Biomarkers for Outcome in Metastatic Melanoma in First Line Treatment with Immune Checkpoint Inhibitors
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patients and Treatment
3.2. Response Rates and Survival Outcomes
3.3. Immune-Related Adverse Events and Immune-Inflammation Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hribernik, N.; Boc, M.; Ocvirk, J.; Knez-Arbeiter, J.; Mesti, T.; Ignjatovic, M.; Rebersek, M. Retrospective analysis of treatment-naive Slovenian patients with metastatic melanoma treated with pembrolizumab—Real-world experience. Radiol Oncol. 2020, 54, 119–127. [Google Scholar] [CrossRef]
- Hocevar, M.; Strojan, P.; Ocvirk, J.; Peric, B.; Blatnik, O.; Luzar, B. Recommendation for the Treatment of Patients with Melanoma; [Slovenian]; Rebersek, M., Ed.; Institute of Oncology Ljubljana: Ljubljana, Slovenia, 2019; Available online: https://www.onko-i.si/fileadmin/onko/datoteke/Strokovna_knjiznica/smernice/Priporocila_za_obravnavo_bolni-kov_z_melanomom_2020.pdf (accessed on 15 August 2022).
- Michielin, O.; van Akkooi, A.C.J.; Ascierto, P.A.; Dummer, R.; Keilholz, U.; on behalf of the ESMO Guidelines Committee. Cutane-ous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1884–1901. [Google Scholar] [CrossRef] [Green Version]
- NCCN Clinical Practice Guidelines in Oncology, Cutaneous melanoma. Version 4.2020. [Cited 2020 Oct 14]. Available online: https://www.nccn.org/professionals/physician_gls/pdf/cutaneous_melanoma.pdf (accessed on 15 August 2022).
- Schadendorf, D.; Hodi, F.S.; Robert, C.; Weber, J.S.; Margolin, K.; Hamid, O.; Patt, D.; Chen, T.T.; Berman, D.M.; Wolchok, J.D. Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J. Clin. Oncol. 2015, 33, 1889–1894. [Google Scholar] [CrossRef] [Green Version]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [Green Version]
- Hamid, O.; Robert, C.; Daud, A.; Hodi, F.S.; Hwu, W.J.; Kefford, R. Five-year survival outcomes for patients with advanced mela-noma treated with pembrolizumab in KEYNOTE-001. Ann. Oncol. 2019, 30, 582–588. [Google Scholar] [CrossRef]
- Robert, C.; Hwu, W.-J.; Hamid, O.; Ribas, A.; Weber, J.S.; Daud, A.I. Long-term safety of pembrolizumab monotherapy and rela-tionship with clinical outcome: A landmark analysis in patients with advanced melanoma. Eur. J. Cancer 2021, 144, 182–191. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Q.; Dong, Q.; Zhan, L.; Zhang, J. How to differentiate pseudoprogression from true progression in cancer patients treated with immunotherapy. Am. J. Cancer Res. 2019, 9, 1546–1553. [Google Scholar]
- Park, H.J.; Kim, K.W.; Won, S.E.; Yoon, S.; Chae, Y.K.; Tirumani, S.H.; Ramaiya, N.H. Definition, Incidence, and Challenges for Assessment of Hyperprogressive Disease During Cancer Treatment With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA Netw. Open 2021, 4, e211136. [Google Scholar] [CrossRef]
- Susok, L.; Said, S.; Reinert, D.; Mansour, R.; Scheel, C.H.; Becker, J.C.; Gambichler, T. The pan-immune-inflammation value and sys-temic immune-inflammation index in advanced melanoma patients under immunotherapy. J. Cancer Res. Clin. Oncol. 2022, 148, 3103–3108. [Google Scholar] [CrossRef]
- Fucà, G.; Guarini, V.; Antoniotti, C.; Morano, F.; Moretto, R.; Corallo, S.; Marmorino, F.; Lonardi, S.; Rimassa, L.; Sartore-Bianchi, A.; et al. The Pan-Immune-Inflammation Value is a new prognostic biomarker in metastatic colorectal cancer: Results from a pooled-analysis of the Valentino and TRIBE first-line trials. Br. J. Cancer 2020, 123, 403–409. [Google Scholar] [CrossRef]
- Mesti, T.; Ceplak Mencin, V.; Mileva Boshkoska, B.; Ocvirk, J. Adverse events during immunotherapy in Slovenian patients with metastatic melanoma reveal a positive correlation with better treatment outcomes. Radiol. Oncol. 2021, 55, 354–361. [Google Scholar] [CrossRef]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef] [Green Version]
- Common Terminology Criteria for Adverse Events. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf (accessed on 12 December 2020).
- Passardi, A.; Scarpi, E.; Cavanna, L.; Dall’Agata, M.; Tassinari, D.; Leo, S.; Bernardini, I.; Gelsomino, F.; Tamberi, S.; Brandes, A.A.; et al. Inflammatory indexes as predictors of prognosis and bevacizumab efficacy in patients with metastatic colorectal cancer. Oncotarget 2016, 7, 33210–33219. [Google Scholar] [CrossRef] [Green Version]
- Lausen, B.; Schumacher, M. Maximally selected rank statistics. Biometrics 1992, 48, 73–85. [Google Scholar] [CrossRef]
- Yang, R.; Chang, Q.; Meng, X.; Gao, N.; Wang, W. Prognostic value of systemic immune-inflammation index in cancer: A meta-analysis. J. Cancer 2018, 9, 3295–3302. [Google Scholar] [CrossRef]
- Robert, C.; Ribas, A.; Schachter, J.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.M.; Lotem, M.; et al. Pembrolizumab versus ipili-mumab in advanced melanoma (KEYNOTE-006): Post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 2019, 20, 1239–1251. [Google Scholar] [CrossRef]
- Eggermont, A.M.M.; Kicinski, M.; Blank, C.U.; Mandala, M.; Long, G.V.; Atkinson, V.; Dalle, S.; Haydon, A.; Khattak, A.; Carlino, M.S.; et al. Association Between Immune-Related Adverse Events and Recurrence-Free Survival Among Patients With Stage III Melanoma Randomized to Receive Pembrolizumab or Placebo: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2020, 6, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Xie, W.; Huang, H.; Wang, Y.; Li, G.; Geng, Y.; Hao, Y.; Zhang, Z. Association of Immune Related Adverse Events With Efficacy of Immune Checkpoint Inhibitors and Overall Survival in Cancers: A Systemic Review and Meta-analysis. Front. Oncol. 2021, 11, 633032. [Google Scholar] [CrossRef]
- Liu, J.; Lin, P.C.; Zhou, B.P. Inflammation fuels tumor progress and metastasis. Curr. Pharm. Des. 2015, 21, 3032–3040. [Google Scholar] [CrossRef] [Green Version]
- Mirili, C.; Yılmaz, A.; Demirkan, S.; Bilici, M.; Basol, T.S. Clinical significance of prognostic nutritional index (PNI) in malignant melanoma. Int. J. Clin. Oncol. 2019, 24, 1301–1310. [Google Scholar] [CrossRef]
- Templeton, A.J.; Ace, O.; McNamara, M.G.; Al-Mubarak, M.; Vera-Badillo, F.E.; Hermanns, T.; Šeruga, B.; Ocaña, A.; Tannock, I.F.; Amir, E. Prognostic role of platelet to lymphocyte ratio in solid tumors: A systematic review and meta-analysis. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1204–1212. [Google Scholar] [CrossRef] [Green Version]
- Nishijima, T.F.; Muss, H.B.; Shachar, S.S.; Tamura, K.; Takamatsu, Y. Prognostic value of lymphocyte-to-monocyte ratio in patients with solid tumors: A systematic review and meta-analysis. Cancer Treat. Rev. 2015, 41, 971–978. [Google Scholar] [CrossRef]
- Zhong, J.H.; Huang, D.H.; Chen, Z.Y. Prognostic role of systemic immune-inflammation index in solid tumors: A system-atic review and meta-analysis. Oncotarget 2017, 8, 75381–75388. [Google Scholar] [CrossRef] [Green Version]
- Kanatsios, S.; Melanoma Project, M.; Li Wai Suen, C.S.N.; Cebon, J.S.; Gyorki, D.E. Neutrophil to lymphocyte ratio is an independent predictor of outcome for patients undergoing definitive resection for stage IV melanoma. J. Surg. Oncol. 2018, 118, 915–921. [Google Scholar] [CrossRef]
- Wade, R.G.; Robinson, A.V.; Lo, M.C.; Keeble, C.; Marples, M.; Dewar, D.J.; Moncrieff, M.D.S.; Peach, H. Baseline neutrophil-lymphocyte and platelet-lymphocyte ratios as biomarkers of survival in cutaneous melanoma: A multicenter cohort study. Ann. Surg. Oncol. 2018, 25, 3341–3349. [Google Scholar] [CrossRef] [Green Version]
- Robinson, A.V.; Keeble, C.; Lo, M.C.; Thornton, O.; Peach, H.; Moncrieff, M.D.; Dewar, D.J. The neutrophil-lymphocyte ratio and locoregional melanoma: A multicentre cohort study. Cancer Immunol. Immunother. 2020, 69, 559–568. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Dai, J.; Li, C.; Cui, C.; Mao, L.; Wei, X.; Sheng, X.; Chi, Z.; Yan, X.; Tang, B.; et al. Risk models for advanced melanoma patients under anti-PD-1 monotherapy-ad hoc analyses of pooled data from two clinical trials. Front. Oncol. 2021, 11, 639085. [Google Scholar] [CrossRef]
- Hernando-Calvo, A.; Garcia-Alvarez, A.; Villacampa, G.; Ortiz, C.; Bodet, D.; Garcia-Patos, V.; Recio, J.A.; Dienstmann, R.; Muñoz-Couselo, E. Dynamics of clinical biomarkers as predictors of immuno-therapy benefit in metastatic melanoma patients. Clin. Transl. Oncol. 2021, 23, 311–317. [Google Scholar] [CrossRef]
- Ludwig, J.M.; Haubold, J.; Bauer, S.; Richly, H.; Siveke, J.T.; Wimmer, J.; Umutlu, L.; Schaarschmidt, B.M.; Theysohn, J.M. Predictive impact of the inflammation-based indices in uveal melanoma liver metastases treated with transarterial hepatic chemoperfusion. Radiol. Oncol. 2021, 55, 347–353. [Google Scholar] [CrossRef]
- Marconcini, R.; Spagnolo, F.; Stucci, L.S.; Ribero, S.; Marra, E.; De Rosa, F.; Picasso, V.; Di Guardo, L.; Cimminiello, C.; Cavalieri, S.; et al. Current status and perspectives in immunotherapy for metastatic melanoma. Oncotarget 2018, 9, 12452–12470. [Google Scholar] [CrossRef] [Green Version]
- Fucà, G.; Beninato, T.; Bini, M.; Mazzeo, L.; Di Guardo, L.; Cimminiello, C.; Randon, G.; Apollonio, G.; Bisogno, I.; Del Vecchio, M.; et al. The Pan-Immune-Inflammation Value in Patients with Meta-static Melanoma Receiving First-Line Therapy. Target. Oncol. 2021, 16, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Ligorio, F.; Fucà, G.; Zattarin, E.; Lobefaro, R.; Zambelli, L.; Leporati, R.; Rea, C.; Mariani, G.; BianChi, G.V.; Capri, G.; et al. The pan-immune-inflammation-value predicts the survival of patients with Human Epidermal Growth Factor Receptor 2 (HER2)-positive advanced breast cancer treated with first-line taxane-trastuzumab-pertuzumab. Cancers 2021, 13, 1964. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Han, X.; Zha, H.; Tao, H.; Li, X.; Yuan, F.; Chen, G.; Wang, L.; Ma, J.; Hu, Y. Systemic Immune-Inflammation Index and Changes of Neutrophil-Lymphocyte Ratio as Prognostic Biomarkers for Patients With Pancreatic Cancer Treated With Immune Checkpoint Blockade. Front. Oncol. 2021, 11, 585271. [Google Scholar] [CrossRef] [PubMed]
- Guven, D.C.; Yildirim, H.C.; Bilgin, E.; Aktepe, O.H.; Taban, H.; Sahin, T.K.; Cakir, I.Y.; Akin, S.; Dizdar, O.; Aksoy, S.; et al. PILE: A candidate prognostic score in cancer patients treated with immunotherapy. Clin. Transl. Oncol. 2021, 23, 1630–1636. [Google Scholar] [CrossRef]
- Corti, F.; Lonardi, S.; Intini, R.; Salati, M.; Fenocchio, E.; Belli, C.; Borelli, B.; Brambilla, M.; Prete, A.A.; Quarà, V.; et al. The Pan-Immune-Inflammation Value in microsatellite instability-high metastatic colorectal cancer patients treated with im-mune checkpoint inhibitors. Eur. J. Cancer 2021, 150, 155–167. [Google Scholar] [CrossRef]
- Yu, J.; Wu, X.; Yu, H.; Li, S.; Mao, L.; Chi, Z.; Si, L.; Sheng, X.; Cui, C.; Dai, J.; et al. Systemic immune-inflammation index and circulating T-cell immune index predict outcomes in high-risk acral melanoma patients treated with high-dose interferon. Transl. Oncol. 2017, 10, 719–725. [Google Scholar] [CrossRef]
Characteristics | Value | Number (%) |
---|---|---|
Total | 129 (100) | |
Age (years): median (range) | 66.2 (30.1–84.5) | |
Gender | Male | 84 (61.3) |
Female | 53 (38.7) | |
Melanoma type | Skin | 97 (75.2) |
Uveal | 11 (8.5) | |
Mucosal | 2 (1.6) | |
Unknown origin | 19 (14.7) | |
Metastatic site | M1a | 61 (47.3) |
M1b | 20 (25.5) | |
M1c | 26 (20.2) | |
M1d | 22 (17.1) | |
BRAF gene mutation | BRAF wild type | 74 (57.4) |
V600E mutation | 20 (15.5) | |
V600K mutation | 8 (6.2) | |
V600K and V600M mutation | 1 (0.8) | |
V600R | 1 (0.8) | |
Testing not performed | 25 (19.4) | |
Comorbidity | No comorbidity | 56 (43.4) |
Arterial hypertension | 51 (39.5) | |
Diabetes | 13 (10.1) | |
Pulmonary disease | 5 (3.9) | |
Autoimmune disease | 10 (7.8) | |
Other disease | 46 (35.7) | |
Type of ICI treatment | Pembrolizumab | 99 (76.7) |
Nivolumab | 14 (10.9) | |
Nivolumab and Ipilimumab | 16 (12.4) | |
irAE | No | 81 (62.8) |
Yes | 48 (37.2) |
Characteristics | Group without irAE N (%) | Group with irAE N (%) | All Patients N (%) | p-Value | |
---|---|---|---|---|---|
Number | 81 (62.8) | 48 (37.2) | 129 (100) | ||
Age (years) | <65 years =>65 years | 45 (55.6) 36 (44.4) | 26 (54.2) 22 (45.8) | 71 (55) 58 (45) | 0.878 |
Melanoma type | Skin | 59 (72.8) | 38 (79.2) | 97 (75.2) | 0.452 |
Uveal | 6 (7.4) | 5 (10.4) | 11 (8.5) | ||
Mucosal | 2 (2.5) | 0 (0) | 2 (1.6) | ||
Unknown origin | 14 (17.3) | 5 (10.4) | 19 (14.7) | ||
Metastatic site | M1a | 34 (42) | 27 (56.3) | 61 (47.39) | 0.275 |
M1b | 14 (17.3) | 5 (10.4) | 19 (14.7) | ||
M1c | 15 (18.5) | 10 (20.8) | 25 (19.4) | ||
M1d | 18 (22.2) | 6 (12.5) | 24 (18.6) | ||
ECOG PS | 0 | 39 (48.1) | 20 (41.7) | 59 (45.7) | 0.492 |
1 | 29 (35.8) | 23 (47.9) | 52 (403) | ||
2 | 12 (14.8) | 5 (10.4) | 17 (13.2) | ||
3 | 1 (1.2) | 0 (0) | 1 (0.8) | ||
Concomitant diseases | No | 36 (44.4) | 20 (41.7) | 56 (43.4) | 0.758 |
Yes | 45 (55.6) | 28 (58.3) | 73 (56.6) | 0.758 | |
BRAF status mutation * | No | 52 (81.2) | 22 (55) | 74 (71.2) | 0.004 |
Yes | 12 (18.8) | 18 (45) | 30 (28.8) | ||
LDH | normal | 58 (71.6) | 40 (83.3) | 98 (76) | 0.132 |
elevated | 23 (28.4) | 8 (16.79) | 31 (34) | ||
Treatment | Pembrolizumab | 68 (84) | 31 (64.6) | 99 (76.7) | 0.004 |
Nivolumab | 9 (11.1) | 5 (10.4) | 14 (10.9) | ||
Nivolumab and ipilimumab | 4 (4.9) | 12 (25) | 16 (12.4) | ||
Immune-inflammatory indexes | |||||
NLR before 1st cycle of CPI | low | 25 (30.9) | 9 (18.8) | 34 (26.4) | 0.131 |
high | 56 (69.1) | 39 (81.2) | 95 (73.69) | ||
NLR before 2nd cycle of ICI | low | 20 (24.7) | 10 (20.8) | 30 (23.3) | 0.616 |
high | 27 (33.3) | 38 (79.2) | 99 (76.7) | ||
PLR before 1st cycle of ICI | Low | 54 (66.7) | 26 (54.2) | 80 (62) | 0.157 |
High | 27 (33.3) | 22 (45.8) | 49 (32) | ||
PLR before 2nd cycle of ICI | Low | 51 (63) | 25 (52.1) | 76 (58.9) | 0.225 |
High | 30 (37) | 23 (47.9) | 53 (41.1) | ||
PIV before 1st cycle of ICI | Low | 47 (58) | 20 (41.7) | 67 (51.9) | 0.072 |
High | 34 (42) | 28 (58.3) | 62 (48.1) | ||
PIV before 2nd cycle of ICI | Low | 37 (45.7) | 24 (50) | 61 (47.3) | 0.635 |
High | 44 (54.3) | 24 (50) | 68 (52.7) | ||
SII before 1st cycle of ICI | Low | 48 (59.3) | 20 (41.7) | 68 (52.7) | 0.053 |
High | 33 (40.7) | 28 (58.3) | 61 (47.3) | ||
SII before 2nd cycle of ICI | High | 48 (59.3) | 25 (52.1) | 73 (56.6) | 0.427 |
High | 33 (40.7) | 23 (47.9) | 56 (43.4) |
Factors | Overall Survival | Progression–Free Survival | ||||||
---|---|---|---|---|---|---|---|---|
Univariate Analysis | Multivariate Analysis | Univariate Analysis | Multivariate Analysis | |||||
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | |
Gender | ||||||||
female vs. male | 0.82 (0.44–1.54) | 0.535 | 0.91 (0.57–1.46) | 0.695 | ||||
Age | ||||||||
≥65 years vs. <65 years | 1.62 (0.86–3.03) | 0.134 | 0.91 (0.57–1.46) | 0.695 | ||||
Melanoma type | ||||||||
uveal vs. skin | 2.09 (0.80–5.41) | 0.131 | 1.50 (0.68–3.32) | 0.316 | ||||
mucosal vs. skin | 1.75 (0.24–12.95) | 0.584 | 2.82 (0.68–11.6) | 0.152 | ||||
unknown vs. skin | 0.90 (0.35–2.32) | 0.82 | 1.16 (0.60–2.23) | 0.658 | ||||
Location of metastases | ||||||||
m1b vs. m1a | 1.35 (0.48–3.78) | 0.572 | 0.66 (0.16–2.80) | 0.57 | 0.91 (0.43–1.92) | 0.811 | ||
m1c vs. m1a | 2.79 (1.29–6.04) | 0.009 | 1.68 (0.65–4.29) | 0.282 | 1.45 (0.79–2.65) | 0.231 | ||
m1d vs. m1a | 2.26 (0.96–5.31) | 0.062 | 1.86 (0.55–6.27) | 0.317 | 1.28 (0.67–2.46) | 0.455 | ||
Ecog ps | ||||||||
1 vs. 0 | 1.75 (0.84–3.68) | 0.137 | 0.98 (0.39–2.45) | 0.963 | 0.99 (0.59–1.66) | 0.973 | ||
≥2 vs. 0 | 3.76 (1.66–8.53) | 0.002 | 1.13 (0.30–4.29) | 0.243 | 1.39 (0.68–2.83) | 0.185 | ||
Comorbidities | ||||||||
yes vs. no | 0.65 (0.45–1.20) | 0.167 | 0.62 (0.39–0.99) | 0.047 | 0.64 (0.40–1.03) | 0.065 | ||
Ldh | ||||||||
elevated vs. normal | 3.13 (1.65–5.92) | <0.001 | 1.30 (0.42–4.01) | 0.643 | 1.61 (0.94–2.77) | 0.082 | ||
S100 | ||||||||
elevated vs. normal | 2.42 (1.30–4.50) | 0.005 | 2.61 (0.91–7.50) | 0.074 | 1.30 (0.80–2.11) | 0.298 | ||
Braf mutation | ||||||||
yes vs. no | 0.30 (0.09–0.98) | 0.047 | 0.28 (0.07–1.10) | 0.067 | / | |||
Type of treatment (ici) | ||||||||
nivolumab vs. pembrolizumab | 0.69 (0.21–2.56) | 0.691 | 1.35 (0.66–2.75) | 0.415 | ||||
nivolumab+ipilimumab vs. pembrolizumab | 0.92 (0.28–3.07) | 0.923 | 1.25 (0.59–2.66) | 0.558 | ||||
Irae | ||||||||
yes vs. no | 0.44 (0.21–0.93) | 0.031 | 0.39 (0.14–1.05) | 0.062 | 0.51 (0.30–0.86) | 0.012 | 0.41 (0.23–0.71) | 0.002 |
Nlr before 1st cycle of ici | ||||||||
high vs. low | 2.16 (0.91–5.15) | 0.082 | 1.24 (0.71–2.16) | 0.457 | ||||
Nlr before 2nd cycle of ici | ||||||||
high vs. low | 1.42 (0.63–3.22) | 0.398 | 1.82 (0.95–3.47) | 0.069 | ||||
Plr before 1st cycle of ici | ||||||||
high vs. low | 1.63 (0.88–3.03) | 0.122 | 1.48 (0.92–2.39) | 0.104 | ||||
Plr before 2nd cycle of ici | ||||||||
high vs. low | 1.58 (0.85–2.98) | 0.149 | 1.78 (1.11–2.86) | 0.017 | 1.71 (1.03–2.83) | 0.038 | ||
Piv before 1st cycle of ici | ||||||||
high vs. low | 1.78 (0.94–3.35) | 0.075 | 1.31 (0.82–2.10) | 0.266 | ||||
Piv before 2nd cycle of ici | ||||||||
high vs. low | 1.34 (0.71–2.51) | 0.364 | 1.10 (1.05–2.75) | 0.033 | 1.08 (0.61–1.91) | 0.802 | ||
Sii before 1st cycle of ici | ||||||||
high vs. low | 2.64 (1.36–5.12) | 0.004 | 2.60 (0.91–7.50) | 0.026 | 1.92 (1.19–3.10) | 0.008 | 1.94 (1.09–3.45) | 0.025 |
Sii before 2nd cycle of ici | ||||||||
high vs. low | 1.59 (0.85–2.95) | 0.146 | 1.57 (0.98–2.53) | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesti, T.; Grašič Kuhar, C.; Ocvirk, J. Biomarkers for Outcome in Metastatic Melanoma in First Line Treatment with Immune Checkpoint Inhibitors. Biomedicines 2023, 11, 749. https://doi.org/10.3390/biomedicines11030749
Mesti T, Grašič Kuhar C, Ocvirk J. Biomarkers for Outcome in Metastatic Melanoma in First Line Treatment with Immune Checkpoint Inhibitors. Biomedicines. 2023; 11(3):749. https://doi.org/10.3390/biomedicines11030749
Chicago/Turabian StyleMesti, Tanja, Cvetka Grašič Kuhar, and Janja Ocvirk. 2023. "Biomarkers for Outcome in Metastatic Melanoma in First Line Treatment with Immune Checkpoint Inhibitors" Biomedicines 11, no. 3: 749. https://doi.org/10.3390/biomedicines11030749
APA StyleMesti, T., Grašič Kuhar, C., & Ocvirk, J. (2023). Biomarkers for Outcome in Metastatic Melanoma in First Line Treatment with Immune Checkpoint Inhibitors. Biomedicines, 11(3), 749. https://doi.org/10.3390/biomedicines11030749