Microleakage of Class II Bulk-Fill Resin Composite Restorations Cured with Light-Emitting Diode versus Quartz Tungsten-Halogen Light: An In Vitro Study in Human Teeth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Type of Study and Delimitation
2.2. Sample Size and Selection
- A1: Mesial cavity restored with Tetric N-Ceram Bulk-Fill IV-A resin composite, light-cured with Dentamerica® Litex 680A lamp.
- B1: Mesial cavity restored with Tetric N-Ceram Bulk-Fill IV-A resin composite, light-cured with Bluephase N® lamp.
- C1: Mesial cavity restored with Tetric N-Ceram Bulk-Fill IV-A resin composite, light-cured with Valo® lamp.
- A2: Distal cavity restored with Tetric N-Ceram Bulk-Fill IV-B resin composite, light-cured with Litex 680A Dentamerica® lamp.
- B2: Distal cavity restored with Tetric N-Ceram Bulk-Fill IV-B resin composite, light-cured with Bluephase N® lamp.
- C2: Distal cavity restored with Tetric N-Ceram Bulk-Fill IV-B resin composite, light-cured with Valo® lamp.
2.3. Cavity Preparations in Teeth
2.4. Cavity Conditioning
2.5. Restoration of Dental Cavities
- Groups A1 and A2 were light-cured from occlusal for 40 s with a Dentamerica® QTH Litex 680A lamp at 700 mW/cm2 intensity.
- Groups B1 and B2 were light-cured from occlusal for 10 s with a Bluephase N® LED lamp at 1200 mW/cm2 intensity.
- Groups C1 and C2 were light-cured from occlusal for 10 s with a Valo® 3rd generation LED lamp at 1000 mW/cm2 intensity.
2.6. Thermocycling and Teeth Immersion in Dye
2.7. Teeth Sectioning and Observation under a Stereomicroscope
- Score 0 (no microleakage);
- Score 1 (microleakage up to enamel);
- Score 2 (microleakage up to dentin);
- Score 3 (microleakage up to pulp floor).
2.8. Statistical Analysis
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramírez-Vargas, G.G.; Mendoza, J.E.M.Y.; Aliaga-Mariñas, A.S.; Ladera-Castañeda, M.I.; Cervantes-Ganoza, L.A.; Cayo-Rojas, C.F. Effect of polishing on the surface microhardness of nanohybrid composite resins subjected to 35% hydrogen peroxide: An in vitro study. J. Int. Soc. Prevent. Communit. Dent. 2021, 11, 216–221. [Google Scholar]
- Gaviria-Martinez, A.; Castro-Ramirez, L.; Ladera-Castañeda, M.; Cervantes-Ganoza, L.; Cachay-Criado, H.; Alvino-Vales, M.; Garcia-Luna, G.; López-Gurreonero, C.; Cornejo-Pinto, A.; Cayo-Rojas, C.F. Surface roughness and oxygen inhibited layer control in bulk-fill and conventional nanohybrid resin composites with and without polishing: In vitro study. BMC Oral Health 2022, 22, 258. [Google Scholar] [CrossRef]
- Calvo, N. Unidades y Protocolos de Fotocurado. ACODEB 2010, 1, 1–9. Available online: https://studylib.es/doc/8448129/unidades-y-protocolos-de-fotocurado (accessed on 23 January 2022).
- Omidi, B.-R.; Gosili, A.; Jaber-Ansari, M.; Mahdkhah, A. Intensity output and effectiveness of light curing units in dental offices. J. Clin. Exp. Dent. 2018, 10, e555–e560. [Google Scholar] [CrossRef]
- Rueggeberg, F.A.; Giannini, M.; Arrais, C.A.S.; Price, R.B.T. Light curing in dentistry and clinical implications: A literature review. Braz. Oral Res. 2017, 31, e61. [Google Scholar] [CrossRef]
- Kukiattrakoon, B.; Tanthanuch, S. The effect of curing time by conventional quartz tungsten halogens and new light-emitting diodes light curing units on degree of conversion and microhardness of a nanohybrid resin composite. J. Conserv. Dent. 2019, 22, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Ogliari, F.A.; Campregher, U.B.; Samuel, S.M.W.; Fortes, C.B.B.; Medina, A.D.C.; Collares, F.M. Effectiveness of Second-generation Light-emitting Diode (LED) Light Curing Units. J. Contemp. Dent. Pract. 2007, 8, 35–42. Available online: https://www.thejcdp.com/doi/pdf/10.5005/jcdp-8-2-35. (accessed on 25 January 2022). [CrossRef]
- Alquria, T.; Al Gady, M.; Khabeer, A.; Ali, S. Types of polymerisation units and their intensity output in private dental clinics of twin cities in eastern province, KSA; A pilot study. J. Taibah Univ. Med. Sci. 2018, 14, 47–51. [Google Scholar] [CrossRef]
- Ortiz, J.R.F.; Sánchez, C.A.M.; Meza, E.A.Y.; Luna, L.E. Profundidad de curado de resinas con diferentes fotoiniciadores polimerizadas con dos lámparas LED. Univ. Odontológica 2008, 27, 15–22. [Google Scholar]
- Esmaeili, B.; Safarcherati, H.; Vaezi, A. Hardness Evaluation of Composite Resins Cured with QTH and LED. J. Dent. Res. Dent. Clin. Dent. Prospect. 2014, 8, 40–44. [Google Scholar] [CrossRef]
- Ivoclar Vivadent. Bluephase N. Colombia: 2014. Available online: https://www.ivoclarvivadent.co/es-co/p/odontologo/bluephase-n (accessed on 12 January 2022).
- Kumar, S.R.; Luddin, N.; Mohammad, Z.K.M.; Alam, M.K. The Effect of Microleakage on Composite Resin Restorations Cured by Different Light Curing Units (LCU). Int. Med. J. 2014, 21, 101–105. Available online: https://www.researchgate.net/publication/260790411 (accessed on 27 January 2022).
- He, Z.; Shimada, Y.; Tagami, J. The effects of cavity size and incremental technique on micro-tensile bond strength of resin composite in Class I cavities. Dent. Mater. 2007, 23, 533–538. [Google Scholar] [CrossRef]
- Zakavi, F.; Hagh, L.G.; Sadeghian, S.; Freckelton, V.; Daraeighadikolaei, A.; Ghanatir, E.; Zarnaghash, N. Evaluation of microleakage of class II dental composite resin restorations cured with LED or QTH dental curing light; Blind, Cluster Randomized, In vitro cross sectional study. BMC Res. Notes 2014, 7, 416. [Google Scholar] [CrossRef] [PubMed]
- Cayo-Rojas, C.F.; Hernández-Caba, K.K.; Aliaga-Mariñas, A.S.; Ladera-Castañeda, M.I.; Cervantes-Ganoza, L.A. Microleakage in class II restorations of two bulk fill resin composites and a conventional nanohybrid resin composite: An in vitro study at 10,000 thermocycles. BMC Oral Health 2021, 21, 619. [Google Scholar] [CrossRef] [PubMed]
- Ludovichetti, F.S.; Lucchi, P.; Zambon, G.; Pezzato, L.; Bertolini, R.; Zerman, N.; Stellini, E.; Mazzoleni, S. Depth of Cure, Hardness, Roughness and Filler Dimension of Bulk-Fill Flowable, Conventional Flowable and High-Strength Universal Injectable Composites: An In Vitro Study. Nanomaterials 2022, 12, 1951. [Google Scholar] [CrossRef] [PubMed]
- Krithikadatta, J.; Datta, M.; Gopikrishna, V. CRIS Guidelines (Checklist for Reporting In-vitro Studies): A concept note on the need for standardized guidelines for improving quality and transparency in reporting in-vitro studies in experimental dental research. J. Conserv. Dent. 2014, 17, 301–304. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. Declaration of Helsinki of the World Medical Association. Ethical principles for medical research on human beings. In Proceedings of the 64th General Assembly of the WMA, Fortaleza, Brazil, October 2013. [Google Scholar]
- Van Meerbeek, B.; Yoshihara, K.; Van Landuyt, K.; Yoshida, Y.; Peumans, M. From Buonocore’s Pioneering Acid-Etch Technique to Self-Adhering Restoratives. A Status Perspective of Rapidly Advancing Dental Adhesive Technology. J. Adhes. Dent. 2020, 22, 7–34. [Google Scholar]
- Cayo, C.; Llancari, L.; Mendoza, R.; Cervantes, L. Marginal filling and adhesive resistance of bulk fill resin applying 18% edta gel compared with 37% phosphoric acid gel in vitro dental conditioning. J. Oral Res. 2019, 8, 228–235. [Google Scholar] [CrossRef]
- Atay, A.; Palazli, Z.; Gürdal, I.; Üşümez, A. Color Change of Different Dual-Cure Resin Cements After Thermocycling. Odovtos. Int. J. Dent. Sc. 2019, 21, 53–62. [Google Scholar] [CrossRef]
- ISO/TS 11405:2015. Dentistry—Testing of Adhesion to Tooth Structure. Available online: https://www.iso.org/standard/62898.html (accessed on 27 March 2022).
- Cheong, A.; Abdul, N.; Wan, W.; Alam, M. Comparison between microleakage of composite and porcelain in class V restoration: An in vitro study. Interntional Med. J. 2013, 20, 359–362. Available online: https://www.researchgate.net/publication/250613545_Comparison_between_Microleakage_of_Composite_and_Porcelain_in_Class_V_Restoration_An_in_vitro_Study (accessed on 25 January 2022).
- Craig, G.; Robert, M. Dental Material Restorative, 11th ed.; Mosby: St. Louis, MI, USA, 2006; Volume 187, p. 144. [Google Scholar]
- Bala, O.; Uçtasli, M.B.; Tüz, M.A. Barcoll hardness of different resin-based composites cured by halogen or light emitting diode (LED). Oper. Dent. 2005, 30, 69–74. Available online: https://pubmed.ncbi.nlm.nih.gov/15765960/ (accessed on 17 January 2022).
- Son, S.-A.; Park, J.-K.; Seo, D.-G.; Ko, C.-C.; Kwon, Y.H. How light attenuation and filler content affect the microhardness and polymerization shrinkage and translucency of bulk-fill composites? Clin. Oral Investig. 2016, 21, 559–565. [Google Scholar] [CrossRef]
- Carrillo-Marcos, A.; Salazar-Correa, G.; Castro-Ramirez, L.; Ladera-Castañeda, M.; López-Gurreonero, C.; Cachay-Criado, H.; Aliaga-Mariñas, A.; Cornejo-Pinto, A.; Cervantes-Ganoza, L.; Cayo-Rojas, C.F. The Microhardness and Surface Roughness Assessment of Bulk-Fill Resin Composites Treated with and without the Application of an Oxygen-Inhibited Layer and a Polishing System: An In Vitro Study. Polymers 2022, 14, 3053. [Google Scholar] [CrossRef] [PubMed]
- Alkhudhairy, F. Wear Resistance of Bulk-fill Composite Resin Restorative Materials Polymerized under different Curing Intensities. J. Contemp. Dent. Pract. 2017, 18, 39–43. [Google Scholar] [CrossRef]
- Mosharrafian, S.; Heidari, A.; Rahbar, P. Microleakage of Two Bulk Fill and One Conventional Composite in Class II Restorations of Primary Posterior Teeth. J. Dent. 2017, 14, 123–131. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5694844/ (accessed on 19 January 2022).
- Marí, L.G.; GIL, A.C.; Puy, C.L. In vitro evaluation of microleakage in Class II composite restorations: High-viscosity bulk-fill vs conventional composites. Dent. Mater. J. 2019, 38, 721–727. [Google Scholar] [CrossRef]
- Kianvash Rad, N.; Javid, B.; Panahandeh, N.; Ghasemi, A.; Kamali, A.; Mohammadi, G. Microleakage of bulk-fill composites at two different time points. J. Dent. Sch. 2016, 34, 225–234. Available online: https://www.researchgate.net/publication/313599453_Microleakage_of_Bulk-Fill_Composites_at_Two_Different_Time_Points (accessed on 29 January 2022).
- Morresi, A.L.; D’Amario, M.; Capogreco, M.; Gatto, R.; Marzo, G.; D’Arcangelo, C.; Monaco, A. Thermal cycling for restorative materials: Does a standardized protocol exist in laboratory testing? A literature review. J. Mech. Behav. Biomed. Mater. 2014, 29, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Gale, M.; Darvell, B. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. Available online: http://facdent.hku.hk/biomat/publications/098%20Thermocycling.pdf (accessed on 29 January 2022). [CrossRef] [PubMed]
- Amaral, F.L.B.; Colucci, V.; Palma-Dibb, R.; Corona, S. Assessment of In Vitro Methods Used to Promote Adhesive Interface Degradation: A Critical Review. J. Esthet. Restor. Dent. 2007, 19, 340–353. [Google Scholar] [CrossRef] [PubMed]
- Stewardson, D.A.; Shortall, A.C.; Marquis, P.M. The effect of clinically relevant thermocycling on the flexural properties of endodontic post materials. J. Dent. 2010, 38, 437–442. [Google Scholar] [CrossRef]
- Michailesco, P.; Marciano, J.; Grieve, A.; Abadie, M. An in vivo recording of variations in oral temperature during meals: A pilot study. J. Prosthet. Dent. 1995, 73, 214–218. [Google Scholar] [CrossRef]
- de Goes, M.F.; Montes, M.A.J.R. Evaluation of silver methenamine method for nanoleakage. J. Dent. 2004, 32, 391–398. [Google Scholar] [CrossRef]
- Rengo, C.; Spagnuolo, G.; Ametrano, G.; Goracci, C.; Nappo, A.; Rengo, S.; Ferrari, M. Marginal leakage of bulk fill composites in Class II restorations: A microCT and digital microscope analysis. Int. J. Adhes. Adhes. 2015, 60, 123–129. [Google Scholar] [CrossRef]
- Han, S.-H.; Sadr, A.; Tagami, J.; Park, S.-H. Internal adaptation of resin composites at two configurations: Influence of polymerization shrinkage and stress. Dent. Mater. 2016, 32, 1085–1094. [Google Scholar] [CrossRef]
- Oberholzer, T.G.; Schünemann, M.; Kidd, M. Effect of LED curing on microleakage and microhardness of Class V resin-based composite restorations. Am. J. Dent. 2004, 54, 15–20. [Google Scholar] [CrossRef]
- Zorzin, J.; Maier, E.; Harre, S.; Fey, T.; Belli, R.; Lohbauer, U.; Petschelt, A.; Taschner, M. Bulk-fill resin composites: Polymerization properties and extended light curing. Dent. Mater. 2015, 31, 293–301. [Google Scholar] [CrossRef]
- Uhl, A.; Mills, R.W.; Jandt, K.D. Polymerization and light-induced heat of dental composites cured with LED and halogen technology. Biomaterials 2003, 24, 1809–1820. [Google Scholar] [CrossRef]
- Rueggeberg, F.A. State-of-the-art: Dental photocuring—A review. Dent. Mater. 2011, 27, 39–52. [Google Scholar] [CrossRef]
- Jandt, K.D.; Mills, R.W. A brief history of LED photopolymerization. Dent. Mater. 2013, 29, 605–617. [Google Scholar] [CrossRef]
- Rooz, M.N.; Jordehi, A.Y. Effect of Shade and Thickness on the Depth of Cure of Bulk-Fill Composites with Different Viscosities. J. Dent. 2020, 21, 322–329. [Google Scholar] [CrossRef]
- Pirmoradian, M.; Hooshmand, T.; Jafari-Semnani, S.; Fadavi, F. Degree of conversion and microhardness of bulk-fill dental composites polymerized by LED and QTH light curing units. J. Oral Biosci. 2020, 62, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Contreras, S.C.M.; Jurema, A.L.B.; Claudino, E.S.; Bresciani, E.; Caneppele, T.M.F. Monowave and polywave light-curing of bulk-fill resin composites: Degree of conversion and marginal adaptation following thermomechanical aging. Biomater. Investig. Dent. 2021, 8, 72–78. [Google Scholar] [CrossRef]
- Rossouw, R.J.; Grobler, S.R.; Theunis, J.; Kotze, W. A comparison of microleakages of five different recent bonding agents/systems in enamel and dentine. SADJ 2007, 62, 213–218. [Google Scholar]
- Cayo, C.; Carrillo, A. Marginal sealing applying sodium hypochlorite versus phosphoric acid as dental conditioner. Rev. Cubana Estomatol. 2020, 57, e2872. [Google Scholar]
- De Munck, J.; Van Landuyt, K.; Peumans, M.; Poitevin, A.; Lambrechts, P.; Braem, M.; Van Meerbeek, B. A Critical Review of the Durability of Adhesion to Tooth Tissue: Methods and Results. J. Dent. Res. 2005, 84, 118–132. [Google Scholar] [CrossRef]
- Rahiotis, C.; Kakaboura, A.; Loukidis, M.; Vougiouklakis, G. Curing efficiency of various types of light-curing units. Eur. J. Oral Sci. 2004, 112, 89–94. [Google Scholar] [CrossRef]
- Nassar, H.M.; Almutairi, M.; Makhdom, A. Irradiance of different curing modes of common light cure devices: An in vitro study. J. Int. Soc. Prev. Community Dent. 2020, 10, 177–182. [Google Scholar] [CrossRef]
- Schober, P.; Vetter, T.R. Nonparametric Statistical Methods in Medical Research. Anesth Analg. 2020, 131, 1862–1863. [Google Scholar] [CrossRef]
- León, M.; Mederos, M.; Cuevas, C.; Maglione, F.; Grazioli, G. In vitro study of the relationship between bond strength to dental enamel and microleakage in photopolymerizable composite resins. Odontoestomatología 2020, 22, 38–49. [Google Scholar] [CrossRef]
Product | Type | Composition | Filler % (wt-vol) | Manufacturer | Lot |
---|---|---|---|---|---|
Tetric ® N-Ceram Bulk-Fill (IV-A and IV-B) | Nanohybrid bulk fill | Matrix: bis-GMA, bis-EMA, UDMA Filler: barium silicate aluminum glass, “isofiller” (prepolymer, glass and ytterbium fluoride), ytterbium fluoride, and mixed oxides | 76 wt%—54 vol% | Ivoclar Vivadent, Schaan, Liechtenstein | Y44813/ Y39907 |
Etching gel Eco-Etch® | Phosphoric acid (37% by weight in water), thickeners, and pigments | Ivoclar Vivadent, Schaan, Liechtenstein | Y39461 | ||
Tetric® N-Bond Adhesive | Phosphoric acid acrylate, HEMA, Bis-GMA, urethane dimethricrylate, ethanol, film-forming agent, indicators, and stabilizers. | Ivoclar Vivadent, Schaan, Liechtenstein | Y43470 | ||
Light curing unit | Type of technology | Light intensity | Radiation time | Wavelength | Manufacturer |
QTH Litex 680A | QTH | 500 mW/cm2 | 40 s | 350–520 nm | Dentamerica, City of Industry, CA, USA |
LED Bluephase N | LED polywave | 1200 mW/cm2 | 10 s | 385–515 nm | Ivoclar Vivadent, Liechtenstein |
LED Valo | LED polywave | 1000 mW/cm2 | 10 s | 395–480 nm | Ultradent, South Jordan, UT, USA |
Light Curing Unit | Area | Color | Score 0 | Score 1 | Score 2 | Score 3 | Total | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
f | % | f | % | f | % | f | % | n | % | |||
QTH Litex 680A | Occlusal | IV-A | 5 | 50% | 5 | 50% | 0 | 0% | 0 | 0% | 10 | 100% |
IV-B | 3 | 30% | 4 | 40% | 3 | 30% | 0 | 0% | 10 | 100% | ||
Cervical | IV-A | 2 | 20% | 8 | 80% | 0 | 0% | 0 | 0% | 10 | 100% | |
IV-B | 0 | 0% | 5 | 50% | 4 | 40% | 1 | 10% | 10 | 100% | ||
LED Bluephase N | Occlusal | IV-A | 7 | 70% | 3 | 30% | 0 | 0% | 0 | 0% | 10 | 100% |
IV-B | 5 | 50% | 3 | 30% | 2 | 20% | 0 | 0% | 10 | 100% | ||
Cervical | IV-A | 4 | 40% | 6 | 60% | 0 | 0% | 0 | 0% | 10 | 100% | |
IV-B | 0 | 0% | 9 | 90% | 0 | 0% | 1 | 10% | 10 | 100% | ||
LED Valo | Occlusal | IV-A | 6 | 60% | 4 | 40% | 0 | 0% | 0 | 0% | 10 | 100% |
IV-B | 3 | 30% | 6 | 60% | 1 | 10% | 0 | 0% | 10 | 100% | ||
Cervical | IV-A | 5 | 50% | 5 | 50% | 0 | 0% | 0 | 0% | 10 | 100% | |
IV-B | 2 | 20% | 6 | 60% | 2 | 20% | 0 | 0% | 10 | 100% |
Area | Color | Light Curing Unit | n | Median | IQR | p-Value * |
---|---|---|---|---|---|---|
Occlusal | IV-A | QTH Litex 680A | 10 | 0.50 | 1 | 0.668 |
LED Bluephase N | 10 | 0.00 | 1 | |||
LED Valo | 10 | 0.00 | 1 | |||
IV-B | QTH Litex 680A | 10 | 1.00 | 2 | 0.656 | |
LED Bluephase N | 10 | 0.50 | 1 | |||
LED Valo | 10 | 1.00 | 1 | |||
Cervical | IV-A | QTH Litex 680A | 10 | 1.00 | 0 | 0.379 |
LED Bluephase N | 10 | 1.00 | 1 | |||
LED Valo | 10 | 0.50 | 1 | |||
IV-B | QTH Litex 680A | 10 | 1.50 | 1 | 0.112 | |
LED Bluephase N | 10 | 1.00 | 0 | |||
LED Valo | 10 | 1.00 | 1 |
Light Curing Unit | Color | Area | n | Median | IQR | p-Value * |
---|---|---|---|---|---|---|
QTH Litex 680A | IV-A | Occlusal | 10 | 0.50 | 1 | 0.280 |
Cervical | 10 | 1.00 | 0 | |||
IV-B | Occlusal | 10 | 1.00 | 2 | 0.165 | |
Cervical | 10 | 1.50 | 1 | |||
LED Bluephase N | IV-A | Occlusal | 10 | 0.00 | 1 | 0.280 |
Cervical | 10 | 1.00 | 1 | |||
IV-B | Occlusal | 10 | 0.50 | 1 | 0.165 | |
Cervical | 10 | 1.00 | 0 | |||
LED Valo | IV-A | Occlusal | 10 | 0.00 | 1 | 0.739 |
Cervical | 10 | 0.50 | 1 | |||
IV-B | Occlusal | 10 | 1.00 | 1 | 0.579 | |
Cervical | 10 | 1.00 | 1 |
Light Curing Unit | Area | Color | n | Median | IQR | p-Value * |
---|---|---|---|---|---|---|
QTH Litex 680A | Occlusal | IV-A | 10 | 0.50 | 1 | 0.190 |
IV-B | 10 | 1.00 | 2 | |||
Cervical | IV-A | 10 | 1.00 | 0 | 0.023 * | |
IV-B | 10 | 1.50 | 1 | |||
LED Bluephase N | Occlusal | IV-A | 10 | 0.00 | 1 | 0.353 |
IV-B | 10 | 0.50 | 1 | |||
Cervical | IV-A | 10 | 1.00 | 1 | 0.089 | |
IV-B | 10 | 1.00 | 0 | |||
LED Valo | Occlusal | IV-A | 10 | 0.00 | 1 | 0.218 |
IV-B | 10 | 1.00 | 1 | |||
Cervical | IV-A | 10 | 0.50 | 1 | 0.143 | |
IV-B | 10 | 1.00 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Torres, J.; Hernández-Caba, K.; Cervantes-Ganoza, L.; Ladera-Castañeda, M.; Martínez-Campos, R.; Solís-Dante, F.; Briceño-Vergel, G.; Cayo-Rojas, C. Microleakage of Class II Bulk-Fill Resin Composite Restorations Cured with Light-Emitting Diode versus Quartz Tungsten-Halogen Light: An In Vitro Study in Human Teeth. Biomedicines 2023, 11, 556. https://doi.org/10.3390/biomedicines11020556
López-Torres J, Hernández-Caba K, Cervantes-Ganoza L, Ladera-Castañeda M, Martínez-Campos R, Solís-Dante F, Briceño-Vergel G, Cayo-Rojas C. Microleakage of Class II Bulk-Fill Resin Composite Restorations Cured with Light-Emitting Diode versus Quartz Tungsten-Halogen Light: An In Vitro Study in Human Teeth. Biomedicines. 2023; 11(2):556. https://doi.org/10.3390/biomedicines11020556
Chicago/Turabian StyleLópez-Torres, Jenny, Karen Hernández-Caba, Luis Cervantes-Ganoza, Marysela Ladera-Castañeda, Reynaldo Martínez-Campos, Fredy Solís-Dante, Gissela Briceño-Vergel, and César Cayo-Rojas. 2023. "Microleakage of Class II Bulk-Fill Resin Composite Restorations Cured with Light-Emitting Diode versus Quartz Tungsten-Halogen Light: An In Vitro Study in Human Teeth" Biomedicines 11, no. 2: 556. https://doi.org/10.3390/biomedicines11020556
APA StyleLópez-Torres, J., Hernández-Caba, K., Cervantes-Ganoza, L., Ladera-Castañeda, M., Martínez-Campos, R., Solís-Dante, F., Briceño-Vergel, G., & Cayo-Rojas, C. (2023). Microleakage of Class II Bulk-Fill Resin Composite Restorations Cured with Light-Emitting Diode versus Quartz Tungsten-Halogen Light: An In Vitro Study in Human Teeth. Biomedicines, 11(2), 556. https://doi.org/10.3390/biomedicines11020556