Pre- and Postoperative Exercise Effectiveness in Mobility, Hemostatic Balance, and Prognostic Biomarkers in Hip Fracture Patients: A Study Protocol for a Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Implementation of the Study
2.2.1. Getting Informed Consent
2.2.2. Regulatory Study Approval
2.2.3. Final Report and Publications
- Authors must make substantial contributions to study the conception and design, data acquisition or data analysis and interpretation of the results.
- Authors must draft the article for publication or, during authorship review, contribute (data analysis, interpretation or other important intellectual content) to the extent that leads to a significant revision of the article in agreement with the other authors.
- Authors must provide written approval of the article’s final version before submission.
2.3. Participants
2.4. Eligibility Criteria
2.4.1. Inclusion Criteria
- Age: 65 years old and older
- Unilateral proximal femoral fracture/hip fracture (intertrochanteric or neck fracture)
- Ambulatory patients before fracture (with or without aid assistance), according to their New Mobility Score (NMS)
- Absence of any severe neuropsychiatric disorder (e.g., severe psychiatric disorder or dementia) to the extent that the researcher deems the patient incompetent or likely unable to remain compliant with the follow-up. All patients will be tested with Addenbrooke’s Cognitive Test III (ACE-III) to exclude those with moderate or severe dementia (<61 in total score) [27]
- Agreed to participate and signed the informed consent form
2.4.2. Exclusion Criteria
- Pathological fractures (on the ground of malignant musculoskeletal tumor)
- Unable to implement the exercise program due to underlying pathology or disability in the upper extremities
- More than one fracture
- Underlying avascular necrosis
- Severe and unstable cardiovascular disease (e.g., congenital heart disease, severe uncontrolled hypertension (systolic blood pressure ≥180 mmHg or diastolic blood pressure ≥120 mmHg) or unstable angina)
- Neurological or other conditions that significantly impair function and independence (e.g., stages 3–5 Parkinson’s disease based on the Hoehn and Yahr scale, advanced multiple sclerosis or severe osteoarthritis of degenerative or rheumatic etiology)
- Severe metabolic bone disease (e.g., Paget’s disease, renal bone disease or osteomalacia), excluding osteoporosis
- Any aggressive end-of-life disease (e.g., end-stage cancer with an estimated survival expectancy of less than six months)
- Unable to understand the informed consent form and protocol instructions
- Refusal to participate in the research
2.4.3. Withdrawal Criteria
- Inability to participate in the inpatient program for more than two consecutive days (e.g., due to fever or early surgery within two days) or abstinence from more than 20% of the scheduled sessions in the postoperative program
- Intense subjective discomfort during exercise or development of other severe symptomatology or signs, as described in Section 2.4. Safety considerations and handling of adverse events
- Patient’s choice to drop out of the program
2.5. Procedures
Attention Control Group
2.6. Safety Considerations and Handling of Adverse Events
2.6.1. Absolute Contraindications for Exercise [35,36,37]
- Progressive worsening of exercise tolerance or dyspnea at rest over previous 3–5 days
- Presence of critical narrowing of the left coronary artery (obstructive left main coronary disease)
- Unstable angina
- Uncontrolled cardiac arrhythmia
- Acute endocarditis, myocarditis or pericarditis
- Moderate to severe aortic stenosis
- Decompensated heart failure
- Acute pulmonary embolism or deep-vein thromboembolism
- Aortic dissection
- High-grade atrioventricular block
- Hypertrophic obstructive cardiomyopathy
- Recent cerebrovascular accident (CVA) or transient ischemic attack
- Uncontrolled diabetes
- Retinopathy
- Severe autonomic or peripheral neuropathy
- Acute systemic illness or fever
- Acute or chronic renal failure
- Pulmonary fibrosis or interstitial lung disease
- Recent myocardial infarction (<4 weeks), coronary artery bypass grafting (<4 weeks) or percutaneous coronary intervention
2.6.2. Indications for Temporary Cessation
- Symptoms such as angina, shortness of breath, dizziness (lightheadedness), confusion or signs of poor blood circulation
- Oxygen saturation < 88%
- Increase in blood pressure > 220/105 mmHg
- Drop in systolic blood pressure > 10 mmHg
- HR decrease with higher load or development of any atypical arrhythmia
2.7. Outcome Measures
2.7.1. Basic Mobility
2.7.2. Aerobic Capacity
2.7.3. Lower Extremity Function
2.7.4. Blood Lactate Concentration
2.7.5. Nutritional Status
2.7.6. Blood Sample Collection and Hemostatic Profile
2.7.7. Mortality and Incidence of Thrombotic/Thromboembolic Events
2.7.8. Perioperative Bleeding and Transfusion Requirements
2.7.9. Readmission Rate for Any Reason
2.8. Statistical Analysis
2.8.1. Sample Size Calculation
2.8.2. Data Analysis
3. Discussion
Expected Outcome
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Trial Registration
References
- McDonough, C.M.; Harris-Hayes, M.; Kristensen, M.T.; Overgaard, J.A.; Herring, T.B.; Kenny, A.M.; Mangione, K.K. Physical therapy management of older adults with hip fracture. J. Orthop. Sports Phys. Ther. 2021, 51, CPG1–CPG81. [Google Scholar] [CrossRef] [PubMed]
- Alpantaki, K.; Papadaki, C.; Raptis, K.; Dretakis, K.; Samonis, G.; Koutserimpas, C. Gender and age differences in hip fracture types among elderly: A retrospective cohort study. Maedica 2020, 15, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, M.; Smith, R.P.; Balasubramanian, S.; Khan, A.; Uzoigwe, C.E.; Coats, T.J.; Godsiff, S. Serum lactate as a marker of mortality in patients with hip fracture: A prospective study. Injury 2015, 46, 2201–2205. [Google Scholar] [CrossRef]
- Lyritis, G.P.; Rizou, S.; Galanos, A.; Makras, P. Incidence of hip fractures in Greece during a 30-year period: 1977–2007. Osteoporos. Int. 2013, 24, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Karagiannis, A.; Papakitsou, E.; Dretakis, K.; Galanos, A.; Megas, P.; Lambiris, E.; Lyritis, G.P. Mortality rates of patients with a hip fracture in a southwestern district of Greece: Ten-year follow-up with reference to the type of fracture. Calcif. Tissue Int. 2006, 78, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Bakker, J.; Jansen, T.C. Don’t take vitals, take a lactate. Intensive Care Med. 2007, 33, 1863–1865. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, C.R.; Cornell, C.N.; Memtsoudis, S.G. Perioperative Care of the Orthopedic Patient; Springer: New York, NY, USA, 2014; p. 421. [Google Scholar]
- Zhang, Y.; Huang, L.; Liu, Y.; Chen, Q.; Li, X.; Hu, J. Prediction of mortality at one year after surgery for pertrochanteric fracture in the elderly via a Bayesian belief network. Injury 2020, 51, 407–413. [Google Scholar] [CrossRef]
- Pollock, F.H.; Bethea, A.; Samanta, D.; Modak, A.; Maurer, J.P.; Chumbe, J.T. Readmission within 30 days of discharge after hip fracture care. Orthopedics 2015, 38, e7–e13. [Google Scholar] [CrossRef]
- Tsantes, A.G.; Trikoupis, I.G.; Papadopoulos, D.V.; Tsante, K.A.; Mavrogenis, A.F.; Koulouvaris, P.; Savvidou, O.D.; Kontogeorgakos, V.A.; Piovani, D.; Kriebardis, A.G.; et al. Higher coagulation activity in hip fracture patients: A case-control study using rotational thromboelastometry. Int. J. Lab. Hematol. 2021, 43, 477–484. [Google Scholar] [CrossRef]
- Tsantes, A.G.; Papadopoulos, D.V.; Trikoupis, I.G.; Tsante, K.A.; Mavrogenis, A.F.; Koulouvaris, P.; Vaiopoulos, A.G.; Piovani, D.; Nikolopoulos, G.K.; Kokoris, S.I.; et al. The prognostic performance of rotational thromboelastometry for excessive bleeding and increased transfusion requirements in hip fracture surgeries. Thromb. Haemost. 2022, 122, 895–904. [Google Scholar] [CrossRef]
- Tsantes, A.G.; Papadopoulos, D.V.; Trikoupis, I.G.; Tsante, K.A.; Mavrogenis, A.F.; Koulouvaris, P.; Piovani, D.; Kriebardis, A.G.; Gialeraki, A.; Nikolopoulos, G.K.; et al. Rotational thromboelastometry findings are associated with symptomatic venous thromboembolic complications after hip fracture surgery. Clin. Orthop. Relat. Res. 2021, 479, 2457–2467. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.T.; Lai, J.N.; Fu, Y.H.; Yip, H.T.; Lai, Y.C.; Hsu, C.Y.; Chen, S.H.; Kuo, S.J. Protective effects of higher exposure to aspirin and/or clopidogrel on the occurrence of hip fracture among diabetic patients: A retrospective cohort study. Biomedicines 2022, 10, 2626. [Google Scholar] [CrossRef] [PubMed]
- Lizaur-Utrilla, A.; Gonzalez-Navarro, B.; Vizcaya-Moreno, M.F.; Miralles Muñoz, F.A.; Gonzalez-Parreño, S.; Lopez-Prats, F.A. Reasons for delaying surgery following hip fractures and its impact on one year mortality. Int. Orthop. 2019, 43, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Woolf, A.D.; Pfleger, B. Burden of major musculoskeletal conditions. Bull. World Health Organ. 2003, 81, 646–656. [Google Scholar]
- Wu, J.Q.; Mao, L.B.; Wu, J. Efficacy of exercise for improving functional outcomes for patients undergoing total hip arthroplasty: A meta-analysis. Medicine 2019, 98, e14591. [Google Scholar] [CrossRef]
- Corna, S.; Arcolin, I.; Giardini, M.; Bellotti, L.; Godi, M. Addition of aerobic training to conventional rehabilitation after hip fracture: A randomized, controlled, pilot feasibility study. Clin. Rehabil. 2021, 35, 568–577. [Google Scholar] [CrossRef]
- Hermansen, L.; Mæhlum, S.; Pruett, E.D.R.; Vaage, O.; Waldum, H.; Wessel-Aas, T. Lactate Removal at Rest and During Exercise. In Metabolic Adaptation to Prolonged Physical Exercise: Proceedings of the Second International Symposium on Biochemistry of Exercise Magglingen 1973; Howald, H., Poortmans, J.R., Eds.; Birkhäuser Basel: Basel, Switzerland, 1975; pp. 101–105. [Google Scholar]
- Donovan, C.M.; Brooks, G.A. Endurance training affects lactate clearance, not lactate production. Am. J. Physiol. 1983, 244, E83–E92. [Google Scholar] [CrossRef]
- Gurd, B.J.; Peters, S.J.; Heigenhauser, G.J.; LeBlanc, P.J.; Doherty, T.J.; Paterson, D.H.; Kowalchuk, J.M. O2 uptake kinetics, pyruvate dehydrogenase activity, and muscle deoxygenation in young and older adults during the transition to moderate-intensity exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R577–R584. [Google Scholar] [CrossRef]
- Wheeler, M.J.; Green, D.J.; Ellis, K.A.; Cerin, E.; Heinonen, I.; Naylor, L.H.; Larsen, R.; Wennberg, P.; Boraxbekk, C.J.; Lewis, J.; et al. Distinct effects of acute exercise and breaks in sitting on working memory and executive function in older adults: A three-arm, randomised cross-over trial to evaluate the effects of exercise with and without breaks in sitting on cognition. Br. J. Sports Med. 2020, 54, 776–781. [Google Scholar] [CrossRef]
- El-Sayed, M.S.; Sale, C.; Jones, P.G.; Chester, M. Blood hemostasis in exercise and training. Med. Sci. Sports Exerc. 2000, 32, 918–925. [Google Scholar] [CrossRef]
- El-Sayed, M.S.; Ali, N.; El-Sayed Ali, Z. Aggregation and activation of blood platelets in exercise and training. Sports Med. 2005, 35, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.S. Exercise prescription and thrombogenesis. J. Biomed Sci. 2006, 13, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Womack, C.J.; Nagelkirk, P.R.; Coughlin, A.M. Exercise-induced changes in coagulation and fibrinolysis in healthy populations and patients with cardiovascular disease. Sports Med. 2003, 33, 795–807. [Google Scholar] [CrossRef] [PubMed]
- Skouras, A.Z.; Antonakis-Karamintzas, D.; Tsantes, A.G.; Triantafyllou, A.; Papagiannis, G.; Tsolakis, C.; Koulouvaris, P. The acute and chronic effects of resistance and aerobic exercise in hemostatic balance: A brief review. Sports 2023, 11, 74. [Google Scholar] [CrossRef]
- Lockard, M.M.; Gopinathannair, R.; Paton, C.M.; Phares, D.A.; Hagberg, J.M. Exercise training-induced changes in coagulation factors in older adults. Med. Sci. Sports Exerc. 2007, 39, 587–592. [Google Scholar] [CrossRef]
- Lambe, K.; Guerra, S.; Salazar de Pablo, G.; Ayis, S.; Cameron, I.D.; Foster, N.E.; Godfrey, E.; Gregson, C.L.; Martin, F.C.; Sackley, C.; et al. Effect of inpatient rehabilitation treatment ingredients on functioning, quality of life, length of stay, discharge destination, and mortality among older adults with unplanned admission: An overview review. BMC Geriatr. 2022, 22, 501. [Google Scholar] [CrossRef]
- Hulzebos, E.H.; Smit, Y.; Helders, P.P.; van Meeteren, N.L. Preoperative physical therapy for elective cardiac surgery patients. Cochrane Database Syst. Rev. 2012, 11, Cd010118. [Google Scholar] [CrossRef]
- Granger, C.; Cavalheri, V. Preoperative exercise training for people with non-small cell lung cancer. Cochrane Database Syst. Rev. 2022, 9, Cd012020. [Google Scholar] [CrossRef]
- Boden, I.; Robertson, I.K.; Neil, A.; Reeve, J.; Palmer, A.J.; Skinner, E.H.; Browning, L.; Anderson, L.; Hill, C.; Story, D.; et al. Preoperative physiotherapy is cost-effective for preventing pulmonary complications after major abdominal surgery: A health economic analysis of a multicentre randomised trial. J. Physiother. 2020, 66, 180–187. [Google Scholar] [CrossRef]
- Moyer, R.; Ikert, K.; Long, K.; Marsh, J. The value of preoperative exercise and education for patients undergoing total hip and knee arthroplasty: A systematic review and meta-analysis. JBJS Rev. 2017, 5, e2. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Pre- and Post-Operative Exercise in Patients with Hip Fracture. NCT05389800. Available online: https://clinicaltrials.gov/ct2/show/NCT05389800 (accessed on 15 March 2023).
- Taylor, J.L.; Holland, D.J.; Spathis, J.G.; Beetham, K.S.; Wisløff, U.; Keating, S.E.; Coombes, J.S. Guidelines for the delivery and monitoring of high intensity interval training in clinical populations. Prog. Cardiovasc. Dis. 2019, 62, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Piepoli, M.F.; Conraads, V.; Corrà, U.; Dickstein, K.; Francis, D.P.; Jaarsma, T.; McMurray, J.; Pieske, B.; Piotrowicz, E.; Schmid, J.P.; et al. Exercise training in heart failure: From theory to practice. A consensus document of the Heart Failure Association and the European Association for Cardiovascular Prevention and Rehabilitation. Eur. J. Heart Fail. 2011, 13, 347–357. [Google Scholar] [CrossRef]
- Fletcher, G.F.; Ades, P.A.; Kligfield, P.; Arena, R.; Balady, G.J.; Bittner, V.A.; Coke, L.A.; Fleg, J.L.; Forman, D.E.; Gerber, T.C.; et al. Exercise standards for testing and training: A scientific statement from the American Heart Association. Circulation 2013, 128, 873–934. [Google Scholar] [CrossRef]
- Liguori, G.; American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 7th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2021. [Google Scholar]
- Kristensen, M.T.; Foss, N.B.; Ekdahl, C.; Kehlet, H. Prefracture functional level evaluated by the New Mobility Score predicts in-hospital outcome after hip fracture surgery. Acta Orthop. 2010, 81, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Hulsbæk, S.; Larsen, R.F.; Troelsen, A. Predictors of not regaining basic mobility after hip fracture surgery. Disabil. Rehabil. 2015, 37, 1739–1744. [Google Scholar] [CrossRef] [PubMed]
- Ferriero, G.; Kristensen, M.T.; Invernizzi, M.; Salgovic, L.; Bravini, E.; Sartorio, F.; Vercelli, S. Psychometric properties of the Cumulated Ambulation Score: A systematic review. Eur. J. Phys. Rehabil. Med. 2018, 54, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Ariza-Vega, P.; Mora-Traverso, M.; Ortiz-Piña, M.; Ashe, M.C.; Kristensen, M.T. Translation, inter-rater reliability, agreement, and internal consistency of the Spanish version of the cumulated ambulation score in patients after hip fracture. Disabil. Rehabil. 2020, 42, 2766–2771. [Google Scholar] [CrossRef]
- Foss, N.B.; Kristensen, M.T.; Kehlet, H. Prediction of postoperative morbidity, mortality and rehabilitation in hip fracture patients: The cumulated ambulation score. Clin. Rehabil. 2006, 20, 701–708. [Google Scholar] [CrossRef]
- Kristensen, M.T.; Foss, N.B.; Kehlet, H. Timed “up & go” test as a predictor of falls within 6 months after hip fracture surgery. Phys. Ther. 2007, 87, 24–30. [Google Scholar] [CrossRef]
- Sato, N.; Iwanami, Y.; Ebihara, K.; Nakao, K.; Miyagi, M.; Nakamura, Y.; Kishi, K.; Homma, S.; Ebihara, S. Determinants of six-minute walk distance in idiopathic pulmonary fibrosis and idiopathic pleuroparenchymal fibroelastosis. Biomedicines 2022, 10, 2556. [Google Scholar] [CrossRef]
- Maffei, F.; Masini, A.; Marini, S.; Buffa, A.; Malavolta, N.; Maietta Latessa, P.; Dallolio, L. The impact of an adapted physical activity program on bone turnover, physical performance and fear of falling in osteoporotic women with vertebral fractures: A quasi-experimental pilot study. Biomedicines 2022, 10, 2467. [Google Scholar] [CrossRef] [PubMed]
- Deka, P.; Pozehl, B.J.; Pathak, D.; Williams, M.; Norman, J.F.; Alonso, W.W.; Jaarsma, T. Predicting maximal oxygen uptake from the 6 min walk test in patients with heart failure. ESC Heart Fail. 2021, 8, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Overgaard, J.A.; Larsen, C.M.; Holtze, S.; Ockholm, K.; Kristensen, M.T. Interrater reliability of the 6-minute walk test in women with hip fracture. J. Geriatr. Phys. Ther. 2017, 40, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Stasi, S.; Papathanasiou, G.; Diochnou, A.; Polikreti, B.; Chalimourdas, A.; Macheras, G.A. Modified Harris Hip Score as patient-reported outcome measure in osteoarthritic patients: Psychometric properties of the Greek version. Hip. Int. 2021, 31, 516–525. [Google Scholar] [CrossRef]
- Stasi, S.; Papathanasiou, G.; Korres, N.; Marinakis, G.; Chronopoulos, E.; Baltopoulos, P.I.; Papaioannou, N.A. Validation of the Lower Extremity Functional Scale in community-dwelling elderly people (LEFS-Greek); determination of functional status cut-off points using TUG test. Eur. Geriatr. Med. 2013, 4, 237–241. [Google Scholar] [CrossRef]
- Stasi, S.; Papathanasiou, G.; Anagnostou, M.; Galanos, A.; Chronopoulos, E.; Baltopoulos, P.; Papaioannou, N. Lower Extremity Functional Scale (LEFS): Cross-cultural adaption into Greek and reliability properties of the instrument. Health Sci. J. 2012, 6, 750–773. [Google Scholar]
- Frihagen, F.; Grotle, M.; Madsen, J.E.; Wyller, T.B.; Mowinckel, P.; Nordsletten, L. Outcome after femoral neck fractures: A comparison of Harris Hip Score, Eq-5d and Barthel Index. Injury 2008, 39, 1147–1156. [Google Scholar] [CrossRef]
- SensLab GmbH. EKF Lactate Scout+ Product Specification Sheet; SensLab GmbH: Leipzig, Germany, 2012. [Google Scholar]
- Bonaventura, J.M.; Sharpe, K.; Knight, E.; Fuller, K.L.; Tanner, R.K.; Gore, C.J. Reliability and accuracy of six hand-held blood lactate analysers. J. Sports Sci. Med. 2015, 14, 203–214. [Google Scholar]
- Jérôme, V.; Esfandiar, C.; Morten Tange, K.; Amandine, L.; Harold, J.; Matteo, L.; Lindsey, H.; Jacques, H.; Thibaut, T. Psychometric properties of the Cumulated Ambulation Score French translation. Clin. Rehabil. 2021, 35, 904–910. [Google Scholar] [CrossRef]
- Mangione, K.K.; Craik, R.L.; Palombaro, K.M.; Tomlinson, S.S.; Hofmann, M.T. Home-based leg-strengthening exercise improves function 1 year after hip fracture: A randomized controlled study. J. Am. Geriatr. Soc. 2010, 58, 1911–1917. [Google Scholar] [CrossRef]
- Overgaard, J.; Kristensen, M.T. Feasibility of progressive strength training shortly after hip fracture surgery. World J. Orthop. 2013, 4, 248–258. [Google Scholar] [CrossRef]
- Brauer, C.A.; Coca-Perraillon, M.; Cutler, D.M.; Rosen, A.B. Incidence and mortality of hip fractures in the United States. JAMA 2009, 302, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- Beaupre, L.A.; Jones, C.A.; Saunders, L.D.; Johnston, D.W.; Buckingham, J.; Majumdar, S.R. Best practices for elderly hip fracture patients. A systematic overview of the evidence. J. Gen. Intern. Med. 2005, 20, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.C.; Brox, W.T. AAOS Clinical Practice Guideline: Management of hip fractures in the elderly. J. Am. Acad. Orthop. Surg. 2015, 23, 138–140. [Google Scholar] [CrossRef] [PubMed]
- VanTienderen, R.J.; Fernandez, I.; Reich, M.S.; Nguyen, M.P. Walking greater than 5 feet after hip fracture surgery is associated with fewer complications, including death. J. Am. Acad. Orthop. Surg. 2021, 29, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Stasi, S.; Papathanasiou, G.; Chronopoulos, E.; Dontas, I.A.; Baltopoulos, I.P.; Papaioannou, N.A. The effect of intensive abductor strengthening on postoperative muscle efficiency and functional ability of hip-fractured patients: A randomized controlled trial. Indian J. Orthop. 2019, 53, 407–419. [Google Scholar] [CrossRef]
- Stasi, S.; Papathanasiou, G.; Chronopoulos, E.; Galanos, A.; Papaioannou, N.A.; Triantafyllopoulos, I.K. Association between abductor muscle strength and functional outcomes in hip-fractured patients: A cross-sectional study. J. Musculoskelet. Neuronal. Interact. 2018, 18, 530–542. [Google Scholar]
- Fairhall, N.J.; Dyer, S.M.; Mak, J.C.; Diong, J.; Kwok, W.S.; Sherrington, C. Interventions for improving mobility after hip fracture surgery in adults. Cochrane Database Syst. Rev. 2022, 9, Cd001704. [Google Scholar] [CrossRef]
- Mendelsohn, M.E.; Overend, T.J.; Connelly, D.M.; Petrella, R.J. Improvement in aerobic fitness during rehabilitation after hip fracture. Arch. Phys. Med. Rehabil. 2008, 89, 609–617. [Google Scholar] [CrossRef]
- Maire, J.; Dugué, B.; Faillenet-Maire, A.F.; Smolander, J.; Tordi, N.; Parratte, B.; Grange, C.; Rouillon, J.D. Influence of a 6-week arm exercise program on walking ability and health status after hip arthroplasty: A 1-year follow-up pilot study. J. Rehabil. Res. Dev. 2006, 43, 445–450. [Google Scholar] [CrossRef]
- Christle, J.W.; Knapp, S.; Geisberger, M.; Cervenka, M.; Moneghetti, K.; Myers, J.; Halle, M.; Boscheri, A. Interval endurance and resistance training as part of a community-based secondary prevention program for patients with diabetes mellitus and coronary artery disease. J. Cardiopulm. Rehabil. Prev. 2020, 40, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Coswig, V.S.; Barbalho, M.; Raiol, R.; Del Vecchio, F.B.; Ramirez-Campillo, R.; Gentil, P. Effects of high vs. moderate-intensity intermittent training on functionality, resting heart rate and blood pressure of elderly women. J. Transl. Med. 2020, 18, 88. [Google Scholar] [CrossRef] [PubMed]
- Boden, I.; Reeve, J.; Robertson, I.K.; Browning, L.; Skinner, E.H.; Anderson, L.; Hill, C.; Story, D.; Denehy, L. Effects of preoperative physiotherapy on signs and symptoms of pulmonary collapse and infection after major abdominal surgery: Secondary analysis of the LIPPSMAck-POP multicentre randomised controlled trial. Perioper. Med. 2021, 10, 36. [Google Scholar] [CrossRef]
- Wynter-Blyth, V.; Moorthy, K. Prehabilitation: Preparing patients for surgery. BMJ 2017, 358, j3702. [Google Scholar] [CrossRef]
- Snow, R.; Granata, J.; Ruhil, A.V.S.; Vogel, K.; McShane, M.; Wasielewski, R. Associations between preoperative physical therapy and post-acute care utilization patterns and cost in total joint replacement. JBJS 2014, 96, e165. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.C.; Mack, G.W.; Wolfe, R.R.; Nadel, E.R. Albumin synthesis after intense intermittent exercise in human subjects. J. Appl. Physiol. (1985) 1998, 84, 584–592. [Google Scholar] [CrossRef]
- Nagashima, K.; Cline, G.W.; Mack, G.W.; Shulman, G.I.; Nadel, E.R. Intense exercise stimulates albumin synthesis in the upright posture. J. Appl. Physiol. (1985) 2000, 88, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, K.J.; Sobolev, B.; Villán Villán, Y.F.; Guy, P. Patient and system factors of time to surgery after hip fracture: A scoping review. BMJ Open 2017, 7, e016939. [Google Scholar] [CrossRef]
- Vasiliadis, A.V.; Charitoudis, G.; Giotis, D. Epidemiological Profile and Incidence of Hip Fractures in Greece. Elder. Health J. 2019, 5, 5–11. [Google Scholar] [CrossRef]
- Chatziravdeli, V.; Vasiliadis, A.V.; Vazakidis, P.; Tsatlidou, M.; Katsaras, G.N.; Beletsiotis, A. The financial burden of delayed hip fracture surgery: A single-center experience. Cureus 2021, 13, e13952. [Google Scholar] [CrossRef]
- Klestil, T.; Röder, C.; Stotter, C.; Winkler, B.; Nehrer, S.; Lutz, M.; Klerings, I.; Wagner, G.; Gartlehner, G.; Nussbaumer-Streit, B. Impact of timing of surgery in elderly hip fracture patients: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 13933. [Google Scholar] [CrossRef] [PubMed]
- Peiris, C.L.; Taylor, N.F.; Shields, N. Patients receiving inpatient rehabilitation for lower limb orthopaedic conditions do much less physical activity than recommended in guidelines for healthy older adults: An observational study. J. Physiother. 2013, 59, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Fleg, J.L. Aerobic exercise in the elderly: A key to successful aging. Discov. Med. 2012, 13, 223–228. [Google Scholar] [PubMed]
- Urquiza, M.; Echeverria, I.; Besga, A.; Amasene, M.; Labayen, I.; Rodriguez-Larrad, A.; Barroso, J.; Aldamiz, M.; Irazusta, J. Determinants of participation in a post-hospitalization physical exercise program for older adults. BMC Geriatr. 2020, 20, 408. [Google Scholar] [CrossRef]
- Sawaguchi, A.; Momosaki, R.; Hasebe, K.; Chono, M.; Kasuga, S.; Abo, M. Effectiveness of preoperative physical therapy for older patients with hip fracture. Geriatr. Gerontol. Int. 2018, 18, 1003–1008. [Google Scholar] [CrossRef]
Outcome Measures | 1st Day of Admission | One Day before Surgery | During Surgery | Post-Op—to Discharge | 4th Week Post-Op | 8th Week Post-Op | 26th Week Post-Op | 52nd Week Post-Op |
---|---|---|---|---|---|---|---|---|
CAS | 1st, 2nd, 3rd post-op | ✓ | ||||||
6MWT | ✓ | ✓ | ✓ | ✓ | ||||
TUG | ✓ | ✓ | ✓ | ✓ | ||||
mHHS | ✓ | ✓ | ✓ | ✓ | ✓ | |||
LEFS | ✓ | ✓ | ✓ | ✓ | ✓ | |||
NMS | ✓ | |||||||
La | ✓ | ✓ | 12 h post-op | |||||
Nutrional status | ✓ | 3rd post-op | 1st and 4th wk | ✓ | ✓ | ✓ | ||
Hemostatic factors | ✓ | 3rd post-op | 1st and 4th wk | ✓ | ✓ | ✓ | ||
Bleeding and transfusion needs | ✓ | ✓ | ||||||
Readmission | ✓ | ✓ | ✓ | ✓ | ||||
All-cause mortality and complications | ✓ | ✓ | ✓ | ✓ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skouras, A.Z.; Antonakis-Karamintzas, D.; Tsolakis, C.; Tsantes, A.E.; Kourlaba, G.; Zafeiris, I.; Soucacos, F.; Papagiannis, G.; Triantafyllou, A.; Houhoula, D.; et al. Pre- and Postoperative Exercise Effectiveness in Mobility, Hemostatic Balance, and Prognostic Biomarkers in Hip Fracture Patients: A Study Protocol for a Randomized Controlled Trial. Biomedicines 2023, 11, 1263. https://doi.org/10.3390/biomedicines11051263
Skouras AZ, Antonakis-Karamintzas D, Tsolakis C, Tsantes AE, Kourlaba G, Zafeiris I, Soucacos F, Papagiannis G, Triantafyllou A, Houhoula D, et al. Pre- and Postoperative Exercise Effectiveness in Mobility, Hemostatic Balance, and Prognostic Biomarkers in Hip Fracture Patients: A Study Protocol for a Randomized Controlled Trial. Biomedicines. 2023; 11(5):1263. https://doi.org/10.3390/biomedicines11051263
Chicago/Turabian StyleSkouras, Apostolos Z., Dimitrios Antonakis-Karamintzas, Charilaos Tsolakis, Argirios E. Tsantes, Georgia Kourlaba, Ioannis Zafeiris, Fotini Soucacos, Georgios Papagiannis, Athanasios Triantafyllou, Dimitra Houhoula, and et al. 2023. "Pre- and Postoperative Exercise Effectiveness in Mobility, Hemostatic Balance, and Prognostic Biomarkers in Hip Fracture Patients: A Study Protocol for a Randomized Controlled Trial" Biomedicines 11, no. 5: 1263. https://doi.org/10.3390/biomedicines11051263
APA StyleSkouras, A. Z., Antonakis-Karamintzas, D., Tsolakis, C., Tsantes, A. E., Kourlaba, G., Zafeiris, I., Soucacos, F., Papagiannis, G., Triantafyllou, A., Houhoula, D., Savvidou, O., & Koulouvaris, P. (2023). Pre- and Postoperative Exercise Effectiveness in Mobility, Hemostatic Balance, and Prognostic Biomarkers in Hip Fracture Patients: A Study Protocol for a Randomized Controlled Trial. Biomedicines, 11(5), 1263. https://doi.org/10.3390/biomedicines11051263