Radiation-Induced Nephropathy in the Murine Model Is Ameliorated by Targeting Heparanase
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baradaran-Ghahfarokhi, M. Radiation-induced kidney injury. J. Ren. Inj. Prev. 2012, 1, 49. [Google Scholar] [PubMed]
- Cohen, E.P.; Robbins, M.E. Radiation nephropathy. Semin. Nephrol. 2003, 23, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Robbins, M.E. Radiation-induced alteration of rat mesangial cell transforming growth factor-β and expression of the genes associated with the extracellular matrix. Radiat. Res. 1996, 146, 561–568. [Google Scholar] [CrossRef]
- Hermano, E.; Lerner, I.; Elkin, M. Heparanase enzyme in chronic inflammatory bowel disease and colon cancer. Cell. Mol. Life Sci. 2012, 69, 2501–2513. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chan, H.; Wei, L.; Pan, Z.; Zhang, J.; Li, L. Overexpression of heparanase in ovarian cancer and its clinical significance. Oncol. Rep. 2013, 30, 2279–2287. [Google Scholar] [CrossRef]
- Shinyo, Y.; Kodama, J.; Hongo, A.; Yoshinouchi, M.; Hiramatsu, Y. Heparanase expression is an independent prognostic factor in patients with invasive cervical cancer. Ann. Oncol. 2003, 14, 1505–1510. [Google Scholar] [CrossRef]
- Goldberg, R.; Meirovitz, A.; Abecassis, A.; Hermano, E.; Rubinstein, A.M.; Nahmias, D.; Grinshpun, A.; Peretz, T.; Elkin, M. Regulation of heparanase in diabetes-associated pancreatic carcinoma. Front. Oncol. 2019, 9, 1405. [Google Scholar] [CrossRef]
- Vlodavsky, I.; Singh, P.; Boyango, I.; Gutter-Kapon, L.; Elkin, M.; Sanderson, R.D.; Ilan, N. Heparanase: From basic research to therapeutic applications in cancer and inflammation. Drug Resist. Updat. 2016, 29, 54–75. [Google Scholar] [CrossRef]
- Tang, B.; Yang, S. Involvement of heparanase in gastric cancer progression and immunotherapy. In Heparanase; Springer: Berlin/Heidelberg, Germany, 2020; pp. 351–363. [Google Scholar]
- Cassinelli, G.; Lanzi, C. Heparanase: A potential therapeutic target in sarcomas. In Heparanase: From Basic Research to Clinical Applications; Springer: Chem, Switzerland, 2020; pp. 405–431. [Google Scholar]
- Dredge, K.; Brennan, T.V.; Hammond, E.; Lickliter, J.D.; Lin, L.; Bampton, D.; Handley, P.; Lankesheer, F.; Morrish, G.; Yang, Y. A Phase I study of the novel immunomodulatory agent PG545 (pixatimod) in subjects with advanced solid tumours. Br. J. Cancer 2018, 118, 1035–1041. [Google Scholar] [CrossRef]
- Galli, M.; Chatterjee, M.; Grasso, M.; Specchia, G.; Magen, H.; Einsele, H.; Celeghini, I.; Barbieri, P.; Paoletti, D.; Pace, S. Phase I study of the heparanase inhibitor roneparstat: An innovative approach for ultiple myeloma therapy. Haematologica 2018, 103, e469. [Google Scholar] [CrossRef]
- Sarrazin, S.; Lamanna, W.C.; Esko, J.D. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 2011, 3, a004952. [Google Scholar] [CrossRef]
- Rabelink, T.J.; Van Den Berg, B.M.; Garsen, M.; Wang, G.; Elkin, M.; Van Der Vlag, J. Heparanase: Roles in cell survival, extracellular matrix remodelling and the development of kidney disease. Nat. Rev. Nephrol. 2017, 13, 201–212. [Google Scholar] [CrossRef]
- van der Vlag, J.; Buijsers, B. Heparanase in Kidney Disease. In Heparanase: From Basic Research to Clinical Applications; Springer: Chem, Switzerland, 2020; pp. 647–667. [Google Scholar]
- Abassi, Z.; Goligorsky, M. Heparanase in acute kidney injury. In Heparanase: From Basic Research to Clinical Applications; Springer: Chem, Switzerland, 2020; pp. 685–702. [Google Scholar]
- Masola, V.; Gambaro, G.; Onisto, M. Impact of Heparanse on Organ Fibrosis. In Heparanase: From Basic Research to Clinical Applications; Springer: Chem, Switzerland, 2020; pp. 669–684. [Google Scholar]
- Meirovitz, A.; Hermano, E.; Lerner, I.; Zcharia, E.; Pisano, C.; Peretz, T.; Elkin, M. Role of heparanase in radiation-enhanced invasiveness of pancreatic carcinoma. Cancer Res. 2011, 71, 2772–2780. [Google Scholar] [CrossRef] [PubMed]
- van Kleef, E.; Verheij, M.; Poele, H.t.; Oussoren, Y.; Dewit, L.; Stewart, F. In vitro and in vivo expression of endothelial von Willebrand factor and leukocyte accumulation after fractionated irradiation. Radiat. Res. 2000, 154, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Kuin, A.; Citarella, F.; Oussoren, Y.G.; Van der Wal, A.F.; Dewit, L.G.; Stewart, F.A. Increased glomerular Vwf after kidney irradiation is not due to increased biosynthesis or endothelial cell proliferation. Radiat. Res. 2001, 156, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Andratschke, N.; Schnaitera, A.; Weber, W.A.; Caia, L.; Schill, S.; Wiedenmann, N.; Schwaiger, M.; Molls, M.; Nieder, C. Preclinical evaluation of erythropoietin administration in a model of radiation-induced kidney dysfunction. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 1513–1518. [Google Scholar] [CrossRef]
- Williams, J.P.; Brown, S.L.; Georges, G.E.; Hauer-Jensen, M.; Hill, R.P.; Huser, A.K.; Kirsch, D.G.; MacVittie, T.J.; Mason, K.A.; Medhora, M.M. Animal models for medical countermeasures to radiation exposure. Radiat. Res. 2010, 173, 557–578. [Google Scholar] [CrossRef]
- Gil, N.; Goldberg, R.; Neuman, T.; Garsen, M.; Zcharia, E.; Rubinstein, A.M.; Van Kuppevelt, T.; Meirovitz, A.; Pisano, C.; Li, J.-P. Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes 2012, 61, 208–216. [Google Scholar] [CrossRef]
- Datta, R.; Rubin, E.; Sukhatme, V.; Qureshi, S.; Hallahan, D.; Weichselbaum, R.R.; Kufe, D.W. Ionizing radiation activates transcription of the EGR1 gene via CArG elements. Proc. Natl. Acad. Sci. USA 1992, 89, 10149–10153. [Google Scholar] [CrossRef]
- Zagurovskaya, M.; Shareef, M.; Das, A.; Reeves, A.; Gupta, S.; Sudol, M.; Bedford, M.; Prichard, J.; Mohiuddin, M.; Ahmed, M. EGR-1 forms a complex with YAP-1 and upregulates Bax expression in irradiated prostate carcinoma cells. Oncogene 2009, 28, 1121–1131. [Google Scholar] [CrossRef]
- Ko, Y.S.; Jin, H.; Lee, J.S.; Park, S.W.; Chang, K.C.; Kang, K.M.; Jeong, B.K.; Kim, H.J. Radioresistant breast cancer cells exhibit increased resistance to chemotherapy and enhanced invasive properties due to cancer stem cells. Oncol. Rep. 2018, 40, 3752–3762. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.; Her, S.; Jaffray, D.A. Radiotherapy for cancer: Present and future. Adv. Drug Deliv. Rev. 2017, 109, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Schaue, D.; McBride, W.H. Opportunities and challenges of radiotherapy for treating cancer. Nat. Rev. Clin. Oncol. 2015, 12, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.P.; Premuzic, T.; Cohen, A.P. Radiation nephropathy: Dose, management, and population risk. J. Onco-Nephrol. 2022, 6, 23–28. [Google Scholar] [CrossRef]
- Noseda, A.; Barbieri, P. Roneparstat: Development, preclinical and clinical studies. In Heparanase: From Basic Research to Clinical Applications; Springer: Chem, Switzerland, 2020; pp. 523–538. [Google Scholar]
- Pellegrini, G.; Siwowska, K.; Haller, S.; Antoine, D.J.; Schibli, R.; Kipar, A.; Müller, C. A short-term biological indicator for long-term kidney damage after radionuclide therapy in mice. Pharmaceuticals 2017, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.K.; Maturen, K.E.; Feng, M.U.; Wizauer, E.J.; Watcharotone, K.; Parker, R.A.; Ellis, J.H. Renal remodeling after abdominal radiation therapy: Parenchymal and functional changes. Am. J. Roentgenol. 2014, 203, W192–W198. [Google Scholar] [CrossRef]
- Quiros, R.M.; Rao, G.; Plate, J.; Harris, J.E.; Brunn, G.J.; Platt, J.L.; Gattuso, P.; Prinz, R.A.; Xu, X. Elevated serum heparanase-1 levels in patients with pancreatic carcinoma are associated with poor survival. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2006, 106, 532–540. [Google Scholar] [CrossRef]
- Liu, C.-J.; Chang, J.; Lee, P.-H.; Lin, D.-Y.; Wu, C.-C.; Jeng, L.-B.; Lin, Y.-J.; Mok, K.-T.; Lee, W.-C.; Yeh, H.-Z. Adjuvant heparanase inhibitor PI-88 therapy for hepatocellular carcinoma recurrence. World J. Gastroenterol. WJG 2014, 20, 11384. [Google Scholar] [CrossRef]
- Ostapoff, K.T.; Awasthi, N.; Cenik, B.K.; Hinz, S.; Dredge, K.; Schwarz, R.E.; Brekken, R.A. PG545, an angiogenesis and heparanase inhibitor, reduces primary tumor growth and metastasis in experimental pancreatic cancer. Mol. Cancer Ther. 2013, 12, 1190–1201. [Google Scholar] [CrossRef]
- Mohan, C.D.; Hari, S.; Preetham, H.D.; Rangappa, S.; Barash, U.; Ilan, N.; Nayak, S.C.; Gupta, V.K.; Vlodavsky, I.; Rangappa, K.S. Targeting heparanase in cancer: Inhibition by synthetic, chemically modified, and natural compounds. Iscience 2019, 15, 360–390. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abecassis, A.; Hermano, E.; Sheva, K.; Rubinstein, A.M.; Elkin, M.; Meirovitz, A. Radiation-Induced Nephropathy in the Murine Model Is Ameliorated by Targeting Heparanase. Biomedicines 2023, 11, 710. https://doi.org/10.3390/biomedicines11030710
Abecassis A, Hermano E, Sheva K, Rubinstein AM, Elkin M, Meirovitz A. Radiation-Induced Nephropathy in the Murine Model Is Ameliorated by Targeting Heparanase. Biomedicines. 2023; 11(3):710. https://doi.org/10.3390/biomedicines11030710
Chicago/Turabian StyleAbecassis, Alexia, Esther Hermano, Kim Sheva, Ariel M. Rubinstein, Michael Elkin, and Amichay Meirovitz. 2023. "Radiation-Induced Nephropathy in the Murine Model Is Ameliorated by Targeting Heparanase" Biomedicines 11, no. 3: 710. https://doi.org/10.3390/biomedicines11030710
APA StyleAbecassis, A., Hermano, E., Sheva, K., Rubinstein, A. M., Elkin, M., & Meirovitz, A. (2023). Radiation-Induced Nephropathy in the Murine Model Is Ameliorated by Targeting Heparanase. Biomedicines, 11(3), 710. https://doi.org/10.3390/biomedicines11030710