Prognostic Value of the Selected Polymorphisms in the CD36 Gene in the Domain-Encoding Lipid-Binding Region at a 10-Year Follow-Up for Early-Onset CAD Patients
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berger, M.; Naseem, K.M. Oxidised Low-Density Lipoprotein-Induced Platelet Hyperactivity—Receptors and Signalling Mechanisms. Int. J. Mol. Sci. 2022, 23, 9199. [Google Scholar] [CrossRef]
- Manning-Tobin, J.J.; Moore, K.J.; Seimon, T.A.; Bell, S.A.; Sharuk, M.; Alvarez-Leite, J.I.; de Winther, M.P.; Tabas, I.; Freeman, M.W. Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, M.; Jung, M.; Yabluchanskiy, A.; Cannon, P.L.; Iyer, R.P.; Flynn, E.R.; DeLeon-Pennell, K.Y.; Valerio, F.M.; Harrison, C.L.; Ripplinger, C.M.; et al. Exogenous CXCL4 infusion inhibits macrophage phagocytosis by limiting CD36 signalling to enhance post-myocardial infarction cardiac dilation and mortality. Cardiovasc. Res. 2019, 115, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpanah, Z.Z.; Mozaffari-Khosravi, H.; Mirzaei, M.; Sheikhha, M.H.; Salehi-Abargouei, A. A systematic review and meta-analysis on the association between CD36 rs1761667 polymorphism and cardiometabolic risk factors in adults. Sci. Rep. 2022, 12, 5916. [Google Scholar] [CrossRef]
- Xiao, S.; Kuang, C. Identification of crucial genes that induce coronary atherosclerosis through endothelial cell dysfunction in AMI-identifying hub genes by WGCNA. Am. J. Transl. Res. 2022, 14, 8166–8174. [Google Scholar] [PubMed]
- Podrez, E.A.; Byzova, T.V.; Febbraio, M.; Salomon, R.G.; Ma, Y.; Valiyaveettil, M.; Poliakov, E.; Sun, M.; Finton, P.J.; Curtis, B.R.; et al. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat. Med. 2007, 13, 1086–1095. [Google Scholar] [CrossRef]
- Yang, M.; Li, W.; Harberg, C.; Chen, W.; Yue, H.; Ferreira, R.B.; Wynia-Smith, S.L.; Carroll, K.S.; Zielonka, J.; Flaumenhaft, R.; et al. Cysteine sulfenylation by CD36 signaling promotes arterial thrombosis in dyslipidemia. Blood Adv. 2020, 4, 4494–4507. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Kholmukhamedov, A.; Schulte, M.L.; Cooley, B.C.; Scoggins, N.I.O.; Wood, J.P.; Cameron, S.J.; Morrell, C.N.; Jobe, S.M.; Silverstein, R.L. Platelet CD36 signaling through ERK5 promotes caspase-dependent procoagulant activity and fibrin deposition in vivo. Blood Adv. 2018, 2, 2848–2861. [Google Scholar] [CrossRef]
- Zuurbier, C.; Bertrand, L.; Beauloye, C.R.; Andreadou, I.; Ruiz-Meana, M.; Jespersen, N.R.; Kula-Alwar, D.; Prag, H.A.; Eric Botker, H.; Dambrova, M.; et al. Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J. Cell. Mol. Med. 2020, 24, 5937–5954. [Google Scholar] [CrossRef]
- Liu, W.; Yin, Y.; Zhou, Z.; He, M.; Dai, Y. OxLDL-induced IL-1 beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflamm. Res. 2014, 63, 33–43. [Google Scholar] [CrossRef]
- Ghosh, A.; Murugesan, G.; Chen, K.; Zhang, L.; Wang, Q.; Febbraio, M.; Anselmo, R.M.; Marchant, K.; Barnard, J.; Silverstein, R.L. Platelet CD36 surface expression levels affect functional responses to oxidized LDL and are associated with inheritance of specific genetic polymorphisms. Blood 2011, 117, 6355–6366. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Hu, L.; Zhang, J.; Yang, W.; Liu, X.; Jia, D.; Yao, Z.; Chang, L.; Pan, G.; Zhong, H.; et al. PCSK9 (Proprotein Convertase Subtilisin/Kexin 9) Enhances Platelet Activation, Thrombosis, and Myocardial Infarct Expansion by Binding to Platelet CD36. Circulation 2021, 143, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Rac, M.; Safranow, K.; Kurzawski, G.; Krzystolik, A.; Chlubek, D. Is CD36 gene polymorphism in region encoding lipid-bin ding domain associated with early onset CAD? Gene 2013, 530, 134–137. [Google Scholar] [CrossRef]
- Rac, M.; Suchy, J.; Kurzawski, G.; Kurlapska, A.; Safranow, K.; Rać, M.; Sagasz-Tysiewicz, D.; Krzystolik, A.; Poncyljusz, W.; Jakubowska, K.; et al. Polymorphism of the CD36 Gene and Cardiovascular Risk Factors in Patients with Coronary Artery Disease Manifested at a Young Age. Biochem. Genet. 2012, 50, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Rac, M.; Kurzawski, G.; Safranow, K.; Rac, M.; Sagasz-Tysiewicz, D.; Krzystolik, A.; Poncyljusz, W.; Olszewska, M.; Dawid, G.; Chlubek, D. Association of CD36 gene polymorphisms with echo- and electrocardiographic parameters in patients with early onset coronary artery disease. Arch. Med. Sci. 2013, 9, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Rac, M.; Safranow, K.; Rac, M.; Kurzawski, G.; Krzystolik, A.; Sagasz, D.; Jakubowska, K.; Poncyljusz, W.; Chlubek, D. CD36 gene is associated with thickness of atheromatous plaque and ankle -brachial index in patients with early coronary artery disease. Kardiol. Pol. 2012, 70, 918–923. [Google Scholar]
- Garner, C. The use of random controls in genetic association studies. Hum. Hered. 2006, 61, 22–26. [Google Scholar] [CrossRef]
- Moskvina, V.; Holmans, P.; Schmidt, K.M.; Craddock, N. Design of case-controls studies with unscreened controls. Ann. Hum. Genet. 2005, 69 Pt 5, 566–576. [Google Scholar] [CrossRef]
- Rac, M.; Suchy, J.; Kurzawski, G.; Safranow, K.; Jakubowska, K.; Olszewska, M.; Garanty-Bogacka, B.; Rać, M.; Poncyljusz, W.; Chlubek, D. Analysis of human CD36 gene sequence alterations in the oxidized low-density lipoprotein-binding region using denaturing high-performance liquid chromatography. Genet. Test. Mol. Biomark. 2010, 14, 551–557. [Google Scholar] [CrossRef]
- Guo, S.W.; Thompson, E.A. Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 1992, 48, 361–372. [Google Scholar] [CrossRef]
- Fry, A.E.; Ghansa, A.; Small, K.S.; Palma, A.; Auburn, S.; Diakite, M.; Green, A.; Campino, S.; Teo, Y.Y.; Clark, T.G.; et al. Positive selection of a CD36 nonsense variant in sub -Saharan Africa, but no association with severe malaria phenotypes. Hum. Mol. Genet. 2009, 18, 2683–2692. [Google Scholar] [CrossRef]
- Yuan, H.Y.; Chiou, J.J.; Tseng, W.H.; Liu, C.H.; Liu, C.K.; Lin, Y.J.; Wang, H.H.; Yao, A.; Chen, Y.T.; Hsu, C.N. FASTSNP: An always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res. 2006, 34, W635–W641. [Google Scholar] [CrossRef] [PubMed]
- Love-Gregory, L.; Sherva, R.; Schappe, T.; Qi, J.S.; McCrea, J.; Klein, S.; Connelly, M.A.; Abumrad, N.A. Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile. Hum. Mol. Genet. 2011, 20, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, A.; Tanaka, K.; Nakamura, S. 2-Year follow-up of a patient with CD36 deficiency and takotsubo cardiomyopathy. J. Nucl. Cardiol. 2020, 27, 330–332. [Google Scholar] [CrossRef] [PubMed]
- Kintaka, T.; Tanaka, T.; Imai, M.; Adachi, I.; Narabayashi, I.; Kitaura, Y. CD36 genotype and long-chain fatty acid uptake in the heart. Circ. J. 2002, 66, 819–825. [Google Scholar] [CrossRef]
- Tanaka, T.; Nakata, T.; Oka, T.; Ogawa, T.; Okamoto, F.; Kusaka, Y.; Sohmiya, K.; Shimamoto, K.; Itakura, K. Defect in human myocardial long-chain fatty acid uptake is caused by FAT/CD36 mutations. J. Lipid Res. 2001, 42, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Parra-Reyna, B.; Padilla-Gutiérrez, J.R.; Aceves-Ramírez, M.; García-Garduño, T.C.; Martínez-Fernández, D.E.; Jacobo-García, J.J.; Valdés-Alvarado, E.; Valle, Y. Genetic variants, gene expression, and soluble CD36 analysis in acute coronary syndrome: Differential protein concentration between ST-segment elevation myocardial infarction and unstable angina. J. Clin. Lab. Anal. 2022, 36, e24529. [Google Scholar] [CrossRef]
- Nishikawa, R.; Furuhashi, M.; Hori, M.; Ogura, M.; Harada-Shiba, M.; Okada, T.; Koseki, M.; Kujiraoka, T.; Hattori, H.; Ito, R.; et al. A Resuscitated Case of Acute Myocardial Infarction with both Familial Hypercholesterolemia Phenotype Caused by Possibly Oligogenic Variants of the PCSK9 and ABCG5 Genes and Type I CD36 Deficiency. J. Atheroscler. Thromb. 2022, 29, 551–557. [Google Scholar] [CrossRef]
- Ma, X.; Bacci, S.; Mlynarski, W.; Gottardo, L.; Soccio, T.; Menzaghi, C.; Iori, E.; Lager, R.A.; Shroff, A.R.; Gervino, E.V.; et al. A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Hum. Mol. Genet. 2004, 13, 2197–2205. [Google Scholar] [CrossRef] [PubMed]
- Goyenechea, E.; Collins, L.J.; Parra, D.; Liu, G.; Snieder, H.; Swaminathan, R.; Spector, T.D.; Martínez, J.A.; O’Dell, S.D. CD36 gene promoter polymorphisms are associated with low density lipoprotein cholesterol in normal twins and after a low-calorie diet in obese subjects. Twin Res. Hum. Genet. 2008, 11, 621–628. [Google Scholar] [CrossRef]
- Knowles, J.W.; Wang, H.; Itakura, H.; Southwick, A.; Myers, R.M.; Iribarren, C.; Fortmann, S.P.; Go, A.S.; Quertermous, T.; Hlatky, M.A. Association of polymorphisms in platelet and hemostasis system genes with acute myocardial infarction. Am. Heart J. 2007, 154, 1052–1058. [Google Scholar] [CrossRef]
- Boghdady, A.; Arafa, U.A.; Sabet, E.A.; Salama, E.; El Sharawy, A.; Elbadry, M.I. Association between rs1761667 polymorphism of CD36 gene and risk of coronary atherosclerosis in Egyptian population. Cardiovasc. Diagn. Ther. 2016, 6, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Prins, B.P.; Lagou, V.; Asselbergs, F.W.; Snieder, H.; Fu, J. Genetics of coronary artery disease: Genome-wide association studies and beyond. Atherosclerosis 2012, 222, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ikram, M.A.; Seshadri, S.; Bis, J.C.; Fornage, M.; DeStefano, A.L.; Aulchenko, Y.S.; Debette, S.; Lumley, T.; Folsom, A.R.; Van Den Herik, E.G.; et al. Genomewide association studies of stroke. N. Engl. J. Med. 2009, 360, 1718–1728. [Google Scholar] [CrossRef] [PubMed]
CD36 Exon/Intron (Position) rs Number DNA Sequence/Protein Alteration | Genotype/Minor Allele Frequency | ||
---|---|---|---|
Allele | Newborns | dbSNP Base | |
intron 3 (80285850) rs3173798 IVS3-6 T/C | TT | 249 (81.3%) | |
TC | 55 (18.0%) | ||
CC | 2 (0.70%) | ||
T | 553 (90.4%) | 93.8–90% | |
C | 59 (9.60%) | 6.2–10% | |
intron 4 (80290369) rs3211892 IVS4-10 G/A | GG | 282 (92.2%) | |
GA | 24 (7.80%) | ||
G | 588 (96.1%) | 92.3–99.2% | |
A | 24 (3.90%) | 0.8–2.7% | |
exon 5 (80290408) no rs number C311T/Thr104Ile | CC | 306 (100%) | |
CT | 0 (0%) | ||
C | 612 (100%) | ||
T | 0 (0%) | lack of data | |
exon 6 (80292426) rs138897347 G550A/Asp184Asn | GG | 305 (99.7%) | |
GA | 1 (0.30%) | ||
G | 611 (99.8%) | 99.8–99.9% | |
A | 1 (0.20%) | 0.1–0.2% | |
exon 6 (80292448) rs143150225 C572T/Pro191Leu | CC | 305 (99.7%) | |
CT | 1 (0.30%) | ||
C | 1 (0.20%) | 99.8–99.9% | |
T | 1 (0.20%) | 0.1–0.2% | |
exon 6 (80292449) rs5956 G573A/Pro191Pro | GG | 290 (94.8%) | |
GA | 16 (5.20%) | ||
G | 596 (97.4%) | 95.5–97.3% | |
A | 16 (2.60%) | 2.7–4.5% | |
exon 6 (80292467) rs141680676 A591T/Thr197Thr | AA | 303 (99%) | |
AT | 3 (1.00%) | ||
A | 609 (99.5%) | 99.8% | |
T | 3 (0.50%) | 0.2% |
Position in CD36 Exon/Intron Number of rs DNA Sequence Protein Alteration | Genotype | |
---|---|---|
Allele | ||
intron 3 (80285850) rs3173798 IVS3-6 T/C | TT | 81 (81.0%) |
TC | 19 (19.0%) | |
CC | 0 (0%) | |
T | 181 (90.5%) | |
C | 19 (9.50%) | |
intron 4 (80290369) rs3211892 IVS4-10 G/A | GG | 93 (93.0%) |
GA | 7 (7.00%) | |
G | 193 (96.5%) | |
A | 7 (3.50%) | |
exon 6 (80292449) rs5956 G573A/Pro191Pro | GG | 94 (94%) |
GA | 6 (6.00%) | |
G | 194 (97.0%) | |
A | 6 (3.00%) | |
exon 6 (80292467) rs141680676 A591T/Thr197Thr | AA | 96 (96%) |
AT | 4 (4.00%) | |
A | 195 (98.0%) | |
T | 4 (2.00%) |
Parameters | Value |
---|---|
% of males | 74% |
Age of CAD patients (years) | 49.9 ± 5.91 |
Systolic BP (mmHg) | 127 ± 14.0 |
Diastolic BP (mmHg) | 77.0 ± 9.0 |
MAP (mmHg) | 93.8 ± 9.4 |
WHR | 0.96 ± 0.09 |
BMI (kg/m2) | 28.1 ± 4.0 |
Waist (cm) | 98.3 ± 12.5 |
Hip (cm) | 103 ± 9 |
Hypertension | 66% |
Age of hypertension diagnosis (years) | 42.6 ± 8.6 |
MI | 70% |
Age of the first MI (years) | 44.0 ± 5.6 |
Current smoking | 15% |
Past smoking | 89% |
Years of smoking | 18.9 ± 9.8 |
PTCA | 71% |
CABG | 37% |
Statins | 96% |
Beta-blockers | 88% |
ACEI | 80% |
ARB | 17% |
Calcium channel blockers | 18% |
Diuretics | 31% |
hsCRP (mg/L) | 1.20 ± 0.27 |
glucose (mg/dL) | 101 ± 2.49 |
CHc (mg/dL) | 163 ± 4.06 |
HDL (mg/dL) | 47.0 ± 1.16 |
LDL (mg/dL) | 93.0 ± 3.64 |
TG (mg/dL) | 128 ± 5.74 |
LP(a) (mg/dL) | 20.3 ± 4.96 |
ApoA1 (mg/dL) | 146 ± 3.85 |
ApoB (mg/dL) | 74.0 ± 2.25 |
ApoB/ApoA1 | 0.52 ± 0.02 |
VEGF (pg/mL) | 236 ± 17.2 |
IL-6 (pg/mL) | 1.69 ± 2.77 |
Platelets (G/L) | 216 ± 4.58 |
CD36 µg/mL | 15.78 ± 12.9 |
Parameter | IVS3-6 T/C | IVS4-10 G/A | Exon 6 G573A | Exon 6 A591T | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TT n = 81 | TC n = 19 | GG n = 93 | GA n = 7 | GG n = 94 | GA n = 6 | AA n = 96 | AT n = 4 | |||||
p | p | p | p | |||||||||
Death during observation | 8 | 1 | 1.00 | 8 | 1 | 0.51 | 8 | 1 | 0.46 | 9 | 0 | 1.00 |
Death for cardiological reasons | 6 | 1 | 1.00 | 7 | 0 | 1.00 | 6 | 1 | 0.37 | 7 | 0 | 1.00 |
Myocardial infarctions during the 10-year observation | 11 | 2 | 1.00 | 13 | 0 | 0.59 | 12 | 1 | 0.59 | 13 | 0 | 1.00 |
All cardiovascular events | 23 | 3 | 0.38 | 25 | 1 | 0.67 | 25 | 1 | 1.00 | 26 | 0 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartoszewicz, M.; Rać, M. Prognostic Value of the Selected Polymorphisms in the CD36 Gene in the Domain-Encoding Lipid-Binding Region at a 10-Year Follow-Up for Early-Onset CAD Patients. Biomedicines 2023, 11, 1332. https://doi.org/10.3390/biomedicines11051332
Bartoszewicz M, Rać M. Prognostic Value of the Selected Polymorphisms in the CD36 Gene in the Domain-Encoding Lipid-Binding Region at a 10-Year Follow-Up for Early-Onset CAD Patients. Biomedicines. 2023; 11(5):1332. https://doi.org/10.3390/biomedicines11051332
Chicago/Turabian StyleBartoszewicz, Michał, and Monika Rać. 2023. "Prognostic Value of the Selected Polymorphisms in the CD36 Gene in the Domain-Encoding Lipid-Binding Region at a 10-Year Follow-Up for Early-Onset CAD Patients" Biomedicines 11, no. 5: 1332. https://doi.org/10.3390/biomedicines11051332
APA StyleBartoszewicz, M., & Rać, M. (2023). Prognostic Value of the Selected Polymorphisms in the CD36 Gene in the Domain-Encoding Lipid-Binding Region at a 10-Year Follow-Up for Early-Onset CAD Patients. Biomedicines, 11(5), 1332. https://doi.org/10.3390/biomedicines11051332