Should the Treatment of Patients with Repeated Embryo Implantation Failure Be Adapted as a Function of the Endometrial Cytokine Profile? A Single-Center Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Endometrial Biopsy
2.3. RNA Quantification
2.4. Immunohistochemistry of uNK Cells
2.5. Interpretation of the Cytokine Profile
2.6. Treatment Regimens in Each Group
2.6.1. Treatment in the Hyper-Activation Group
2.6.2. Treatment in the Hypo-Activated Group
2.6.3. Treatment in the Normal-Profile Group
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mascarenhas, M.N.; Flaxman, S.R.; Boerma, T.; Vanderpoel, S.; Stevens, G.A. National, regional, and global trends in infertility prevalence since 1990: A systematic analysis of 277 health surveys. PLoS Med. 2012, 9, e1001356. [Google Scholar] [CrossRef] [Green Version]
- Coughlan, C.; Ledger, W.; Wang, Q.; Liu, F.; Demirol, A.; Gurgan, T.; Cutting, R.; Ong, K.; Sallam, H.; Li, T.C. Recurrent implantation failure: Definition and management. Reprod. Biomed. Online 2014, 28, 14–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montag, M.; Toth, B.; Strowitzki, T. New approaches to embryo selection. Reprod. Biomed. Online 2013, 27, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Pirtea, P.; Cicinelli, E.; De Nola, R.; de Ziegler, D.; Ayoubi, J.M. Endometrial causes of recurrent pregnancy losses: Endometriosis, adenomyosis, and chronic endometritis. Fertil. Steril. 2021, 115, 546–560. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.T.; Ferry, K.; Su, J.; Tao, X.; Scott, K.; Treff, N.R. Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos: A prospective, blinded, nonselection study. Fertil. Steril. 2012, 97, 870–875. [Google Scholar] [CrossRef]
- Tulandi, T.; Marzal, A. Redefining reproductive surgery. J. Minim. Invasive Gynecol. 2012, 19, 296–306. [Google Scholar] [CrossRef]
- Giakoumelou, S.; Wheelhouse, N.; Cuschieri, K.; Entrican, G.; Howie, S.E.M.; Horne, A.W. The role of infection in miscarriage. Hum. Reprod. Update 2016, 22, 116–133. [Google Scholar] [CrossRef] [Green Version]
- Hanna, J.; Goldman-Wohl, D.; Hamani, Y.; Avraham, I.; Greenfield, C.; Natanson-Yaron, S.; Prus, D.; Cohen-Daniel, L.; Arnon, T.I.; Manaster, I.; et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med. 2006, 12, 1065–1074. [Google Scholar] [CrossRef]
- Di Simone, N.; D’Ippolito, S.; Marana, R.; Di Nicuolo, F.; Castellani, R.; Pierangeli, S.S.; Chen, P.; Tersigni, C.; Scambia, G.; Meroni, P.L. Antiphospholipid antibodies affect human endometrial angiogenesis: Protective effect of a synthetic peptide (TIFI) mimicking the phospholipid binding site of β(2) glycoprotein I. Am. J. Reprod. Immunol. 2013, 70, 299–308. [Google Scholar] [CrossRef]
- Kwak-Kim, J.; Bao, S.; Lee, S.K.; Kim, J.W.; Gilman-Sachs, A. Immunological modes of pregnancy loss: Inflammation, immune effectors, and stress. Am. J. Reprod. Immunol. 2014, 72, 129–140. [Google Scholar] [CrossRef]
- Revel, A. Defective endometrial receptivity. Fertil. Steril. 2012, 97, 1028–1032. [Google Scholar] [CrossRef]
- Marron, K.; Walsh, D.; Harrity, C. Detailed endometrial immune assessment of both normal and adverse reproductive outcome populations. J. Assist. Reprod. Genet. 2019, 36, 199–210. [Google Scholar] [CrossRef]
- Savasi, V.M.; Mandia, L.; Laoreti, A.; Cetin, I. Maternal and fetal outcomes in oocyte donation pregnancies. Hum. Reprod. Update 2016, 22, 620–633. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Hiby, S.E.; Loke, Y.W.; King, A. Human decidual natural killer cells express the receptor for and respond to the cytokine interleukin 15. Biol. Reprod. 2000, 62, 959–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrier d’Hauterive, S. L’implantation: Premier dialogue entre la mère et l’embryon. J. Gynécologie Obs. Biol. Reprod. 2004, 33, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.; Kajiura, S.; Matsumoto, Y.; Ogasawara, M.; Okada, S.; Yagami, Y.; Gleicher, N. Preconceptional natural-killer-cell activity as a predictor of miscarriage. Lancet 1995, 345, 1340–1342. [Google Scholar] [CrossRef]
- Lédée-Bataille, N.; Bonnet-Chea, K.; Hosny, G.; Dubanchet, S.; Frydman, R.; Chaouat, G. Role of the endometrial tripod interleukin-18, -15, and -12 in inadequate uterine receptivity in patients with a history of repeated in vitro fertilization-embryo transfer failure. Fertil. Steril. 2005, 83, 598–605. [Google Scholar] [CrossRef]
- Petitbarat, M.; Serazin, V.; Dubanchet, S.; Wayner, R.; de Mazancourt, P.; Chaouat, G.; Lédée, N. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor inducible-14 might regulate the effects of interleukin 18 and 15 in the human endometrium. Fertil. Steril. 2010, 94, 1141–1143. [Google Scholar] [CrossRef]
- Kitaya, K.; Yamaguchi, T.; Honjo, H. Central role of interleukin-15 in postovulatory recruitment of peripheral blood CD16(-) natural killer cells into human endometrium. J. Clin. Endocrinol. Metab. 2005, 90, 2932–2940. [Google Scholar] [CrossRef] [Green Version]
- Croy, B.A.; Esadeg, S.; Chantakru, S.; van den Heuvel, M.; Paffaro, V.A.; He, H.; Black, G.P.; Ashkar, A.A.; Kiso, Y.; Zhang, J. Update on pathways regulating the activation of uterine Natural Killer cells, their interactions with decidual spiral arteries and homing of their precursors to the uterus. J. Reprod. Immunol. 2003, 59, 175–191. [Google Scholar] [CrossRef]
- Huang, H.-Y.; Chan, S.-H.; Yu, H.-T.; Wang, H.-S.; Lai, C.-H.; Soong, Y.-K. Interleukin-18 system messenger RNA and protein expression in human endometrium during the menstrual cycle. Fertil. Steril. 2006, 86, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Lédée, N.; Petitbarat, M.; Chevrier, L.; Vitoux, D.; Vezmar, K.; Rahmati, M.; Dubanchet, S.; Gahéry, H.; Bensussan, A.; Chaouat, G. The Uterine Immune Profile May Help Women With Repeated Unexplained Embryo Implantation Failure After In Vitro Fertilization. Am. J. Reprod. Immunol. 2016, 75, 388–401. [Google Scholar] [CrossRef] [Green Version]
- Lédée, N.; Prat-Ellenberg, L.; Petitbarat, M.; Chevrier, L.; Simon, C.; Irani, E.E.; Vitoux, D.; Bensussan, A.; Chaouat, G. Impact of prednisone in patients with repeated embryo implantation failures: Beneficial or deleterious? J. Reprod. Immunol. 2018, 127, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Ledée, N.; Petitbarat, M. Method for Increasing Implantation Success in Assisted Fertilization. U.S. Patent 10450561B2, 22 October 2019. [Google Scholar]
- Krigstein, M.; Sacks, G. Prednisolone for repeated implantation failure associated with high natural killer cell levels. J. Obstet. Gynaecol. 2012, 32, 518–519. [Google Scholar] [CrossRef]
- Harrity, C.; Shkrobot, L.; Walsh, D.; Marron, K. ART implantation failure and miscarriage in patients with elevated intracellular cytokine ratios: Response to immune support therapy. Fertil. Res. Pract. 2018, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Lissauer, D.; Eldershaw, S.A.; Inman, C.F.; Coomarasamy, A.; Moss, P.A.H.; Kilby, M.D. Progesterone promotes maternal-fetal tolerance by reducing human maternal T-cell polyfunctionality and inducing a specific cytokine profile. Eur. J. Immunol. 2015, 45, 2858–2872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, M.; Bromfield, J.J.; Jasper, M.J.; Robertson, S.A. Semen activates the female immune response during early pregnancy in mice. Immunology 2004, 112, 290–300. [Google Scholar] [CrossRef]
- Gnainsky, Y.; Granot, I.; Aldo, P.B.; Barash, A.; Or, Y.; Schechtman, E.; Mor, G.; Dekel, N. Local injury of the endometrium induces an inflammatory response that promotes successful implantation. Fertil. Steril. 2010, 94, 2030–2036. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, A.; Zenclussen, A.C. Human Chorionic Gonadotropin-Mediated Immune Responses That Facilitate Embryo Implantation and Placentation. Front. Immunol. 2019, 10, 2896. [Google Scholar] [CrossRef]
- Bellver, J.; Simón, C. Implantation Failure of Endometrial Origin: What is New? Curr. Opin. Obstet. Gynecol. 2018, 30, 229–236. [Google Scholar] [CrossRef]
- Kolanska, K.; Suner, L.; Cohen, J.; Ben Kraiem, Y.; Placais, L.; Fain, O.; Bornes, M.; Selleret, L.; Delhommeau, F.; Feger, F.; et al. Proportion of Cytotoxic Peripheral Blood Natural Killer Cells and T-Cell Large Granular Lymphocytes in Recurrent Miscarriage and Repeated Implantation Failure: Case-Control Study and Meta-analysis. Arch. Immunol. Ther. Exp. 2019, 67, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Dieamant, F.; Vagnini, L.D.; Petersen, C.G.; Mauri, A.L.; Renzi, A.; Petersen, B.; Mattila, M.C.; Nicoletti, A.; Oliveira, J.B.A.; Baruffi, R.; et al. New therapeutic protocol for improvement of endometrial receptivity (PRIMER) for patients with recurrent implantation failure (RIF)—A pilot study. JBRA Assist. Reprod. 2019, 23, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Hao, G. Local injury to the endometrium: Its effect on implantation. Curr. Opin. Obstet. Gynecol. 2009, 21, 236–239. [Google Scholar] [CrossRef] [PubMed]
- Almog, B.; Shalom-Paz, E.; Dufort, D.; Tulandi, T. Promoting implantation by local injury to the endometrium. Fertil. Steril. 2010, 94, 2026–2029. [Google Scholar] [CrossRef] [PubMed]
- Agence de la Biomédecine—Rapport Médical et Scientifique n.d. Available online: https://www.agence-biomedecine.fr/annexes/bilan2016/donnees/procreation/01-amp/synthese.htm#figAMP8 (accessed on 5 August 2020).
- Gnainsky, Y.; Granot, I.; Aldo, P.; Barash, A.; Or, Y.; Mor, G.; Dekel, N. Biopsy-induced inflammatory conditions improve endometrial receptivity: The mechanism of action. Reproduction 2015, 149, 75–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potdar, N.; Gelbaya, T.; Nardo, L.G. Endometrial injury to overcome recurrent embryo implantation failure: A systematic review and meta-analysis. Reprod. Biomed. Online 2012, 25, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Chomarat, P.; Dantin, C.; Bennett, L.; Banchereau, J.; Palucka, A.K. TNF skews monocyte differentiation from macrophages to dendritic cells. J. Immunol. 2003, 171, 2262–2269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luster, A.D.; Alon, R.; von Andrian, U.H. Immune cell migration in inflammation: Present and future therapeutic targets. Nat. Immunol. 2005, 6, 1182–1190. [Google Scholar] [CrossRef]
- Somigliana, E.; Vigano, P.; Busnelli, A.; Paffoni, A.; Vegetti, W.; Vercellini, P. Repeated implantation failure at the crossroad between statistics, clinics and over-diagnosis. Reprod. Biomed. Online 2018, 36, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Sar-Shalom Nahshon, C.; Sagi-Dain, L.; Wiener-Megnazi, Z.; Dirnfeld, M. The impact of intentional endometrial injury on reproductive outcomes: A systematic review and meta-analysis. Hum. Reprod. Update 2019, 25, 95–113. [Google Scholar] [CrossRef]
Endometrial Profile | Normal Group 21/77 (27.3%) n (%) or µ ± SD | Hyper-Activation Group 53/77 (68.8%) n (%) or µ ± SD | Hypo-Activation Group 3/77 (3.9%) n (%) or µ ± SD | p Value |
---|---|---|---|---|
Age (years) (n = 77) | 34 (25–42) | 34 (24–41) | 32 (30–33) | 0.27 |
Body mass index (kg/m2) (n = 76) | 23 (18–31) | 24 (17–34) | 22 (19–25) | 0.58 |
Tobacco use (n = 74) | 4 (19.1%) | 6 (12.0%) | 0 (0.0%) | 0.66 |
Serum AMH level (ng/dL) (n = 69) | 4.18 (0.7–10.6) | 2.94 (0.1–14.7) | 3.37 (2.0–4.1) | 0.04 |
Endometriosis (n = 77) | 7 (33.3%) | 14 (26.4%) | 1 (33.3%) | 0.81 |
Primary infertility (n = 77) | 14 (66.7%) | 33 (62.3%) | 3 (100.0%) | 0.62 |
Gravida (n = 77) | 0.86 | |||
G0 | 7 (33.3) | 23 (43.4) | 2 (66.7) | |
G1 | 8 (38.1) | 17 (32.1) | 1 (33.3) | |
G2+ | 6 (28.6) | 13 (24.5) | 0(0.0) | |
Parity (n = 77) | 0.45 | |||
P0 | 15 (71.4) | 41 (77.4) | 3 (100.0) | |
P1 | 6 (28.6) | 8 (15.1) | 0 (0.0) | |
P2+ | 0 (0.0) | 4 (7.6) | 0 (0.0) | |
At least one miscarriage before the ART program (n = 77) | 11 (52.4%) | 21 (39.6%) | 1 (33.3%) | 0.63 |
At least one miscarriage during the ART program (n = 77) | 8 (38.1%) | 13 (24.5%) | 1 (33.3%) | 0.46 |
Mean Attempted rank (n = 77) | 2.4 ± 0.8 | 2.5 ± 0.8 | 2.3 ± 0.6 | 0.88 |
Mean Embryos transferred before the biopsy (n = 77) | 7.8 ± 2.3 | 7.5 ± 2.1 | 6.3 ± 0.6 | 0.48 |
Normal Group n = 15 n (%) or µ ± SD | Hyper Group n = 30 n (%) or µ ± SD | Hypo Group n = 2 n (%) or µ ± SD | p Value | |
---|---|---|---|---|
Cycles with a transfer after the biopsy for treated patient (n) | 33 | 52 | 5 | |
Embryos transferred after the biopsy for treated patient (n) | 52 | 84 | 5 | |
Mean number of embryos transferred per treated patient, after the biopsy * | 3.5 ± 2.3 | 2.8 ± 1.6 | 2.5 ± 2.1 | 0.61 |
Mean time interval between the biopsy and the transfer (months) ** | 5.1 ± 3.4 | 6.1 ± 3.4 | 4.5 ± 0.7 | 0.48 |
Pregnancies per cycle patients with a transfer ** | 10/33 (30.3%) | 19/52 (36.5%) | 1/5 (20.0%) | 0.70 |
Ongoing pregnancies per cycle with a transfer ** | 7/33 (21.2%) | 15/52 (28.8%) | 1/5 (20.0%) | 0.84 |
Miscarriages per cycle with a transfer ** | 3/33 (9.1%) | 3/52 (5.8%) | 0/5 (0.0%) | 0.77 |
Ongoing pregnancies per treated patient * | 7/15 (46.7%) | 13/30 (43.3%) | 1/2 (50.0%) | 1.00 |
Mean ± SD time interval between the biopsy and the pregnancy (months) *** | 6.3 ± 3.2 | 6.8 ± 3.5 | 3.8 ± NA | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coutanceau, B.; Dos Santos, E.; Swierkowski Blanchard, N.; Sanchez Louboutin, A.; Boitrelle, F.; Margueritte, F.; Vialard, F.; Serazin, V.; Fathallah, K. Should the Treatment of Patients with Repeated Embryo Implantation Failure Be Adapted as a Function of the Endometrial Cytokine Profile? A Single-Center Experience. Biomedicines 2023, 11, 817. https://doi.org/10.3390/biomedicines11030817
Coutanceau B, Dos Santos E, Swierkowski Blanchard N, Sanchez Louboutin A, Boitrelle F, Margueritte F, Vialard F, Serazin V, Fathallah K. Should the Treatment of Patients with Repeated Embryo Implantation Failure Be Adapted as a Function of the Endometrial Cytokine Profile? A Single-Center Experience. Biomedicines. 2023; 11(3):817. https://doi.org/10.3390/biomedicines11030817
Chicago/Turabian StyleCoutanceau, Bérangère, Esther Dos Santos, Nelly Swierkowski Blanchard, Anne Sanchez Louboutin, Florence Boitrelle, François Margueritte, François Vialard, Valérie Serazin, and Khadija Fathallah. 2023. "Should the Treatment of Patients with Repeated Embryo Implantation Failure Be Adapted as a Function of the Endometrial Cytokine Profile? A Single-Center Experience" Biomedicines 11, no. 3: 817. https://doi.org/10.3390/biomedicines11030817
APA StyleCoutanceau, B., Dos Santos, E., Swierkowski Blanchard, N., Sanchez Louboutin, A., Boitrelle, F., Margueritte, F., Vialard, F., Serazin, V., & Fathallah, K. (2023). Should the Treatment of Patients with Repeated Embryo Implantation Failure Be Adapted as a Function of the Endometrial Cytokine Profile? A Single-Center Experience. Biomedicines, 11(3), 817. https://doi.org/10.3390/biomedicines11030817