87.4 | 96.2 |
300 | 77.9 | 86.5 | 98.4 |
400 | 78.4 | 85.3 | 96.9 |
500 | 78.4 | 82.6 | 94.8 |
Number of Epochs | HHOCNN | ResNet-152 | DenseNet_ HybWWoA |
---|---|---|---|
100 | 81.8 | 84.6 | 97.65 |
200 | 86.4 | 87.4 | 96.58 |
300 | 87.4 | 84.5 | 98.32 |
400 | 84.6 | 87.5 | 97.48 |
500 | 82.6 | 86.4 | 98.25 |
Parameters | HHOCNN | ResNet-152 | DenseNet_ HybWWoA |
---|---|---|---|
Accuracy (%) | 85.2 | 85.2 | 98.5 |
Precision (%) | 87.5 | 86 | 92.1 |
Recall (%) | 78.3 | 86.1 | 96.3 |
F1-score (%) | 85 | 87 | 97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammari, A. DenseNet_ HybWWoA: A DenseNet-Based Brain Metastasis Classification with a Hybrid Metaheuristic Feature Selection Strategy. Biomedicines 2023, 11, 1354. https://doi.org/10.3390/biomedicines11051354
Alshammari A. DenseNet_ HybWWoA: A DenseNet-Based Brain Metastasis Classification with a Hybrid Metaheuristic Feature Selection Strategy. Biomedicines. 2023; 11(5):1354. https://doi.org/10.3390/biomedicines11051354
Chicago/Turabian StyleAlshammari, Abdulaziz. 2023. "DenseNet_ HybWWoA: A DenseNet-Based Brain Metastasis Classification with a Hybrid Metaheuristic Feature Selection Strategy" Biomedicines 11, no. 5: 1354. https://doi.org/10.3390/biomedicines11051354
APA StyleAlshammari, A. (2023). DenseNet_ HybWWoA: A DenseNet-Based Brain Metastasis Classification with a Hybrid Metaheuristic Feature Selection Strategy. Biomedicines, 11(5), 1354. https://doi.org/10.3390/biomedicines11051354