Functional Correlates of Microglial and Astrocytic Activity in Symptomatic Sporadic Alzheimer’s Disease: A CSF/18F-FDG-PET Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects’ Enrolment
2.2. CSF Sampling and Laboratory Analysis
2.3. 18F-FDG-PET Data Acquisition
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bloom, G.S. Amyloid-β and Tau: The Trigger and Bullet in Alzheimer Disease Pathogenesis. JAMA Neurol. 2014, 71, 505–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, T.; Zhang, D.; Zeng, Y.; Huang, T.Y.; Xu, H.; Zhao, Y. Molecular and Cellular Mechanisms Underlying the Pathogenesis of Alzheimer’s Disease. Mol. Neurodegener. 2020, 15, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Surguchov, A. Caveolin: A New Link Between Diabetes and AD. Cell. Mol. Neurobiol. 2020, 40, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Vassilaki, M.; Aakre, J.A.; Kremers, W.K.; Mielke, M.M.; Geda, Y.E.; Alhurani, R.E.; Dutt, T.; Machulda, M.M.; Knopman, D.S.; Vemuri, P.; et al. The Association of Multimorbidity With Preclinical AD Stages and SNAP in Cognitively Unimpaired Persons. J. Gerontol. Ser. A 2019, 74, 877–883. [Google Scholar] [CrossRef]
- Zhong, L.; Wang, Z.; Wang, D.; Wang, Z.; Martens, Y.A.; Wu, L.; Xu, Y.; Wang, K.; Li, J.; Huang, R.; et al. Amyloid-Beta Modulates Microglial Responses by Binding to the Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). Mol. Neurodegener. 2018, 13, 1–12. [Google Scholar] [CrossRef]
- Wyssenbach, A.; Quintela, T.; Llavero, F.; Zugaza, J.L.; Matute, C.; Alberdi, E. Amyloid β-Induced Astrogliosis Is Mediated by Β1-Integrin via NADPH Oxidase 2 in Alzheimer’s Disease. Aging Cell 2016, 15, 1140–1152. [Google Scholar] [CrossRef]
- Henstridge, C.M.; Hyman, B.T.; Spires-Jones, T.L. Beyond the Neuron-Cellular Interactions Early in Alzheimer Disease Pathogenesis. Nat. Rev. Neurosci. 2019, 20, 94–108. [Google Scholar] [CrossRef]
- Neumann, H.; Kotter, M.R.; Franklin, R.J.M. Debris Clearance by Microglia: An Essential Link between Degeneration and Regeneration. Brain 2009, 132, 288–295. [Google Scholar] [CrossRef]
- Streit, W.J.; Khoshbouei, H.; Bechmann, I. The Role of Microglia in Sporadic Alzheimer’s Disease. J. Alzheimer’s Dis. 2021, 79, 961–968. [Google Scholar] [CrossRef]
- Gratuze, M.; Leyns, C.E.G.; Holtzman, D.M. New Insights into the Role of TREM2 in Alzheimer’s Disease. Mol. Neurodegener. 2018, 13, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.C.; St George-Hyslop, P. Does Soluble TREM2 Protect Against Alzheimer’s Disease? Front. Aging Neurosci. 2022, 13, 834697. [Google Scholar] [CrossRef]
- Yang, J.; Fu, Z.; Zhang, X.; Xiong, M.; Meng, L.; Zhang, Z. TREM2 Ectodomain and Its Soluble Form in Alzheimer’s Disease. J. Neuroinflamm. 2020, 17, 1–12. [Google Scholar] [CrossRef]
- Sofroniew, M.V. Astrocyte Reactivity: Subtypes, States, and Functions in CNS Innate Immunity. Trends Immunol. 2020, 41, 758–770. [Google Scholar] [CrossRef]
- Lines, J.; Baraibar, A.M.; Fang, C.; Martin, E.D.; Aguilar, J.; Lee, M.K.; Araque, A.; Kofuji, P. Astrocyte-Neuronal Network Interplay Is Disrupted in Alzheimer’s Disease Mice. Glia 2022, 70, 368–378. [Google Scholar] [CrossRef]
- Elahi, F.M.; Casaletto, K.B.; La Joie, R.; Walters, S.M.; Harvey, D.; Wolf, A.; Edwards, L.; Rivera-Contreras, W.; Karydas, A.; Cobigo, Y.; et al. Plasma Biomarkers of Astrocytic and Neuronal Dysfunction in Early- and Late-Onset Alzheimer’s Disease. Alzheimers. Dement. 2020, 16, 681–695. [Google Scholar] [CrossRef]
- Morenas-Rodríguez, E.; Li, Y.; Nuscher, B.; Franzmeier, N.; Xiong, C.; Suárez-Calvet, M.; Fagan, A.M.; Schultz, S.; Gordon, B.A.; Benzinger, T.L.S.; et al. Soluble TREM2 in CSF and Its Association with Other Biomarkers and Cognition in Autosomal-Dominant Alzheimer’s Disease: A Longitudinal Observational Study. Lancet Neurol. 2022, 21, 329–341. [Google Scholar] [CrossRef]
- Suárez-Calvet, M.; Kleinberger, G.; Araque Caballero, M.Á.; Brendel, M.; Rominger, A.; Alcolea, D.; Fortea, J.; Lleó, A.; Blesa, R.; Gispert, J.D.; et al. STREM2 Cerebrospinal Fluid Levels Are a Potential Biomarker for Microglia Activity in Early-Stage Alzheimer’s Disease and Associate with Neuronal Injury Markers. EMBO Mol. Med. 2016, 8, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Calvet, M.; Morenas-Rodríguez, E.; Kleinberger, G.; Schlepckow, K.; Caballero, M.Á.A.; Franzmeier, N.; Capell, A.; Fellerer, K.; Nuscher, B.; Eren, E.; et al. Early Increase of CSF STREM2 in Alzheimer’s Disease Is Associated with Tau Related-Neurodegeneration but Not with Amyloid-β Pathology. Mol. Neurodegener. 2019, 14, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewers, M.; Biechele, G.; Suárez-Calvet, M.; Sacher, C.; Blume, T.; Morenas-Rodriguez, E.; Deming, Y.; Piccio, L.; Cruchaga, C.; Kleinberger, G.; et al. Higher CSF STREM2 and Microglia Activation Are Associated with Slower Rates of Beta-Amyloid Accumulation. EMBO Mol. Med. 2020, 12, e12308. [Google Scholar] [CrossRef] [PubMed]
- Sadick, J.S.; O’Dea, M.R.; Hasel, P.; Dykstra, T.; Faustin, A.; Liddelow, S.A. Astrocytes and Oligodendrocytes Undergo Subtype-Specific Transcriptional Changes in Alzheimer’s Disease. Neuron 2022, 110, 1788–1805.e10. [Google Scholar] [CrossRef]
- Perez-Nievas, B.G.; Serrano-Pozo, A. Deciphering the Astrocyte Reaction in Alzheimer’s Disease. Front. Aging Neurosci. 2018, 10, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hulle, C.; Jonaitis, E.M.; Betthauser, T.J.; Batrla, R.; Wild, N.; Kollmorgen, G.; Andreasson, U.; Okonkwo, O.; Bendlin, B.B.; Asthana, S.; et al. An Examination of a Novel Multipanel of CSF Biomarkers in the Alzheimer’s Disease Clinical and Pathological Continuum. Alzheimer’s Dement. 2021, 17, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Benedet, A.L.; Milà-Alomà, M.; Vrillon, A.; Ashton, N.J.; Pascoal, T.A.; Lussier, F.; Karikari, T.K.; Hourregue, C.; Cognat, E.; Dumurgier, J.; et al. Differences Between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels Across the Alzheimer Disease Continuum. JAMA Neurol. 2021, 78, 1471–1483. [Google Scholar] [CrossRef] [PubMed]
- Cristóvaõ, J.S.; Gomes, C.M. S100 Proteins in Alzheimer’s Disease. Front. Neurosci. 2019, 13, 463. [Google Scholar] [CrossRef] [Green Version]
- Bellaver, B.; Ferrari-Souza, J.P.; Uglione da Ros, L.; Carter, S.F.; Rodriguez-Vieitez, E.; Nordberg, A.; Pellerin, L.; Rosa-Neto, P.; Leffa, D.T.; Zimmer, E.R. Astrocyte Biomarkers in Alzheimer Disease: A Systematic Review and Meta-Analysis. Neurology 2021, 96, e2944–e2955. [Google Scholar] [CrossRef]
- Zimmer, E.R.; Parent, M.J.; Souza, D.G.; Leuzy, A.; Lecrux, C.; Kim, H.I.; Gauthier, S.; Pellerin, L.; Hamel, E.; Rosa-Neto, P. [18F]FDG PET Signal Is Driven by Astroglial Glutamate Transport. Nat. Neurosci. 2017, 20, 393–395. [Google Scholar] [CrossRef] [Green Version]
- Rocha, A.; Bellaver, B.; Souza, D.G.; Schu, G.; Fontana, I.C.; Venturin, G.T.; Greggio, S.; Fontella, F.U.; Schiavenin, M.L.; Machado, L.S.; et al. Clozapine Induces Astrocyte-Dependent FDG-PET Hypometabolism. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2251–2264. [Google Scholar] [CrossRef]
- Pellerin, L.; Magistretti, P.J. Sweet Sixteen for ANLS. J. Cereb. Blood Flow Metab. 2012, 32, 1152–1166. [Google Scholar] [CrossRef]
- Pellerin, L.; Magistretti, P.J. Glutamate Uptake into Astrocytes Stimulates Aerobic Glycolysis: A Mechanism Coupling Neuronal Activity to Glucose Utilization. Proc. Natl. Acad. Sci. USA 1994, 91, 10625–10629. [Google Scholar] [CrossRef] [Green Version]
- Xiang, X.; Wind, K.; Wiedemann, T.; Blume, T.; Shi, Y.; Briel, N.; Beyer, L.; Biechele, G.; Eckenweber, F.; Zatcepin, A.; et al. Microglial Activation States Drive Glucose Uptake and FDG-PET Alterations in Neurodegenerative Diseases. Sci. Transl. Med. 2021, 13, 5640. [Google Scholar] [CrossRef]
- Salvadó, G.; Shekari, M.; Falcon, C.; Operto, G.D.S.; Milà-Alomà, M.; Sánchez-Benavides, G.; Cacciaglia, R.; Arenaza-Urquijo, E.; Niñerola-Baizán, A.; Perissinotti, A.D.S.; et al. Brain Alterations in the Early Alzheimer’s Continuum with Amyloid-β, Tau, Glial and Neurodegeneration CSF Markers. Brain Commun. 2022, 4, fcac134. [Google Scholar] [CrossRef] [PubMed]
- Salvadó, G.; Milà-Alomà, M.; Shekari, M.; Ashton, N.J.; Operto, G.; Falcon, C.; Cacciaglia, R.; Minguillon, C.; Fauria, K.; Niñerola-Baizán, A.; et al. Reactive Astrogliosis Is Associated with Higher Cerebral Glucose Consumption in the Early Alzheimer’s Continuum. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4567–4579. [Google Scholar] [CrossRef] [PubMed]
- Biel, D.; Suárez-Calvet, M.; Hager, P.; Rubinski, A.; Dewenter, A.; Steward, A.; Roemer, S.; Ewers, M.; Haass, C.; Brendel, M.; et al. STREM2 Is Associated with Amyloid-Related p-Tau Increases and Glucose Hypermetabolism in Alzheimer’s Disease. EMBO Mol. Med. 2023, 15, e16987. [Google Scholar] [CrossRef] [PubMed]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers. Dement. 2011, 7, 263. [Google Scholar] [CrossRef] [Green Version]
- Jack, C.R.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a Biological Definition of Alzheimer’s Disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.G.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM Procedure Guidelines for Tumour Imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef]
- Chiaravalloti, A.; Barbagallo, G.; Martorana, A.; Castellano, A.E.; Ursini, F.; Schillaci, O. Brain Metabolic Patterns in Patients with Suspected Non-Alzheimer’s Pathophysiology (SNAP) and Alzheimer’s Disease (AD): Is [18F] FDG a Specific Biomarker in These Patients? Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1796–1805. [Google Scholar] [CrossRef]
- Marcus, C.; Mena, E.; Subramaniam, R.M. Brain PET in the Diagnosis of Alzheimer’s Disease. Clin. Nucl. Med. 2014, 39, e413. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, E.; Maes, F.; Vandermeulen, D.; Suetens, P. Atlas-to-Image Non-Rigid Registration by Minimization of Conditional Local Entropy. Lect. Notes Comput. Sci. Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform. 2007, 4584 LNCS, 320–332. [Google Scholar] [CrossRef]
- Mazziotta, J.; Toga, A.; Evans, A.; Fox, P.; Lancaster, J.; Zilles, K.; Woods, R.; Paus, T.; Simpson, G.; Pike, B.; et al. A Four-Dimensional Probabilistic Atlas of the Human Brain. J. Am. Med. Inform. Assoc. 2001, 8, 401. [Google Scholar] [CrossRef] [Green Version]
- Mazziotta, J.C.; Toga, A.W.; Evans, A.; Fox, P.; Lancaster, J. A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development. Neuroimage 1995, 2, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.M.; Wolford, G.L.; Miller, M.B. The Principled Control of False Positives in Neuroimaging. Soc. Cogn. Affect. Neurosci. 2009, 4, 417–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagani, M.; De Carli, F.; Morbelli, S.; Öberg, J.; Chincarini, A.; Frisoni, G.B.; Galluzzi, S.; Perneczky, R.; Drzezga, A.; Van Berckel, B.N.M.; et al. Volume of Interest-Based [18F]Fluorodeoxyglucose PET Discriminates MCI Converting to Alzheimer’s Disease from Healthy Controls. A European Alzheimer’s Disease Consortium (EADC) Study. NeuroImage Clin. 2015, 7, 34–42. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Varma, V.R.; Varma, S.; Casanova, R.; Dammer, E.; Pletnikova, O.; Chia, C.W.; Egan, J.M.; Ferrucci, L.; Troncoso, J.; et al. Evidence for Brain Glucose Dysregulation in Alzheimer’s Disease. Alzheimers Dement. 2018, 14, 318–329. [Google Scholar] [CrossRef]
- Soto-Rojas, L.O.; Pacheco-Herrero, M.; Martínez-Gómez, P.A.; Campa-Córdoba, B.B.; Apátiga-Pérez, R.; Villegas-Rojas, M.M.; Harrington, C.R.; de la Cruz, F.; Garcés-Ramírez, L.; Luna-Muñoz, J. The Neurovascular Unit Dysfunction in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 2022. [Google Scholar] [CrossRef]
- Semprini, R.; Koch, G.; Belli, L.; Lorenzo, F.D.; Ragonese, M.; Manenti, G.; Sorice, G.P.; Martorana, A. Insulin and the Future Treatment of Alzheimer’s Disease. CNS Neurol. Disord. Drug Targets 2016, 15, 660–664. [Google Scholar] [CrossRef]
- Bargers, S.W.; Van Eldikso1, L.J. S100B Stimulates Calcium Fluxes in Glial and Neuronal Cells. J. Biol. Chem. 1992, 267, 9689–9694. [Google Scholar] [CrossRef]
- Nishiyama, H.; Knöpfel, T.; Endo, S.; Itohara, S. Glial Protein S100B Modulates Long-Term Neuronal Synaptic Plasticity. Proc. Natl. Acad. Sci. USA 2002, 99, 4037–4042. [Google Scholar] [CrossRef] [Green Version]
- Winocur, G.; Roder, J.; Lobaugh, N. Learning and Memory in S100-Beta Transgenic Mice: An Analysis of Impaired and Preserved Function. Neurobiol. Learn. Mem. 2001, 75, 230–243. [Google Scholar] [CrossRef]
- Busche, M.A.; Konnerth, A. Impairments of Neural Circuit Function in Alzheimer’s Disease. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150429. [Google Scholar] [CrossRef] [Green Version]
- Maestú, F.; de Haan, W.; Busche, M.A.; DeFelipe, J. Neuronal Excitation/Inhibition Imbalance: Core Element of a Translational Perspective on Alzheimer Pathophysiology. Ageing Res. Rev. 2021, 69, 101372. [Google Scholar] [CrossRef]
- Ambrad Giovannetti, E.; Fuhrmann, M. Unsupervised Excitation: GABAergic Dysfunctions in Alzheimer’s Disease. Brain Res. 2019, 1707, 216–226. [Google Scholar] [CrossRef]
- Zott, B.; Simon, M.M.; Hong, W.; Unger, F.; Chen-Engerer, H.J.; Frosch, M.P.; Sakmann, B.; Walsh, D.M.; Konnerth, A. A Vicious Cycle of β Amyloid−dependent Neuronal Hyperactivation. Science 2019, 365, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Brezovakova, V.; Sykova, E.; Jadhav, S. Astrocytes Derived from Familial and Sporadic Alzheimer’s Disease IPSCs Show Altered Calcium Signaling and Respond Differently to Misfolded Protein Tau. Cells 2022, 11, 1429. [Google Scholar] [CrossRef] [PubMed]
- Friederici, A.D. The Brain Basis of Language Processing: From Structure to Function. Physiol. Rev. 2011, 91, 1357–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fogassi, L.; Ferrari, P.F.; Gesierich, B.; Rozzi, S.; Chersi, F.; Rizzolotti, G. Neuroscience: Parietal Lobe: From Action Organization to Intention Understanding. Science 2005, 308, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Giannakopoulos, P.; Kövari, E.; Herrmann, F.R.; Hof, P.R.; Bouras, C. Interhemispheric Distribution of Alzheimer Disease and Vascular Pathology in Brain Aging. Stroke 2009, 40, 983. [Google Scholar] [CrossRef] [Green Version]
- Chiaravalloti, A.; Barbagallo, G.; Ricci, M.; Martorana, A.; Ursini, F.; Sannino, P.; Karalis, G.; Schillaci, O. Brain Metabolic Correlates of CSF Tau Protein in a Large Cohort of Alzheimer’s Disease Patients: A CSF and FDG PET Study. Brain Res. 2018, 1678, 116–122. [Google Scholar] [CrossRef]
Study Cohort (n = 27) | |
---|---|
Age (years) | 67.52 ± 6.74 |
Sex (M:F) | 13:14 |
MMSE | 24.42 ± 3.74 |
APOE (E3:E4) | 16:11 |
CSF Aβ42 (pg/mL) | 390.05 ± 73.77 |
CSF p-tau (pg/mL) | 98.48 ± 49.13 |
CSF t-tau (pg/mL) | 585.22 ± 369.92 |
CSF sTREM-2 (pg/mL) | 1.47 ± 0.25 |
CSF GFAP (pg/mL) | 0.05 ± 0.02 |
CSF β-S100 (pg/mL) | 1936.41 ± 1807.22 |
Analysis | Cluster Level | Voxel Level | ||||||
---|---|---|---|---|---|---|---|---|
Positive correlation (GFAP) | Cluster p (FEW-corr) | Cluster p (FDR-corr) | Cluster extent | p unc | Cortical region | z-score of maximum | Talairach coordinates | Cortical region |
0.533 | 0.446 | 2943 | 0.023 * | R Medial Frontal Gyrus R Precentral Gyrus R Medial Frontal Gyrus | 3.46 3.08 2.92 | 12 42 26 8 32 36 −6 42 −8 | BA9 BA6 BA11 |
Analysis | Cluster Level | Voxel Level | |||||
---|---|---|---|---|---|---|---|
Negative correlation (β-S100) | Cluster p (FEW-corr) | Cluster p (FDR-corr) | Cluster extent | Cortical region | z-score of maximum | Talairach coordinates | Cortical region |
0.001 *** | 0.000 *** | 13,253 | L Supramarginal Gyrus L Middle Temporal Gyrus L Inferior Parietal Lobe | 3.49 3.25 3.20 | −42 −54 46 −58 −26 −12 −50 −40 42 | L BA40 L BA21 L BA40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonomi, C.G.; Chiaravalloti, A.; Camedda, R.; Ricci, F.; Mercuri, N.B.; Schillaci, O.; Koch, G.; Martorana, A.; Motta, C. Functional Correlates of Microglial and Astrocytic Activity in Symptomatic Sporadic Alzheimer’s Disease: A CSF/18F-FDG-PET Study. Biomedicines 2023, 11, 725. https://doi.org/10.3390/biomedicines11030725
Bonomi CG, Chiaravalloti A, Camedda R, Ricci F, Mercuri NB, Schillaci O, Koch G, Martorana A, Motta C. Functional Correlates of Microglial and Astrocytic Activity in Symptomatic Sporadic Alzheimer’s Disease: A CSF/18F-FDG-PET Study. Biomedicines. 2023; 11(3):725. https://doi.org/10.3390/biomedicines11030725
Chicago/Turabian StyleBonomi, Chiara Giuseppina, Agostino Chiaravalloti, Riccardo Camedda, Francesco Ricci, Nicola Biagio Mercuri, Orazio Schillaci, Giacomo Koch, Alessandro Martorana, and Caterina Motta. 2023. "Functional Correlates of Microglial and Astrocytic Activity in Symptomatic Sporadic Alzheimer’s Disease: A CSF/18F-FDG-PET Study" Biomedicines 11, no. 3: 725. https://doi.org/10.3390/biomedicines11030725
APA StyleBonomi, C. G., Chiaravalloti, A., Camedda, R., Ricci, F., Mercuri, N. B., Schillaci, O., Koch, G., Martorana, A., & Motta, C. (2023). Functional Correlates of Microglial and Astrocytic Activity in Symptomatic Sporadic Alzheimer’s Disease: A CSF/18F-FDG-PET Study. Biomedicines, 11(3), 725. https://doi.org/10.3390/biomedicines11030725