Characterizing Benzo[a]pyrene Adducts in Transfer RNAs Using Liquid Chromatography Coupled with Tandem Mass Spectrometry (LC-MS/MS)
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.1.1. In Vitro BPDE Exposure of DNA, tRNA and Nucleoside Standards
2.1.2. RNA Hydrolysis to Nucleosides
2.1.3. High-Resolution LC-MS/MS-Based Characterization of RNA Adducts from Yeast
2.1.4. Identification of BPDE Adducts in Exposed Ribonucleoside Standards via SRM LC-MS/MS Analysis
3. Results and Discussion
3.1. LC-MS Based Characterization of Ribonucleoside–BPDE Adducts
3.2. LC-MS-Based Characterization of Modified Ribonucleoside–BPDE Adducts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, S.; Powers, S.; Zhu, W.; Hannun, Y.A. Substantial contribution of extrinsic risk factors to cancer development. Nature 2016, 529, 43–47. [Google Scholar] [CrossRef]
- Wu, S.; Zhu, W.; Thompson, P.; Hannun, Y.A. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat. Commun. 2018, 9, 3490. [Google Scholar] [CrossRef] [PubMed]
- Mojiri, A.; Zhou, J.L.; Ohashi, A.; Ozaki, N.; Kindaichi, T. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Sci. Total Environ. 2019, 696, 133971. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, I.W.H.; Dreij, K.; Mattsson, Å.; Jernström, B.; Stenius, U. Interactions between polycyclic aromatic hydrocarbons in complex mixtures and implications for cancer risk assessment. Toxicology 2014, 321, 27–39. [Google Scholar] [CrossRef]
- Krais, A.M.; Mühlbauer, K.-R.; Kucab, J.E.; Chinbuah, H.; Cornelius, M.G.; Wei, Q.-X.; Hollstein, M.; Phillips, D.H.; Arlt, V.M.; Schmeiser, H.H. Comparison of the metabolic activation of environmental carcinogens in mouse embryonic stem cells and mouse embryonic fibroblasts. Toxicol. Vitr. 2015, 29, 34–43. [Google Scholar] [CrossRef] [PubMed]
- McCarrick, S.; Cunha, V.; Zapletal, O.; Vondráček, J.; Dreij, K. In vitro and in vivo genotoxicity of oxygenated polycyclic aromatic hydrocarbons. Environ. Pollut. 2019, 246, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Fattah, E.E.; Abdelhamid, A.M. Benzo[a]pyrene immunogenetics and immune archetype reprogramming of lung. Toxicology 2021, 463, 152994. [Google Scholar] [CrossRef]
- Slaga, T.J.; Bracken, W.J.; Gleason, G.; Levin, W.; Yagi, H.; Jerina, D.M.; Conney, A.H. Marked Differences in the Skin Tumor-initiating Activities of the Optical Enantiomers of the Diastereomeric Benzo(a)pyrene 7,8-Diol-9,10-Epoxides1. Cancer Res. 1979, 39, 67–71. [Google Scholar]
- Yang, S.K.; Gelboin, H.V. Microsomal mixed-function oxidases and epoxide hydratase convert benzo[a]pyrene stereospecifically to optically active dihydroxydihydrobenzo[a]pyrenes. Biochem. Pharmacol. 1976, 25, 2221–2225. [Google Scholar] [CrossRef]
- Jerina, D.M.; Chadha, A.; Cheh, A.M.; Schurdak, M.E.; Wood, A.W.; Sayer, J.M. Covalent Bonding of Bay-Region Diol Epoxides to Nucleic Acids. In Biological Reactive Intermediates IV: Molecular and Cellular Effects and Their Impact on Human Health; Witmer, C.M., Snyder, R.R., Jollow, D.J., Kalf, G.F., Kocsis, J.J., Sipes, I.G., Eds.; Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 1991; pp. 533–553. [Google Scholar]
- Yang, S.K.; McCourt, D.W.; Leutz, J.C.; Gelboin, H.V. Benzo[a]pyrene Diol Epoxides: Mechanism of Enzymatic Formation and Optically Active Intermediates. Science 1977, 196, 1199–1201. [Google Scholar] [CrossRef]
- Gelboin, H.V. Benzo[alpha]pyrene metabolism, activation and carcinogenesis: Role and regulation of mixed-function oxidases and related enzymes. Physiol. Rev. 1980, 60, 1107–1166. [Google Scholar] [CrossRef]
- Newbold, R.F.; Brookes, P. Exceptional mutagenicity of a benzo[a]pyrene diol epoxide in cultured mammalian cells. Nature 1976, 261, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Kapitulnik, J.; Wislocki, P.; Levin, W.; Yagi, H.; Thakker, D.; Akagi, H.; Koreeda, M.; Jerina, D.; Conney, A. Marked differences in the carcinogenic activity of optically pure (+)- and (−)-trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene in newborn mice. Cancer Res. 1978, 38, 2661–2665. [Google Scholar] [PubMed]
- Karle, I.L.; Yagi, H.; Sayer, J.M.; Jerina, D.M. Crystal and molecular structure of a benzo[a]pyrene 7,8-diol 9,10-epoxide N2-deoxyguanosine adduct: Absolute configuration and conformation. Proc. Natl. Acad. Sci. USA 2004, 101, 1433–1438. [Google Scholar] [CrossRef] [PubMed]
- Ling, H.; Sayer, J.M.; Plosky, B.S.; Yagi, H.; Boudsocq, F.; Woodgate, R.; Jerina, D.M.; Yang, W. Crystal structure of a benzo[a]pyrene diol epoxide adduct in a ternary complex with a DNA polymerase. Proc. Natl. Acad. Sci. USA 2004, 101, 2265–2269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yuan, F.; Wu, X.; Rechkoblit, O.; Taylor, J.-S.; Geacintov, N.E.; Wang, Z. Error-prone lesion bypass by human DNA polymerase η. Nucleic Acids Res. 2000, 28, 4717–4724. [Google Scholar] [CrossRef]
- Denissenko, M.F.; Pao, A.; Tang, M.-s.; Pfeifer, G.P. Preferential Formation of Benzo[a]pyrene Adducts at Lung Cancer Mutational Hotspots in P53. Science 1996, 274, 430–432. [Google Scholar] [CrossRef] [PubMed]
- Motwani, H.V.; Westberg, E.; Lindh, C.; Abramsson-Zetterberg, L.; Törnqvist, M. Serum albumin adducts, DNA adducts and micronuclei frequency measured in benzo[a]pyrene-exposed mice for estimation of genotoxic potency. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2020, 849, 503127. [Google Scholar] [CrossRef]
- Motwani, H.V.; Westberg, E.; Törnqvist, M. Interaction of benzo[a]pyrene diol epoxide isomers with human serum albumin: Site specific characterisation of adducts and associated kinetics. Sci. Rep. 2016, 6, 36243. [Google Scholar] [CrossRef]
- Myers, S.R.; Spinnato, J.A.; Pinorini, M.T. Chromatographic Characterization of Hemoglobin Benzo[a]pyrene-7,8-diol-9,10-epoxide Adducts. Fundam. Appl. Toxicol. 1996, 29, 94–101. [Google Scholar] [CrossRef]
- Singh, S.; Shyamal, S.; Panda, A.C. Detecting RNA–RNA interactome. WIREs RNA 2022, 13, e1715. [Google Scholar] [CrossRef]
- Liu, S.; Li, B.; Liang, Q.; Liu, A.; Qu, L.; Yang, J. Classification and function of RNA–protein interactions. WIREs RNA 2020, 11, e1601. [Google Scholar] [CrossRef]
- Ressel, S.; Rosca, A.; Gordon, K.; Buck, A.H. Extracellular RNA in viral–host interactions: Thinking outside the cell. Wiley Interdiscip. Rev. RNA 2019, 10, e1535. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ye, R.; Cai, Z.; Xue, Y. Emerging roles of RNA–RNA interactions in transcriptional regulation. WIREs RNA 2022, 13, e1712. [Google Scholar] [CrossRef] [PubMed]
- Boccaletto, P.; Stefaniak, F.; Ray, A.; Cappannini, A.; Mukherjee, S.; Purta, E.; Kurkowska, M.; Shirvanizadeh, N.; Destefanis, E.; Groza, P.; et al. MODOMICS: A database of RNA modification pathways. 2021 update. Nucleic Acids Res. 2022, 50, D231–D235. [Google Scholar] [CrossRef]
- Lorenz, C.; Lünse, C.E.; Mörl, M. tRNA Modifications: Impact on Structure and Thermal Adaptation. Biomolecules 2017, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- Motorin, Y.; Helm, M. tRNA Stabilization by Modified Nucleotides. Biochemistry 2010, 49, 4934–4944. [Google Scholar] [CrossRef]
- Väre, V.Y.P.; Eruysal, E.R.; Narendran, A.; Sarachan, K.L.; Agris, P.F. Chemical and Conformational Diversity of Modified Nucleosides Affects tRNA Structure and Function. Biomolecules 2017, 7, 29. [Google Scholar] [CrossRef]
- Whipple, J.M.; Lane, E.A.; Chernyakov, I.; D’Silva, S.; Phizicky, E.M. The yeast rapid tRNA decay pathway primarily monitors the structural integrity of the acceptor and T-stems of mature tRNA. Genes Dev. 2011, 25, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wang, D.O.; Li, W.; Zheng, J. RNA adduction derived from electrophilic species in vitro and in vivo. Chem.-Biol. Interact. 2022, 351, 109748. [Google Scholar] [CrossRef]
- Hofer, T.; Badouard, C.; Bajak, E.; Ravanat, J.-L.; Mattsson, Å.; Cotgreave, I.A. Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA. Biol. Chem. 2005, 386, 333–337. [Google Scholar] [CrossRef]
- Leung, E.M.K.; Chan, W. Comparison of DNA and RNA Adduct Formation: Significantly Higher Levels of RNA than DNA Modifications in the Internal Organs of Aristolochic Acid-Dosed Rats. Chem. Res. Toxicol. 2015, 28, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wong, T.-Y.; Chan, W. Quantitation of the DNA Adduct of Semicarbazide in Organs of Semicarbazide-Treated Rats by Isotope-Dilution Liquid Chromatography–Tandem Mass Spectrometry: A Comparative Study with the RNA Adduct. Chem. Res. Toxicol. 2016, 29, 1560–1564. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, T.; Kanaly, R.A. In vitro DNA/RNA Adductomics to Confirm DNA Damage Caused by Benzo[a]pyrene in the Hep G2 Cell Line. Front. Chem. 2019, 7, 491. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, X.; Liu, Z.; Ye, W.; Li, L.; Qian, L.; Ding, H.; Li, P.; Aung, L.H.H. Recent Advances: Molecular Mechanism of RNA Oxidation and Its Role in Various Diseases. Front. Mol. Biosci. 2020, 7, 184. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, J.; Gao, M.; Guo, G.; Zeng, S.; Chen, X.; Wang, X.; Gong, Z.; Yan, Y. Current perspectives on the clinical implications of oxidative RNA damage in aging research: Challenges and opportunities. GeroScience 2021, 43, 487–505. [Google Scholar] [CrossRef]
- Smit, E.; Caiment, F.; Piepers, J.; Kleinjans, J.C.S.; van den Beucken, T. Translational regulation is a key determinant of the cellular response to benzo[a]pyrene. Toxicol. Lett. 2018, 295, 144–152. [Google Scholar] [CrossRef]
- Georgiadis, P.; Kovács, K.; Kaila, S.; Makedonopoulou, P.; Anna, L.; Poirier, M.C.; Knudsen, L.E.; Schoket, B.; Kyrtopoulos, S.A. Development and validation of a direct sandwich chemiluminescence immunoassay for measuring DNA adducts of benzo[a]pyrene and other polycyclic aromatic hydrocarbons. Mutagenesis 2012, 27, 589–597. [Google Scholar] [CrossRef]
- Jora, M.; Burns, A.P.; Ross, R.L.; Lobue, P.A.; Zhao, R.; Palumbo, C.M.; Beal, P.A.; Addepalli, B.; Limbach, P.A. Differentiating Positional Isomers of Nucleoside Modifications by Higher-Energy Collisional Dissociation Mass Spectrometry (HCD MS). J. Am. Soc. Mass. Spectrom. 2018, 29, 1745–1756. [Google Scholar] [CrossRef]
- Carothers, A.M.; Grunberger, D. DNA base changes in benzo [α]pyrene diol epoxide-induced dihydrofolate reductase mutants of Chinese hamster ovary cells. Carcinogenesis 1990, 11, 189–192. [Google Scholar] [CrossRef]
- Osborne, M.R.; Jacobs, S.; Harvey, R.G.; Brookes, P. Minor products from the reaction of (+) and (−) benzo[a]-pyrene- anti -diolepoxide with DNA. Carcinogenesis 1981, 2, 553–558. [Google Scholar] [CrossRef]
- Gamper, H.B.; Straub, K.; Calvin, M.; Bartholomew, J.C. DNA alkylation and unwinding induced by benzo[a]pyrene diol epoxide: Modulation by ionic strength and superhelicity. Proc. Natl. Acad. Sci. USA 1980, 77, 2000–2004. [Google Scholar] [CrossRef] [PubMed]
- Melikian, A.A.; Sun, P.; Prokopczyk, B.; El-Bayoumy, K.; Hoffmann, D.; Wang, X.; Waggoner, S. Identification of benzo[a]pyrene metabolites in cervical mucus and DNA adducts in cervical tissues in humans by gas chromatography-mass spectrometry. Cancer Lett. 1999, 146, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.L.; Mlotkowski, A.J.; Hebert, S.P.; Schlegel, H.B.; Chow, C.S. Calculations of pKa Values for a Series of Naturally Occurring Modified Nucleobases. J. Phys. Chem. A 2022, 126, 1518–1529. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.W.; Limbach, P.A. The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry. RNA Biol. 2014, 11, 1568–1585. [Google Scholar] [CrossRef]
- Estevez, M.; Valesyan, S.; Jora, M.; Limbach, P.A.; Addepalli, B. Oxidative Damage to RNA is Altered by the Presence of Interacting Proteins or Modified Nucleosides. Front. Mol. Biosci. 2021, 8, 697149. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herbert, C.; Ohrnberger, C.L.; Quinlisk, E.; Addepalli, B.; Limbach, P.A. Characterizing Benzo[a]pyrene Adducts in Transfer RNAs Using Liquid Chromatography Coupled with Tandem Mass Spectrometry (LC-MS/MS). Biomedicines 2023, 11, 3270. https://doi.org/10.3390/biomedicines11123270
Herbert C, Ohrnberger CL, Quinlisk E, Addepalli B, Limbach PA. Characterizing Benzo[a]pyrene Adducts in Transfer RNAs Using Liquid Chromatography Coupled with Tandem Mass Spectrometry (LC-MS/MS). Biomedicines. 2023; 11(12):3270. https://doi.org/10.3390/biomedicines11123270
Chicago/Turabian StyleHerbert, Cassandra, Corinna L. Ohrnberger, Ella Quinlisk, Balasubrahmanyam Addepalli, and Patrick A. Limbach. 2023. "Characterizing Benzo[a]pyrene Adducts in Transfer RNAs Using Liquid Chromatography Coupled with Tandem Mass Spectrometry (LC-MS/MS)" Biomedicines 11, no. 12: 3270. https://doi.org/10.3390/biomedicines11123270
APA StyleHerbert, C., Ohrnberger, C. L., Quinlisk, E., Addepalli, B., & Limbach, P. A. (2023). Characterizing Benzo[a]pyrene Adducts in Transfer RNAs Using Liquid Chromatography Coupled with Tandem Mass Spectrometry (LC-MS/MS). Biomedicines, 11(12), 3270. https://doi.org/10.3390/biomedicines11123270