Deep Learning-Based Prediction of Alzheimer’s Disease Using Microarray Gene Expression Data
Abstract
:1. Introduction
2. Related Work
3. Microarray Technology
4. Experiment Setup
4.1. Gene Selection
4.1.1. Principal Component Analysis
4.1.2. Singular Value Decomposition (SVD)
4.1.3. Feature Modalities
4.2. Deep Learning for Alzheimer’s
Convolutional Neural Networks (CNN)
5. Methodology
5.1. Preprocessing
5.2. Gene Selection
5.3. Evaluation Measures
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, H.; Soliman, H.; Elmogy, M. Early detection of Alzheimer’s disease based on single nucleotide polymorphisms (SNPs) analysis and machine learning techniques. In Proceedings of the 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI), Sakheer, Bahrain, 26–27 October 2020; pp. 1–6. [Google Scholar]
- Ahmed, S.T.; Kadhem, S.M. Early Alzheimer’s Disease Detection Using Different Techniques Based on Microarray Data: A Review. Int. J. Online Biomed. Eng. 2022, 18, 106–126. [Google Scholar] [CrossRef]
- Paylakhi, S.; Paylakhi, S.Z.; Ozgoli, S. Identification of Alzheimer disease-relevant genes using a novel hybrid method. Prog. Biol. Sci. 2016, 6, 37–46. [Google Scholar]
- Bringas, S.; Salomón, S.; Duque, R.; Lage, C.; Montaña, J.L. Alzheimer’s disease stage identification using deep learning models. J. Biomed. Inform. 2020, 109, 103514. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-H.; Phillips, P.; Sui, Y.; Liu, B.; Yang, M.; Cheng, H. Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J. Med. Syst. 2018, 42, 85. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Y.; Chen, X.; Xiao, Y.; Qin, Y. Detecting Alzheimer’s disease on small dataset: A knowledge transfer perspective. IEEE J. Biomed. Health Inform. 2018, 23, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Bryan, R.N. Machine Learning Applied to Alzheimer Disease; Radiological Society of North America: Oak Brook, IL, USA, 2016; Volume 281, pp. 665–668. [Google Scholar]
- Teja, M.S.; Thanuja, K.; Deep, N.M.; Reddy, P.R.; Reddy, O.L.K. Prediction and Analysis of Alzheimer’s Disease using Deep Learning Algorithms. Int. J. Comput. Learn. Intell. 2023, 2, 48–57. [Google Scholar]
- Alam, S.; Kwon, G.R.; Initiative, A.s.D.N. Alzheimer disease classification using KPCA, LDA, and multi-kernel learning SVM. Int. J. Imaging Syst. Technol. 2017, 27, 133–143. [Google Scholar] [CrossRef]
- Ramya, J.; Maheswari, B.U.; Rajakumar, M.; Sonia, R. Alzheimer’s Disease Segmentation and Classification on MRI Brain Images Using Enhanced Expectation Maximization Adaptive Histogram (EEM-AH) and Machine Learning. Inf. Technol. Control 2022, 51, 786–800. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Long, J.; Pan, G.; He, T.; Anichtchik, O.; Belshaw, R.; Albani, D.; Edison, P.; Green, E.K. Systematic analysis and biomarker study for Alzheimer’s disease. Sci. Rep. 2018, 8, 17394. [Google Scholar] [CrossRef]
- Othman, M.S.; Kumaran, S.R.; Yusuf, L.M. Gene selection using hybrid multi-objective cuckoo search algorithm with evolutionary operators for cancer microarray data. IEEE Access 2020, 8, 186348–186361. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Kadhim, Q.K.; Mahdi, H.S.; Abd Almahdy, W.S. Applying the MCMSI for online educational systems using the two-factor authentication. iJIM 2021, 15, 163. [Google Scholar] [CrossRef]
- Alenizi, A.S.; Al-Karawi, K.A. Internet of Things (IoT) Adoption: Challenges and Barriers. In Proceedings of the Seventh International Congress on Information and Communication Technology, London, UK, 21–24 February 2022; pp. 217–229. [Google Scholar]
- Zhongxin, W.; Gang, S.; Jing, Z.; Jia, Z. Feature selection algorithm based on mutual information and lasso for microarray data. Open Biotechnol. J. 2016, 10, 278–286. [Google Scholar] [CrossRef]
- Zahoor, J.; Zafar, K. Classification of microarray gene expression data using an infiltration tactics optimization (ITO) algorithm. Genes 2020, 11, 819. [Google Scholar] [CrossRef] [PubMed]
- Babu, M.; Sarkar, K. A comparative study of gene selection methods for cancer classification using microarray data. In Proceedings of the 2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), Kolkata, India, 23–25 September 2016; pp. 204–211. [Google Scholar]
- Yu, L.; Liu, H. Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings of the 20th International Conference on Machine Learning (ICML 2003), Washington, DC, USA, 21–24 August 2003; pp. 856–863. [Google Scholar]
- Alenizi, A.S.; Al-Karawi, K.A. Effective Biometric Technology Used with Big Data. In Proceedings of the Seventh International Congress on Information and Communication Technology, London, UK, 21–24 February 2022; pp. 239–250. [Google Scholar]
- Park, C.; Ha, J.; Park, S. Prediction of Alzheimer’s disease based on deep neural network by integrating gene expression and DNA methylation dataset. Expert Syst. Appl. 2020, 140, 112873. [Google Scholar] [CrossRef]
- Ayyad, S.M.; Saleh, A.I.; Labib, L.M. Gene expression cancer classification using modified K-Nearest Neighbors technique. Biosystems 2019, 176, 41–51. [Google Scholar] [CrossRef]
- Vanitha, C.D.A.; Devaraj, D.; Venkatesulu, I. Gene expression data classification using support vector machine and mutual information-based gene selection. Procedia Comput. Sci. 2015, 47, 13–21. [Google Scholar] [CrossRef]
- Ayyad, S.M.; Saleh, A.I.; Labib, L.M. A new distributed feature selection technique for classifying gene expression data. Int. J. Biomath. 2019, 12, 1950039. [Google Scholar] [CrossRef]
- Patel, H.; Iniesta, R.; Stahl, D.; Dobson, R.J.; Newhouse, S.J. Working towards a blood-derived gene expression biomarker specific for Alzheimer’s disease. J. Alzheimer’s Dis. 2020, 74, 545–561. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Lee, H. Prediction of Alzheimer’s disease using blood gene expression data. Sci. Rep. 2020, 10, 3485. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z.-P. Detecting diagnostic biomarkers of Alzheimer’s disease by integrating gene expression data in six brain regions. Front. Genet. 2019, 10, 157. [Google Scholar] [CrossRef]
- Li, H.; Hong, G.; Lin, M.; Shi, Y.; Wang, L.; Jiang, F.; Zhang, F.; Wang, Y.; Guo, Z. Identification of molecular alterations in leukocytes from gene expression profiles of peripheral whole blood of Alzheimer’s disease. Sci. Rep. 2017, 7, 14027. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, M.; Nancy, A.; Vijaykumar, S. Alzheimer’s disease diagnosis by using dimensionality reduction based on knn classifier. Biomed. Pharmacol. J. 2017, 10, 1823–1830. [Google Scholar] [CrossRef]
- Karthik, S.; Sudha, M. Diagnostic gene biomarker selection for alzheimer’s classification using machine learning. Int. J. Innov. Technol. Explor. Eng 2019, 8, 12. [Google Scholar]
- Mramor, M.; Leban, G.; Demšar, J.; Zupan, B. Conquering the curse of dimensionality in gene expression cancer diagnosis: Tough problem, simple models. In Proceedings of the Artificial Intelligence in Medicine: 10th Conference on Artificial Intelligence in Medicine, AIME 2005, Aberdeen, UK, 23–27 July 2005; pp. 514–523. [Google Scholar]
- Mostavi, M.; Chiu, Y.-C.; Huang, Y.; Chen, Y. Convolutional neural network models for cancer type prediction based on gene expression. BMC Med. Genom. 2020, 13, 44. [Google Scholar] [CrossRef]
- Lim, D.H. Principal component analysis using singular value decomposition of microarray data. Int. J. Math. Comput. Phys. Quantum Eng. 2013, 7, 1390–1392. [Google Scholar]
- Dufva, M. Introduction to microarray technology. In DNA Microarrays for Biomedical Research: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2009; pp. 1–22. [Google Scholar]
- Blohm, D.H.; Guiseppi-Elie, A. New developments in microarray technology. Curr. Opin. Biotechnol. 2001, 12, 41–47. [Google Scholar] [CrossRef]
- Müller, U.R.; Nicolau, D.V. Microarray Technology and Its Applications; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Govindarajan, R.; Duraiyan, J.; Kaliyappan, K.; Palanisamy, M. Microarray and its applications. J. Pharm. Bioallied Sci. 2012, 4, S310. [Google Scholar]
- Kothapalli, R.; Yoder, S.J.; Mane, S.; Loughran, T.P. Microarray results: How accurate are they? BMC Bioinform. 2002, 3, 22. [Google Scholar] [CrossRef]
- Scheubert, L.; Luštrek, M.; Schmidt, R.; Repsilber, D.; Fuellen, G. Tissue-based Alzheimer gene expression markers–comparison of multiple machine learning approaches and investigation of redundancy in small biomarker sets. BMC Bioinform. 2012, 13, 266. [Google Scholar] [CrossRef] [PubMed]
- Paylakhi, S.Z.; Ozgoli, S.; Paylakhi, S.H. A novel gene selection method using GA/SVM and fisher criteria in Alzheimer’s disease. In Proceedings of the 2015 23rd Iranian Conference on Electrical Engineering, Tehran, Iran, 10–14 May 2015; pp. 956–959. [Google Scholar]
- Sherif, F.F.; Zayed, N.; Fakhr, M. Discovering Alzheimer genetic biomarkers using Bayesian networks. Adv. Bioinform. 2015, 2015, 639367. [Google Scholar] [CrossRef]
- Shigemizu, D.; Akiyama, S.; Suganuma, M.; Furutani, M.; Yamakawa, A.; Nakano, Y.; Ozaki, K.; Niida, S. Classification and deep-learning–based prediction of Alzheimer disease subtypes by using genomic data. Transl. Psychiatry 2023, 13, 232. [Google Scholar] [CrossRef] [PubMed]
- Lenz, M.; Müller, F.-J.; Zenke, M.; Schuppert, A. Principal components analysis and the reported low intrinsic dimensionality of gene expression microarray data. Sci. Rep. 2016, 6, 25696. [Google Scholar] [CrossRef] [PubMed]
- Bonastre, J.-F.; Delacourt, P.; Fredouille, C.; Merlin, T.; Wellekens, C. A speaker tracking system based on speaker turn detection for NIST evaluation. In Proceedings of the 2000 International Conference on Acoustics, Speech and Signal Processing, Istanbul, Turkey, 5–9 June 2000. [Google Scholar]
- Wall, M.E.; Dyck, P.A.; Brettin, T.S. SVDMAN—Singular value decomposition analysis of microarray data. Bioinformatics 2001, 17, 566–568. [Google Scholar] [CrossRef]
- Zhang, Y.; Gorriz, J.M.; Dong, Z. Deep learning in medical image analysis. J. Imaging 2021, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D. 1D convolutional neural networks and applications: A survey. arXiv 2019, arXiv:1905.03554. [Google Scholar] [CrossRef]
- Ragunthar, T.; Selvakumar, S. Classification of gene expression data with optimized feature selection. Int. J. Recent Technol. Eng 2019, 8, 4763–4769. [Google Scholar] [CrossRef]
- Vergara, E.; Vergara, J.R.; Estévez, P.A. A review of feature selection methods based on mutual information. Neural Comput. Appl. 2014, 24, 175–186. [Google Scholar] [CrossRef]
- Booij, B.B.; Lindahl, T.; Wetterberg, P.; Skaane, N.V.; Sæbø, S.; Feten, G.; Rye, P.D.; Kristiansen, L.I.; Hagen, N.; Jensen, M. A gene expression pattern in blood for the early detection of Alzheimer’s disease. J. Alzheimer’s Dis. 2011, 23, 109–119. [Google Scholar] [CrossRef]
- Lunnon, K.; Sattlecker, M.; Furney, S.J.; Coppola, G.; Simmons, A.; Proitsi, P.; Lupton, M.K.; Lourdusamy, A.; Johnston, C.; Soininen, H. A blood gene expression marker of early Alzheimer’s disease. J. Alzheimer’s Dis. 2013, 33, 737–753. [Google Scholar] [CrossRef]
- Komolovaitė, D.; Maskeliūnas, R.; Damaševičius, R. Deep convolutional neural network-based visual stimuli classification using electroencephalography signals of healthy and alzheimer’s disease subjects. Life 2022, 12, 374. [Google Scholar] [CrossRef]
- Odusami, M.; Maskeliūnas, R.; Damaševičius, R.; Misra, S. Explainable Deep-Learning-Based Diagnosis of Alzheimer’s Disease Using Multimodal Input Fusion of PET and MRI Images. J. Med. Biol. Eng. 2023, 43, 291–302. [Google Scholar] [CrossRef]
Technique | Samples | Genes | Genes That Have Been Chosen |
---|---|---|---|
PCA Technique | 530 | ||
SVD Technique | 566 | 16,382 | 470 |
Technique | CNN | |
---|---|---|
Performance | Loss | |
Initial Dataset | 83.832 | 0.5861 |
PCA Technique | 95.70 | 0.3403 |
SVD Technique | 96.09 | 0.2356 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelwahab, M.M.; Al-Karawi, K.A.; Semary, H.E. Deep Learning-Based Prediction of Alzheimer’s Disease Using Microarray Gene Expression Data. Biomedicines 2023, 11, 3304. https://doi.org/10.3390/biomedicines11123304
Abdelwahab MM, Al-Karawi KA, Semary HE. Deep Learning-Based Prediction of Alzheimer’s Disease Using Microarray Gene Expression Data. Biomedicines. 2023; 11(12):3304. https://doi.org/10.3390/biomedicines11123304
Chicago/Turabian StyleAbdelwahab, Mahmoud M., Khamis A. Al-Karawi, and Hatem E. Semary. 2023. "Deep Learning-Based Prediction of Alzheimer’s Disease Using Microarray Gene Expression Data" Biomedicines 11, no. 12: 3304. https://doi.org/10.3390/biomedicines11123304
APA StyleAbdelwahab, M. M., Al-Karawi, K. A., & Semary, H. E. (2023). Deep Learning-Based Prediction of Alzheimer’s Disease Using Microarray Gene Expression Data. Biomedicines, 11(12), 3304. https://doi.org/10.3390/biomedicines11123304