The Effectiveness and Toxicity of Frameless CyberKnife Based Radiosurgery for Parkinson’s Disease—Phase II Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Exclusion Criteria
2.3. Radiosurgery
2.4. Follow-Up
2.5. Statistical Analysis
3. Results
3.1. Patient and Treatment Data
3.2. Follow-Up and Treatment Response
3.3. Treatment Toxicity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peplow, P.V.; Martinez, B.; Gennarelli, T.A. (Eds.) Biomarkers in Parkinson’s Disease. Neurodegenerative Diseases Biomarkers. In Neuromethods; Humana: New York, NY, USA, 2022; Volume 173, pp. 155–180. [Google Scholar]
- Hooper, A.K.; Okun, M.S.; Foote, K.D.; Fernandez, H.H.; Jacobson, C.; Zeilman, P.; Romrell, J.; Rodriguez, R.L. Clinical cases where lesion therapy was chosen over deep brain stimulation. Stereotact. Funct. Neurosurg. 2008, 86, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Gökçal, E.; Gür, V.E.; Selvitop, R.; Babacan Yildiz, G.; Asil, T. Motor and Non-Motor Symptoms in Parkinson’s Disease: Effects on Quality of Life. Noro Psikiyatr. Ars 2017, 54, 143–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parkinson’s Disease in Adults NICE Guideline [NG71]. Published 19 July 2017. Available online: https://www.nice.org.uk/guidance/ng71 (accessed on 20 June 2022).
- Pahwa, R.; Lyons, K.E.; Wilkinson, S.B.; Simpson, R.K., Jr.; Ondo, W.G.; Tarsy, D.; Norregaard, T.; Hubble, J.P.; Smith, D.A.; Hauser, R.A.; et al. Long-term evaluation of deep brain stimulation of the thalamus. J. Neurosurg. 2006, 104, 506–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, J.J.; Katzenschlager, R.; Bloem, B.R.; Bonuccelli, U.; Burn, D.; Deuschl, G.; Dietrichs, E.; Fabbrini, G.; Friedman, A.; Kanovsky, P.; et al. Summary of the recommendations of the EFNS/MDS-ES review on therapeutic management of Parkinson’s disease. Eur. J. Neurol. 2013, 20, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Niranjan, A.; Jawahar, A.; Kondziolka, D.; Lunsford, L.D. A comparison of surgical approaches for the management of tremor: Radiofrequency thalamotomy, gamma knife thalamotomy and thalamic stimulation. Stereotact. Funct. Neurosurg. 1999, 72, 178–184. [Google Scholar] [CrossRef]
- Sinai, A.; Nassar, M.; Sprecher, E.; Constantinescu, M.; Zaaroor, M.; Schlesinger, I. Focused Ultrasound Thalamotomy in Tremor Dominant Parkinson’s Disease: Long-Term Results. J. Park. Dis. 2022, 12, 199–206. [Google Scholar] [CrossRef]
- Young, R.F.; Li, F.; Vermeulen, S.; Meier, R. Gamma knife thalamotomy for treatment of essential tremor: Long-term results. J. Neurosurg. 2010, 112, 1311–1317. [Google Scholar] [CrossRef]
- Ohye, C.; Higuchi, Y.; Shibazaki, T.; Hashimoto, T.; Koyama, T.; Hirai, T.; Matsuda, S.; Serizawa, T.; Hori, T.; Hayashi, M.; et al. Gamma knife thalamotomy for parkinson disease and essential tremor: A prospective multicenter study. Neurosurgery 2012, 70, 526–535, Discussion in Neurosurgery 2012, 70, 535–536. [Google Scholar] [CrossRef]
- Pérez-Sánchez, J.R.; Martínez-Álvarez, R.; Martínez Moreno, N.E.; Torres Diaz, C.; Rey, G.; Pareés, I.; Del Barrio, A.A.; Álvarez-Linera, J.; Kurtis, M.M. Gamma Knife® stereotactic radiosurgery as a treatment for essential and parkinsonian tremor: Long-term experience. Neurol. Engl. Ed. 2022, in press. [Google Scholar] [CrossRef]
- Young, R.F.; Jacques, S.; Mark, R.; Kopyov, O.; Copcutt, B.; Posewitz, A.; Li, F. Gamma knife thalamotomy for treatment of tremor: Long-term results. J. Neurosurg. 2000, 93, 128–135. [Google Scholar] [CrossRef]
- Friehs, G.M.; Park, M.C.; Goldman, M.A.; Zerris, V.A.; Norén, G.; Sampath, P. Stereotactic radiosurgery for functional disorders. Neurosurg. Focus 2007, 23, E3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franzini, A.; Marchetti, M.; Brait, L.; Milanesi, I.; Messina, G.; Forapani, E.; Broggi, G.; Fariselli, L. Deep brain stimulation and frameless stereotactic radiosurgery in the treatment of bilateral parkinsonian tremor: Target selection and case report of two patients. Acta Neurochir. 2011, 153, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Frighetto, L.; De Salles, A.; Wallace, R.; Ford, J.; Selch, M.; Cabatan-Awang, C.; Solberg, T. Linear accelerator thalamotomy. Surg. Neurol. 2004, 62, 106–113; Discussion 113–114. [Google Scholar] [CrossRef]
- Martínez-Moreno, N.E.; Sahgal, A.; De Salles, A.; Hayashi, M.; Levivier, M.; Ma, L.; Paddick, I.; Régis, J.; Ryu, S.; Slotman, B.J.; et al. Stereotactic radiosurgery for tremor: Systematic review. J. Neurosurg. 2018, 130, 589–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, W.; Sharim, J.; Tenn, S.; Kaprealian, T.; Bordelon, Y.; Agazaryan, N.; Pouratian, N. Diffusion tractography imaging-guided frameless linear accelerator stereotactic radiosurgical thalamotomy for tremor: Case report. J. Neurosurg. 2018, 128, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Khattab, M.H.; Cmelak, A.J.; Sherry, A.D.; Luo, G.; Wang, L.; Yu, H.; Hedera, P.; Phibbs, F.T.; Lindsell, C.J.; Neimat, J.; et al. Noninvasive Thalamotomy for Refractory Tremor by Frameless Radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.D.; Stetz, J.A.; Pajak, T.F. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European organization for research and treatment of cancer (EORTC). Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1341–1346. [Google Scholar] [CrossRef]
- Stancanello, J.; Romanelli, P.; Modugno, N.; Cerveri, P.; Ferrigno, G.; Uggeri, F.; Cantore, G. Atlas-based identification of targets for functional radiosurgery. Med. Phys. 2006, 33, 1603–1611. [Google Scholar] [CrossRef]
- Stancanello, J.; Romanelli, P.; Pantelis, E.; Sebastiano, F.; Modugno, N. Atlas-based functional radiosurgery: Early results. Med. Phys. 2009, 36, 457–463. [Google Scholar] [CrossRef] [Green Version]
- De Martin, E.; Duran, D.; Ghielmetti, F.; Visani, E.; Aquino, D.; Marchetti, M.; Sebastiano, D.R.; Cusumano, D.; Bruzzone, M.G.; Panzica, F.; et al. Integration of Functional Magnetic Resonance Imaging and Magnetoencephalography Functional Maps Into a CyberKnife Planning System: Feasibility Study for Motor Activity Localization and Dose Planning. World Neurosurg. 2017, 108, 756–762. [Google Scholar] [CrossRef]
- Timmerman, R.D. An overview of hypofractionation and introduction to this issue of seminars in radiation oncology. Semin. Radiat. Oncol. 2008, 18, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Potters, L.; Kavanagh, B.; Galvin, J.M.; Hevezi, M.J.; Janjan, N.A.; Larson, D.A.; Mehta, M.P.; Ryu, S.; Steinberg, M.; Timmerman, R.; et al. American Society for Therapeutic Radiology and Oncology; American College of Radiology. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) practice guideline for the performance of stereotactic body radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Koga, T.; Shin, M.; Saito, N. Role of γ knife radiosurgery in neurosurgery: Past and future perspectives. Neurol. Med. Chir. 2010, 50, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Campbell, A.M.; Glover, J.; Chiang, V.L.S.; Gerrard, J.; Yu, J.B. Gamma knife stereotactic radiosurgical thalamotomy for intractable tremor: A systematic review of the literature. Radiother. Oncol. 2015, 114, 296–301. [Google Scholar] [CrossRef]
- Drummond, P.S.; Pourfar, M.H.; Hill, T.C.; Mogilner, A.Y.; Kondziolka, D.S. Subthalamic Gamma Knife Radiosurgery in Parkinson’s Disease: A Cautionary Tale. Stereotact. Funct. Neurosurg. 2020, 98, 110–117. [Google Scholar] [CrossRef]
- Renier, C.; Massager, N. Targeting inaccuracy caused by mechanical distortion of the Leksell stereotactic frame during fixation. J. Appl. Clin. Med. Phys. 2019, 20, 27–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas-Villabona, A.; Miszkiel, K.; Kitchen, N.; Jäger, R.; Paddick, I. Evaluation of the stability of the stereotactic Leksell Frame G in Gamma Knife radiosurgery. J. Appl. Clin. Med. Phys. 2016, 17, 75–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, G.; Neimat, J.S.; Cmelak, A.; Kirschner, A.N.; Attia, A.; Morales-Paliza, M.; Ding, G.X. Margin of error for a frameless image guided radiosurgery system: Direct confirmation based on posttreatment MRI scans. Pract. Radiat. Oncol. 2017, 7, e223–e231. [Google Scholar] [CrossRef]
- Kang, C.L.; Liu, S.C.; Wang, J.C.; Liao, K.C.; Huang, Y.J.; Fang, F.M.; Liao, T.-I.; Juan, K.-J.; Huang, C.-C. Comparison of Skull Motions in Six Degrees of Freedom between Two Head Supports during Frameless Radiosurgery by CyberKnife. Front. Oncol. 2018, 8, 359. [Google Scholar] [CrossRef]
- Witjas, T.; Carron, R.; Krack, P.; Eusebio, A.; Vaugoyeau, M.; Hariz, M.; Azulay, J.P.; Régis, J. A prospective single-blind study of Gamma Knife thalamotomy for tremor. Neurology 2015, 85, 1562–1568. [Google Scholar] [CrossRef]
- Lim, S.-Y.; Hodaie, M.; Fallis, M.; Poon, Y.-Y.; Mazzella, F.; Moro, E. Gamma knife thalamotomy for disabling tremor: A blinded evaluation. Arch. Neurol. 2010, 67, 584–588. [Google Scholar] [CrossRef] [PubMed]
Organs at Risk (OAR) | OAR’s Dose Constraints [Gy] |
---|---|
Capsula interna | Dmax 35 |
Brainstem | Dmax 8 Max point dose 15 V10 < 0.5 cc |
Chiasm | Dmax 8 Max point dose 1 |
Optic nerves | Dmax 8 |
Lenses | Dmax 4 |
Patient Characteristics | Value (%) | |
---|---|---|
Age at the time of radiosurgery | Median 64 years (range 53–81, SD ± 6.6) | |
Gender | Female Male | 3 (14%) 18 (86%) |
Performance status (ECOG) | 0 1 | 7 (33%) 14 (67%) |
Tremor dominant side | Right Left | 14 (67%) 7 (33%) |
Duration of tremor (months) | Median 96 (range 36–192) | |
Parkinson’s disease medications | Levodopa Benserazide Carbidopa Amantadine Rasagiline Biperiden Entacapone Other DOPA receptor agonists Other anti-tremor drugs Other drugs (mainly antidepressants) | 19 (90%) 15 (71%) 8 (38%) 4 (19%) 1 (5%) 2 (10%) 2 (10%) 4 (19%) 6 (29%) 8 (38%) |
Daily levodopa dose (milligrams) | Median 800 (range 0–1800) | |
Comorbidities | Lack of comorbidities Cardiovascular diseases Osteoarthritis Diabetes mellitus Type 2 Cancer (in anamnesis) No data | 4 (19%) 9 (43%) 6 (29%) 6 (29%) 6 (29%) 1 (5%) |
Volume | Dose Delivered (Gray) | |
---|---|---|
Clinical target volume | Median | 85 (range 70–105) |
Capsula interna | Maximum dose Mean dose | 8.09–34.01 (median 23.79) 2.35–10.10 (median 4.76) |
Brainstem | Maximum dose Mean dose | 2.51–10.31 (median 8.00) 0.53–1.34 (median 0.84) |
Chiasm | Maximum dose | 0.65–8.49 (median 1.70) |
Optic nerves | Maximum dose | 0.19–4.08 (median 0.60) |
Lenses | Maximum dose | 0.01–0.24 (median 0.20) |
Time of Control Visit | 3 Months | 6 Months | 9 Months | 12 Months | Last Follow-Up Visit | |
---|---|---|---|---|---|---|
Number of Patients at Follow-Up Visit | 19 | 16 | 14 | 16 | 21 | |
Tremor evaluation | ||||||
Less severe | 12 (57%) | 3 (14%) | 1 (5%) | 3 (14%) | 4 (19%) | |
No changes | 6 (29%) | 10 (48%) | 11 (52%) | 11 (52%) | 14 (67%) | |
More severe | 1 (5%) | 3 (14%) | 2 (10%) | 2 (10%) | 3 (14%) | |
No data | 2 (9%) | 5 (24%) | 7 (33%) | 5 (24%) | - | |
Subjective improvement | ||||||
Yes | 16 (76%) | 11 (52%) | 8 (38%) | 11 (52%) | 13 (62%) | |
No | 3 (14%) | 5 (24%) | 6 (29%) | 5 (24%) | 8 (38%) | |
No data | 2 (9%) | 5 (24%) | 7 (33%) | 5 (24%) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goc, B.; Roch-Zniszczoł, A.; Larysz, D.; Zarudzki, Ł.; Stąpór-Fudzińska, M.; Rożek, A.; Woźniak, G.; Boczarska-Jedynak, M.; Miszczyk, L.; Napieralska, A. The Effectiveness and Toxicity of Frameless CyberKnife Based Radiosurgery for Parkinson’s Disease—Phase II Study. Biomedicines 2023, 11, 288. https://doi.org/10.3390/biomedicines11020288
Goc B, Roch-Zniszczoł A, Larysz D, Zarudzki Ł, Stąpór-Fudzińska M, Rożek A, Woźniak G, Boczarska-Jedynak M, Miszczyk L, Napieralska A. The Effectiveness and Toxicity of Frameless CyberKnife Based Radiosurgery for Parkinson’s Disease—Phase II Study. Biomedicines. 2023; 11(2):288. https://doi.org/10.3390/biomedicines11020288
Chicago/Turabian StyleGoc, Bartłomiej, Agata Roch-Zniszczoł, Dawid Larysz, Łukasz Zarudzki, Małgorzata Stąpór-Fudzińska, Agnieszka Rożek, Grzegorz Woźniak, Magdalena Boczarska-Jedynak, Leszek Miszczyk, and Aleksandra Napieralska. 2023. "The Effectiveness and Toxicity of Frameless CyberKnife Based Radiosurgery for Parkinson’s Disease—Phase II Study" Biomedicines 11, no. 2: 288. https://doi.org/10.3390/biomedicines11020288