Biomarkers for Outcome in Metastatic Melanoma in First Line Treatment with Immune Checkpoint Inhibitors
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Patients and Treatment
3.2. Response Rates and Survival Outcomes
3.3. Immune-Related Adverse Events and Immune-Inflammation Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hribernik, N.; Boc, M.; Ocvirk, J.; Knez-Arbeiter, J.; Mesti, T.; Ignjatovic, M.; Rebersek, M. Retrospective analysis of treatment-naive Slovenian patients with metastatic melanoma treated with pembrolizumab—Real-world experience. Radiol Oncol. 2020, 54, 119–127. [Google Scholar] [CrossRef]
- Hocevar, M.; Strojan, P.; Ocvirk, J.; Peric, B.; Blatnik, O.; Luzar, B. Recommendation for the Treatment of Patients with Melanoma; [Slovenian]; Rebersek, M., Ed.; Institute of Oncology Ljubljana: Ljubljana, Slovenia, 2019; Available online: https://www.onko-i.si/fileadmin/onko/datoteke/Strokovna_knjiznica/smernice/Priporocila_za_obravnavo_bolni-kov_z_melanomom_2020.pdf (accessed on 15 August 2022).
- Michielin, O.; van Akkooi, A.C.J.; Ascierto, P.A.; Dummer, R.; Keilholz, U.; on behalf of the ESMO Guidelines Committee. Cutane-ous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1884–1901. [Google Scholar] [CrossRef]
- NCCN Clinical Practice Guidelines in Oncology, Cutaneous melanoma. Version 4.2020. [Cited 2020 Oct 14]. Available online: https://www.nccn.org/professionals/physician_gls/pdf/cutaneous_melanoma.pdf (accessed on 15 August 2022).
- Schadendorf, D.; Hodi, F.S.; Robert, C.; Weber, J.S.; Margolin, K.; Hamid, O.; Patt, D.; Chen, T.T.; Berman, D.M.; Wolchok, J.D. Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J. Clin. Oncol. 2015, 33, 1889–1894. [Google Scholar] [CrossRef]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef]
- Hamid, O.; Robert, C.; Daud, A.; Hodi, F.S.; Hwu, W.J.; Kefford, R. Five-year survival outcomes for patients with advanced mela-noma treated with pembrolizumab in KEYNOTE-001. Ann. Oncol. 2019, 30, 582–588. [Google Scholar] [CrossRef]
- Robert, C.; Hwu, W.-J.; Hamid, O.; Ribas, A.; Weber, J.S.; Daud, A.I. Long-term safety of pembrolizumab monotherapy and rela-tionship with clinical outcome: A landmark analysis in patients with advanced melanoma. Eur. J. Cancer 2021, 144, 182–191. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Q.; Dong, Q.; Zhan, L.; Zhang, J. How to differentiate pseudoprogression from true progression in cancer patients treated with immunotherapy. Am. J. Cancer Res. 2019, 9, 1546–1553. [Google Scholar]
- Park, H.J.; Kim, K.W.; Won, S.E.; Yoon, S.; Chae, Y.K.; Tirumani, S.H.; Ramaiya, N.H. Definition, Incidence, and Challenges for Assessment of Hyperprogressive Disease During Cancer Treatment With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA Netw. Open 2021, 4, e211136. [Google Scholar] [CrossRef]
- Susok, L.; Said, S.; Reinert, D.; Mansour, R.; Scheel, C.H.; Becker, J.C.; Gambichler, T. The pan-immune-inflammation value and sys-temic immune-inflammation index in advanced melanoma patients under immunotherapy. J. Cancer Res. Clin. Oncol. 2022, 148, 3103–3108. [Google Scholar] [CrossRef]
- Fucà, G.; Guarini, V.; Antoniotti, C.; Morano, F.; Moretto, R.; Corallo, S.; Marmorino, F.; Lonardi, S.; Rimassa, L.; Sartore-Bianchi, A.; et al. The Pan-Immune-Inflammation Value is a new prognostic biomarker in metastatic colorectal cancer: Results from a pooled-analysis of the Valentino and TRIBE first-line trials. Br. J. Cancer 2020, 123, 403–409. [Google Scholar] [CrossRef]
- Mesti, T.; Ceplak Mencin, V.; Mileva Boshkoska, B.; Ocvirk, J. Adverse events during immunotherapy in Slovenian patients with metastatic melanoma reveal a positive correlation with better treatment outcomes. Radiol. Oncol. 2021, 55, 354–361. [Google Scholar] [CrossRef]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef]
- Common Terminology Criteria for Adverse Events. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf (accessed on 12 December 2020).
- Passardi, A.; Scarpi, E.; Cavanna, L.; Dall’Agata, M.; Tassinari, D.; Leo, S.; Bernardini, I.; Gelsomino, F.; Tamberi, S.; Brandes, A.A.; et al. Inflammatory indexes as predictors of prognosis and bevacizumab efficacy in patients with metastatic colorectal cancer. Oncotarget 2016, 7, 33210–33219. [Google Scholar] [CrossRef]
- Lausen, B.; Schumacher, M. Maximally selected rank statistics. Biometrics 1992, 48, 73–85. [Google Scholar] [CrossRef]
- Yang, R.; Chang, Q.; Meng, X.; Gao, N.; Wang, W. Prognostic value of systemic immune-inflammation index in cancer: A meta-analysis. J. Cancer 2018, 9, 3295–3302. [Google Scholar] [CrossRef]
- Robert, C.; Ribas, A.; Schachter, J.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.M.; Lotem, M.; et al. Pembrolizumab versus ipili-mumab in advanced melanoma (KEYNOTE-006): Post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 2019, 20, 1239–1251. [Google Scholar] [CrossRef]
- Eggermont, A.M.M.; Kicinski, M.; Blank, C.U.; Mandala, M.; Long, G.V.; Atkinson, V.; Dalle, S.; Haydon, A.; Khattak, A.; Carlino, M.S.; et al. Association Between Immune-Related Adverse Events and Recurrence-Free Survival Among Patients With Stage III Melanoma Randomized to Receive Pembrolizumab or Placebo: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2020, 6, 519–527. [Google Scholar] [CrossRef]
- Fan, Y.; Xie, W.; Huang, H.; Wang, Y.; Li, G.; Geng, Y.; Hao, Y.; Zhang, Z. Association of Immune Related Adverse Events With Efficacy of Immune Checkpoint Inhibitors and Overall Survival in Cancers: A Systemic Review and Meta-analysis. Front. Oncol. 2021, 11, 633032. [Google Scholar] [CrossRef]
- Liu, J.; Lin, P.C.; Zhou, B.P. Inflammation fuels tumor progress and metastasis. Curr. Pharm. Des. 2015, 21, 3032–3040. [Google Scholar] [CrossRef]
- Mirili, C.; Yılmaz, A.; Demirkan, S.; Bilici, M.; Basol, T.S. Clinical significance of prognostic nutritional index (PNI) in malignant melanoma. Int. J. Clin. Oncol. 2019, 24, 1301–1310. [Google Scholar] [CrossRef]
- Templeton, A.J.; Ace, O.; McNamara, M.G.; Al-Mubarak, M.; Vera-Badillo, F.E.; Hermanns, T.; Šeruga, B.; Ocaña, A.; Tannock, I.F.; Amir, E. Prognostic role of platelet to lymphocyte ratio in solid tumors: A systematic review and meta-analysis. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1204–1212. [Google Scholar] [CrossRef]
- Nishijima, T.F.; Muss, H.B.; Shachar, S.S.; Tamura, K.; Takamatsu, Y. Prognostic value of lymphocyte-to-monocyte ratio in patients with solid tumors: A systematic review and meta-analysis. Cancer Treat. Rev. 2015, 41, 971–978. [Google Scholar] [CrossRef]
- Zhong, J.H.; Huang, D.H.; Chen, Z.Y. Prognostic role of systemic immune-inflammation index in solid tumors: A system-atic review and meta-analysis. Oncotarget 2017, 8, 75381–75388. [Google Scholar] [CrossRef]
- Kanatsios, S.; Melanoma Project, M.; Li Wai Suen, C.S.N.; Cebon, J.S.; Gyorki, D.E. Neutrophil to lymphocyte ratio is an independent predictor of outcome for patients undergoing definitive resection for stage IV melanoma. J. Surg. Oncol. 2018, 118, 915–921. [Google Scholar] [CrossRef]
- Wade, R.G.; Robinson, A.V.; Lo, M.C.; Keeble, C.; Marples, M.; Dewar, D.J.; Moncrieff, M.D.S.; Peach, H. Baseline neutrophil-lymphocyte and platelet-lymphocyte ratios as biomarkers of survival in cutaneous melanoma: A multicenter cohort study. Ann. Surg. Oncol. 2018, 25, 3341–3349. [Google Scholar] [CrossRef]
- Robinson, A.V.; Keeble, C.; Lo, M.C.; Thornton, O.; Peach, H.; Moncrieff, M.D.; Dewar, D.J. The neutrophil-lymphocyte ratio and locoregional melanoma: A multicentre cohort study. Cancer Immunol. Immunother. 2020, 69, 559–568. [Google Scholar] [CrossRef]
- Bai, X.; Dai, J.; Li, C.; Cui, C.; Mao, L.; Wei, X.; Sheng, X.; Chi, Z.; Yan, X.; Tang, B.; et al. Risk models for advanced melanoma patients under anti-PD-1 monotherapy-ad hoc analyses of pooled data from two clinical trials. Front. Oncol. 2021, 11, 639085. [Google Scholar] [CrossRef]
- Hernando-Calvo, A.; Garcia-Alvarez, A.; Villacampa, G.; Ortiz, C.; Bodet, D.; Garcia-Patos, V.; Recio, J.A.; Dienstmann, R.; Muñoz-Couselo, E. Dynamics of clinical biomarkers as predictors of immuno-therapy benefit in metastatic melanoma patients. Clin. Transl. Oncol. 2021, 23, 311–317. [Google Scholar] [CrossRef]
- Ludwig, J.M.; Haubold, J.; Bauer, S.; Richly, H.; Siveke, J.T.; Wimmer, J.; Umutlu, L.; Schaarschmidt, B.M.; Theysohn, J.M. Predictive impact of the inflammation-based indices in uveal melanoma liver metastases treated with transarterial hepatic chemoperfusion. Radiol. Oncol. 2021, 55, 347–353. [Google Scholar] [CrossRef]
- Marconcini, R.; Spagnolo, F.; Stucci, L.S.; Ribero, S.; Marra, E.; De Rosa, F.; Picasso, V.; Di Guardo, L.; Cimminiello, C.; Cavalieri, S.; et al. Current status and perspectives in immunotherapy for metastatic melanoma. Oncotarget 2018, 9, 12452–12470. [Google Scholar] [CrossRef]
- Fucà, G.; Beninato, T.; Bini, M.; Mazzeo, L.; Di Guardo, L.; Cimminiello, C.; Randon, G.; Apollonio, G.; Bisogno, I.; Del Vecchio, M.; et al. The Pan-Immune-Inflammation Value in Patients with Meta-static Melanoma Receiving First-Line Therapy. Target. Oncol. 2021, 16, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Ligorio, F.; Fucà, G.; Zattarin, E.; Lobefaro, R.; Zambelli, L.; Leporati, R.; Rea, C.; Mariani, G.; BianChi, G.V.; Capri, G.; et al. The pan-immune-inflammation-value predicts the survival of patients with Human Epidermal Growth Factor Receptor 2 (HER2)-positive advanced breast cancer treated with first-line taxane-trastuzumab-pertuzumab. Cancers 2021, 13, 1964. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Han, X.; Zha, H.; Tao, H.; Li, X.; Yuan, F.; Chen, G.; Wang, L.; Ma, J.; Hu, Y. Systemic Immune-Inflammation Index and Changes of Neutrophil-Lymphocyte Ratio as Prognostic Biomarkers for Patients With Pancreatic Cancer Treated With Immune Checkpoint Blockade. Front. Oncol. 2021, 11, 585271. [Google Scholar] [CrossRef] [PubMed]
- Guven, D.C.; Yildirim, H.C.; Bilgin, E.; Aktepe, O.H.; Taban, H.; Sahin, T.K.; Cakir, I.Y.; Akin, S.; Dizdar, O.; Aksoy, S.; et al. PILE: A candidate prognostic score in cancer patients treated with immunotherapy. Clin. Transl. Oncol. 2021, 23, 1630–1636. [Google Scholar] [CrossRef]
- Corti, F.; Lonardi, S.; Intini, R.; Salati, M.; Fenocchio, E.; Belli, C.; Borelli, B.; Brambilla, M.; Prete, A.A.; Quarà, V.; et al. The Pan-Immune-Inflammation Value in microsatellite instability-high metastatic colorectal cancer patients treated with im-mune checkpoint inhibitors. Eur. J. Cancer 2021, 150, 155–167. [Google Scholar] [CrossRef]
- Yu, J.; Wu, X.; Yu, H.; Li, S.; Mao, L.; Chi, Z.; Si, L.; Sheng, X.; Cui, C.; Dai, J.; et al. Systemic immune-inflammation index and circulating T-cell immune index predict outcomes in high-risk acral melanoma patients treated with high-dose interferon. Transl. Oncol. 2017, 10, 719–725. [Google Scholar] [CrossRef]
Characteristics | Value | Number (%) |
---|---|---|
Total | 129 (100) | |
Age (years): median (range) | 66.2 (30.1–84.5) | |
Gender | Male | 84 (61.3) |
Female | 53 (38.7) | |
Melanoma type | Skin | 97 (75.2) |
Uveal | 11 (8.5) | |
Mucosal | 2 (1.6) | |
Unknown origin | 19 (14.7) | |
Metastatic site | M1a | 61 (47.3) |
M1b | 20 (25.5) | |
M1c | 26 (20.2) | |
M1d | 22 (17.1) | |
BRAF gene mutation | BRAF wild type | 74 (57.4) |
V600E mutation | 20 (15.5) | |
V600K mutation | 8 (6.2) | |
V600K and V600M mutation | 1 (0.8) | |
V600R | 1 (0.8) | |
Testing not performed | 25 (19.4) | |
Comorbidity | No comorbidity | 56 (43.4) |
Arterial hypertension | 51 (39.5) | |
Diabetes | 13 (10.1) | |
Pulmonary disease | 5 (3.9) | |
Autoimmune disease | 10 (7.8) | |
Other disease | 46 (35.7) | |
Type of ICI treatment | Pembrolizumab | 99 (76.7) |
Nivolumab | 14 (10.9) | |
Nivolumab and Ipilimumab | 16 (12.4) | |
irAE | No | 81 (62.8) |
Yes | 48 (37.2) |
Characteristics | Group without irAE N (%) | Group with irAE N (%) | All Patients N (%) | p-Value | |
---|---|---|---|---|---|
Number | 81 (62.8) | 48 (37.2) | 129 (100) | ||
Age (years) | <65 years =>65 years | 45 (55.6) 36 (44.4) | 26 (54.2) 22 (45.8) | 71 (55) 58 (45) | 0.878 |
Melanoma type | Skin | 59 (72.8) | 38 (79.2) | 97 (75.2) | 0.452 |
Uveal | 6 (7.4) | 5 (10.4) | 11 (8.5) | ||
Mucosal | 2 (2.5) | 0 (0) | 2 (1.6) | ||
Unknown origin | 14 (17.3) | 5 (10.4) | 19 (14.7) | ||
Metastatic site | M1a | 34 (42) | 27 (56.3) | 61 (47.39) | 0.275 |
M1b | 14 (17.3) | 5 (10.4) | 19 (14.7) | ||
M1c | 15 (18.5) | 10 (20.8) | 25 (19.4) | ||
M1d | 18 (22.2) | 6 (12.5) | 24 (18.6) | ||
ECOG PS | 0 | 39 (48.1) | 20 (41.7) | 59 (45.7) | 0.492 |
1 | 29 (35.8) | 23 (47.9) | 52 (403) | ||
2 | 12 (14.8) | 5 (10.4) | 17 (13.2) | ||
3 | 1 (1.2) | 0 (0) | 1 (0.8) | ||
Concomitant diseases | No | 36 (44.4) | 20 (41.7) | 56 (43.4) | 0.758 |
Yes | 45 (55.6) | 28 (58.3) | 73 (56.6) | 0.758 | |
BRAF status mutation * | No | 52 (81.2) | 22 (55) | 74 (71.2) | 0.004 |
Yes | 12 (18.8) | 18 (45) | 30 (28.8) | ||
LDH | normal | 58 (71.6) | 40 (83.3) | 98 (76) | 0.132 |
elevated | 23 (28.4) | 8 (16.79) | 31 (34) | ||
Treatment | Pembrolizumab | 68 (84) | 31 (64.6) | 99 (76.7) | 0.004 |
Nivolumab | 9 (11.1) | 5 (10.4) | 14 (10.9) | ||
Nivolumab and ipilimumab | 4 (4.9) | 12 (25) | 16 (12.4) | ||
Immune-inflammatory indexes | |||||
NLR before 1st cycle of CPI | low | 25 (30.9) | 9 (18.8) | 34 (26.4) | 0.131 |
high | 56 (69.1) | 39 (81.2) | 95 (73.69) | ||
NLR before 2nd cycle of ICI | low | 20 (24.7) | 10 (20.8) | 30 (23.3) | 0.616 |
high | 27 (33.3) | 38 (79.2) | 99 (76.7) | ||
PLR before 1st cycle of ICI | Low | 54 (66.7) | 26 (54.2) | 80 (62) | 0.157 |
High | 27 (33.3) | 22 (45.8) | 49 (32) | ||
PLR before 2nd cycle of ICI | Low | 51 (63) | 25 (52.1) | 76 (58.9) | 0.225 |
High | 30 (37) | 23 (47.9) | 53 (41.1) | ||
PIV before 1st cycle of ICI | Low | 47 (58) | 20 (41.7) | 67 (51.9) | 0.072 |
High | 34 (42) | 28 (58.3) | 62 (48.1) | ||
PIV before 2nd cycle of ICI | Low | 37 (45.7) | 24 (50) | 61 (47.3) | 0.635 |
High | 44 (54.3) | 24 (50) | 68 (52.7) | ||
SII before 1st cycle of ICI | Low | 48 (59.3) | 20 (41.7) | 68 (52.7) | 0.053 |
High | 33 (40.7) | 28 (58.3) | 61 (47.3) | ||
SII before 2nd cycle of ICI | High | 48 (59.3) | 25 (52.1) | 73 (56.6) | 0.427 |
High | 33 (40.7) | 23 (47.9) | 56 (43.4) |
Factors | Overall Survival | Progression–Free Survival | ||||||
---|---|---|---|---|---|---|---|---|
Univariate Analysis | Multivariate Analysis | Univariate Analysis | Multivariate Analysis | |||||
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | |
Gender | ||||||||
female vs. male | 0.82 (0.44–1.54) | 0.535 | 0.91 (0.57–1.46) | 0.695 | ||||
Age | ||||||||
≥65 years vs. <65 years | 1.62 (0.86–3.03) | 0.134 | 0.91 (0.57–1.46) | 0.695 | ||||
Melanoma type | ||||||||
uveal vs. skin | 2.09 (0.80–5.41) | 0.131 | 1.50 (0.68–3.32) | 0.316 | ||||
mucosal vs. skin | 1.75 (0.24–12.95) | 0.584 | 2.82 (0.68–11.6) | 0.152 | ||||
unknown vs. skin | 0.90 (0.35–2.32) | 0.82 | 1.16 (0.60–2.23) | 0.658 | ||||
Location of metastases | ||||||||
m1b vs. m1a | 1.35 (0.48–3.78) | 0.572 | 0.66 (0.16–2.80) | 0.57 | 0.91 (0.43–1.92) | 0.811 | ||
m1c vs. m1a | 2.79 (1.29–6.04) | 0.009 | 1.68 (0.65–4.29) | 0.282 | 1.45 (0.79–2.65) | 0.231 | ||
m1d vs. m1a | 2.26 (0.96–5.31) | 0.062 | 1.86 (0.55–6.27) | 0.317 | 1.28 (0.67–2.46) | 0.455 | ||
Ecog ps | ||||||||
1 vs. 0 | 1.75 (0.84–3.68) | 0.137 | 0.98 (0.39–2.45) | 0.963 | 0.99 (0.59–1.66) | 0.973 | ||
≥2 vs. 0 | 3.76 (1.66–8.53) | 0.002 | 1.13 (0.30–4.29) | 0.243 | 1.39 (0.68–2.83) | 0.185 | ||
Comorbidities | ||||||||
yes vs. no | 0.65 (0.45–1.20) | 0.167 | 0.62 (0.39–0.99) | 0.047 | 0.64 (0.40–1.03) | 0.065 | ||
Ldh | ||||||||
elevated vs. normal | 3.13 (1.65–5.92) | <0.001 | 1.30 (0.42–4.01) | 0.643 | 1.61 (0.94–2.77) | 0.082 | ||
S100 | ||||||||
elevated vs. normal | 2.42 (1.30–4.50) | 0.005 | 2.61 (0.91–7.50) | 0.074 | 1.30 (0.80–2.11) | 0.298 | ||
Braf mutation | ||||||||
yes vs. no | 0.30 (0.09–0.98) | 0.047 | 0.28 (0.07–1.10) | 0.067 | / | |||
Type of treatment (ici) | ||||||||
nivolumab vs. pembrolizumab | 0.69 (0.21–2.56) | 0.691 | 1.35 (0.66–2.75) | 0.415 | ||||
nivolumab+ipilimumab vs. pembrolizumab | 0.92 (0.28–3.07) | 0.923 | 1.25 (0.59–2.66) | 0.558 | ||||
Irae | ||||||||
yes vs. no | 0.44 (0.21–0.93) | 0.031 | 0.39 (0.14–1.05) | 0.062 | 0.51 (0.30–0.86) | 0.012 | 0.41 (0.23–0.71) | 0.002 |
Nlr before 1st cycle of ici | ||||||||
high vs. low | 2.16 (0.91–5.15) | 0.082 | 1.24 (0.71–2.16) | 0.457 | ||||
Nlr before 2nd cycle of ici | ||||||||
high vs. low | 1.42 (0.63–3.22) | 0.398 | 1.82 (0.95–3.47) | 0.069 | ||||
Plr before 1st cycle of ici | ||||||||
high vs. low | 1.63 (0.88–3.03) | 0.122 | 1.48 (0.92–2.39) | 0.104 | ||||
Plr before 2nd cycle of ici | ||||||||
high vs. low | 1.58 (0.85–2.98) | 0.149 | 1.78 (1.11–2.86) | 0.017 | 1.71 (1.03–2.83) | 0.038 | ||
Piv before 1st cycle of ici | ||||||||
high vs. low | 1.78 (0.94–3.35) | 0.075 | 1.31 (0.82–2.10) | 0.266 | ||||
Piv before 2nd cycle of ici | ||||||||
high vs. low | 1.34 (0.71–2.51) | 0.364 | 1.10 (1.05–2.75) | 0.033 | 1.08 (0.61–1.91) | 0.802 | ||
Sii before 1st cycle of ici | ||||||||
high vs. low | 2.64 (1.36–5.12) | 0.004 | 2.60 (0.91–7.50) | 0.026 | 1.92 (1.19–3.10) | 0.008 | 1.94 (1.09–3.45) | 0.025 |
Sii before 2nd cycle of ici | ||||||||
high vs. low | 1.59 (0.85–2.95) | 0.146 | 1.57 (0.98–2.53) | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesti, T.; Grašič Kuhar, C.; Ocvirk, J. Biomarkers for Outcome in Metastatic Melanoma in First Line Treatment with Immune Checkpoint Inhibitors. Biomedicines 2023, 11, 749. https://doi.org/10.3390/biomedicines11030749
Mesti T, Grašič Kuhar C, Ocvirk J. Biomarkers for Outcome in Metastatic Melanoma in First Line Treatment with Immune Checkpoint Inhibitors. Biomedicines. 2023; 11(3):749. https://doi.org/10.3390/biomedicines11030749
Chicago/Turabian StyleMesti, Tanja, Cvetka Grašič Kuhar, and Janja Ocvirk. 2023. "Biomarkers for Outcome in Metastatic Melanoma in First Line Treatment with Immune Checkpoint Inhibitors" Biomedicines 11, no. 3: 749. https://doi.org/10.3390/biomedicines11030749
APA StyleMesti, T., Grašič Kuhar, C., & Ocvirk, J. (2023). Biomarkers for Outcome in Metastatic Melanoma in First Line Treatment with Immune Checkpoint Inhibitors. Biomedicines, 11(3), 749. https://doi.org/10.3390/biomedicines11030749