The Value of Tumor Infiltrating Lymphocytes (TIL) for Predicting the Response to Neoadjuvant Chemotherapy (NAC) in Breast Cancer according to the Molecular Subtypes
Abstract
:1. Introduction
2. Materials and Methods
3. Histochemistry Analysis
- Group A—includes 17 patients with a value of sTIL between 0–10%
- Group B—includes 41 patients with a value of sTIL between 10–40%
- Group C—includes 62 patients with a value of sTIL between 40–90%
- Group D—includes two patients with a value of sTIL over 90%
4. Statistical Considerations
5. Ethical Consent
6. Results
7. Discussions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rakaee, M.; Adib, E.; Ricciuti, B.; Sholl, L.M.; Shi, W.; Alessi, J.V.; Cortellini, A.; Fulgenzi, C.A.M.; Viola, P.; Pinato, D.J.; et al. Association of Machine Learning–Based Assessment of Tumor-Infiltrating Lymphocytes on Standard Histologic Images With Outcomes of Immunotherapy in Patients With NSCLC. JAMA Oncol. 2023, 9, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Zerdes, I.; Zhu, Y.; Tzoras, E.; Matikas, A.; Bergh, J.C.S.; Valachis, A.; Foukakis, T. Tumor-Infiltrating Lymphocytes (STIL) Dynamics in Breast Cancer Patients Receiving Neoadjuvant Therapy: A Systematic Review and Meta-Analysis. J. Clin. Oncol. 2022, 40, e12620. [Google Scholar] [CrossRef]
- Burstein, H.J.; Curigliano, G.; Thürlimann, B.; Weber, W.P.; Poortmans, P.; Regan, M.M.; Senn, H.J.; Winer, E.P.; Gnant, M.; Aebi, S.; et al. Customizing Local and Systemic Therapies for Women with Early Breast Cancer: The St. Gallen International Consensus Guidelines for Treatment of Early Breast Cancer 2021. Ann. Oncol. 2021, 32, 1216–1235. [Google Scholar] [CrossRef] [PubMed]
- Emmens, L.A.; Molinero, L.; Loi, S.; Rugo, H.S.; Schneeweiss, A.; Dieras, V.; Iwata, H.; Barrios, C.H.; Nechaeva, M.; Nguyen-Duc, A.; et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer: Biomarker Evaluation of the IMpassion130 Study. JNCI J. Natl. Cancer Inst. 2021, 113, 1005–1016. [Google Scholar] [CrossRef]
- Winer, E.P.; Lipatov, O.; Im, S.-A.; Goncalves, A.; Muñoz-Couselo, E.; Lee, K.S.; Schmid, P.; Tamura, K.; Testa, L.; Witzel, I.; et al. Pembrolizumab versus Investigator-Choice Chemotherapy for Metastatic Triple-Negative Breast Cancer (KEYNOTE-119): A Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 22, 499–511. [Google Scholar] [CrossRef]
- Adams, S.; Diamond, J.R.; Hamilton, E.; Pohlmann, P.R.; Tolaney, S.M.; Chang, C.-W.; Zhang, W.; Iizuka, K.; Foster, P.G.; Molinero, L.; et al. Atezolizumab Plus Nab-Paclitaxel in the Treatment of Metastatic Triple-Negative Breast Cancer With 2-Year Survival Follow-Up. JAMA Oncol. 2019, 5, 334. [Google Scholar] [CrossRef]
- Adams, S.; Schmid, P.; Rugo, H.S.; Winer, E.P.; Loirat, D.; Awada, A.; Cescon, D.W.; Iwata, H.; Campone, M.; Nanda, R.; et al. Pembrolizumab Monotherapy for Previously Treated Metastatic Triple-Negative Breast Cancer: Cohort A of the Phase II KEYNOTE-086 Study. Ann. Oncol. 2019, 30, 397–404. [Google Scholar] [CrossRef]
- Loibl, S.; Schneeweiss, A.; Huober, J.B.; Braun, M.; Rey, J.; Blohmer, J.U.; Furlanetto, J.; Zahm, D.M.; Hanusch, C.; Thomalla, J.; et al. Durvalumab Improves Long-Term Outcome in TNBC: Results from the Phase II Randomized GeparNUEVO Study Investigating Neoadjuvant Durvalumab in Addition to an Anthracycline/Taxane Based Neoadjuvant Chemotherapy in Early Triple-Negative Breast Cancer (TNBC). J. Clin. Oncol. 2021, 39, 506. [Google Scholar] [CrossRef]
- Denkert, C.; von Minckwitz, G.; Brase, J.C.; Sinn, B.V.; Gade, S.; Kronenwett, R.; Pfitzner, B.M.; Salat, C.; Loi, S.; Schmitt, W.D.; et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 983–991. [Google Scholar] [CrossRef]
- Watanabe, T.; Hida, A.I.; Inoue, N.; Imamura, M.; Fujimoto, Y.; Akazawa, K.; Hirota, S.; Miyoshi, Y. Abundant tumor infiltrating lymphocytes after primary systemic chemotherapy predicts poor prognosis in estrogen receptor-positive/HER2-negative breast cancers. Breast Cancer Res. Treat. 2018, 168, 135–145. [Google Scholar] [CrossRef]
- Galvez, M.; Castaneda, C.A.; Sanchez, J.; Castillo, M.; Rebaza, L.P.; Calderon, G.; De La Cruz, M.; Cotrina, J.M.; Abugattas, J.; Dunstan, J.; et al. Clinicopathological predictors of long-term benefit in breast cancer treated with neoadjuvant chemotherapy. World J. Clin. Oncol. 2018, 9, 33–41. [Google Scholar] [CrossRef]
- Hida, A.I.; Sagara, Y.; Yotsumoto, D.; Kanemitsu, S.; Kawano, J.; Baba, S.; Rai, Y.; Oshiro, Y.; Aogi, K.; Sagara, Y.; et al. Prognostic and predictive impacts of tumor-infiltrating lymphocytes differ between triple-negative and HER2-positive breast cancers treated with standard systemic therapies. Breast Cancer Res. Treat. 2016, 158, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.W.; Jung, H.; Hyeon, J.; Park, Y.H.; Ahn, J.S.; Im, Y.H.; Nam, S.J.; Kim, S.W.; Lee, J.E.; Yu, J.-H.; et al. A nomogram to predict pathologic complete response (pCR) and the value of tumor infiltrating lymphocytes (STIL) for prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer patients. Breast Cancer Res. Treat. 2019, 173, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.A.; Lee, H.J.; Heo, S.H.; Park, H.S.; Park, S.Y.; Bang, W.S.; Song, I.H.; Park, I.A.; Gong, G. MxA expression is associated with tumor-infiltrating lymphocytes and is a prognostic factor in triple-negative breast cancer. Breast Cancer Res. Treat. 2016, 156, 597–606. [Google Scholar] [CrossRef]
- Sonderstrup, I.M.H.; Jensen, M.B.; Ejlertsen, B.; Eriksen, J.O.; Gerdes, A.M.; Kruse, T.A.; Larsen, M.J.; Thomassen, M.; Laenkholm, A.V. Evaluation of tumor-infiltrating lymphocytes and association with prognosis in BRCA-mutated breast cancer. Acta Oncol. 2019, 58, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Pruneri, G.; Gray, K.P.; Vingiani, A.; Viale, G.; Curigliano, G.; Criscitiello, C.; Láng, I.; Ruhstaller, T.; Gianni, L.; Goldhirsch, A.; et al. Tumor-infiltrating lymphocytes (STIL) is a powerful prognostic marker in patients with triple-negative breast cancer enrolled in the IBCSG phase III randomized clinical trial 22-00. Breast Cancer Res. Treat. 2016, 158, 323–331. [Google Scholar] [CrossRef]
- Pruneri, G.; Vingiani, A.; Bagnardi, V.; Rotmensz, N.; De Rose, A.; Palazzo, A.; Colleoni, A.M.; Goldhirsch, A.; Viale, G. Clinical validity of tumor-infiltrating lymphocytes analysis in patients with triple-negative breast cancer. Ann. Oncol. 2016, 27, 249–256. [Google Scholar] [CrossRef]
- Tian, T.; Ruan, M.; Yang, W.; Shui, R. Evaluation of the prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers. Oncotarget 2016, 7, 44395–44405. [Google Scholar] [CrossRef]
- Adams, S.; Gray, R.J.; Demaria, S.; Goldstein, L.; Perez, E.A.; Shulman, L.N.; Martino, S.; Wang, M.; Jones, V.E.; Saphner, T.J.; et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase I II randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 2959–2966. [Google Scholar] [CrossRef]
- Kochi, M.; Iwamoto, T.; Niikura, N.; Bianchini, G.; Masuda, S.; Mizoo, T.; Nogami, T.; Shien, T.; Motoki, T.; Taira, N.; et al. Tumour-infiltrating lymphocytes (STIL)-related genomic signature predicts chemotherapy response in breast cancer. Breast Cancer Res. Treat. 2018, 167, 39–47. [Google Scholar] [CrossRef]
- Luen, S.J.; Salgado, R.; Dieci, M.V.; Vingiani, A.; Curigliano, G.; Gould, R.E.; Castaneda, C.; D’Alfonso, T.; Sanchez, J.; Cheng, E.; et al. Prognostic implications of residual disease tumor-infiltrating lymphocytes and residual cancer burden in triple negative breast cancer patients after neoadjuvant chemotherapy. Ann. Oncol. 2019, 30, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, Y.; Watanabe, T.; Hida, A.I.; Higuchi, T.; Miyagawa, Y.; Ozawa, H.; Bun, A.; Fukui, R.; Sata, A.; Imamura, M.; et al. Prognostic significance of tumorinfiltrating lymphocytes may differ depending on Ki67 expression levels in estrogen receptor-positive/HER2-negative operated breast cancers. Breast Cancer 2019, 26, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Dieci, M.V.; Criscitiello, C.; Goubar, A.; Viale, G.; Conte, P.; Guarneri, V.; Ficarra, G.; Mathieu, M.C.; Delaloge, S.; Curigliano, G.; et al. Prognostic value of tumorinfiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: A retrospective multicenter study. Ann. Oncol. 2014, 25, 611–618. [Google Scholar] [CrossRef]
- Perez, E.A.; Ballman, K.V.; Tenner, K.S.; Thompson, E.A.; Badve, S.S.; Bailey, H.; Baehner, F.L. Association of Stromal Tumor-Infiltrating Lymphocytes with Recurrence-Free Survival in the N9831 adjuvant trial in patients with early-stage HER2-positive breast Cancer. JAMA Oncol. 2016, 2, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Dieci, M.V.; Mathieu, M.C.; Guarneri, V.; Conte, P.; Delaloge, S.; Andre, F.; Goubar, A. Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann. Oncol. 2015, 26, 1698–1704. [Google Scholar] [CrossRef]
- Lee, M.; Heo, S.-H.; Song, I.H.; Rajayi, H.; Park, H.S.; Park, I.A.; Kim, Y.-A.; Lee, H.; Gong, G.; Lee, H.J. The presence of tertiary lymphoid structures determines the level of tumor-infiltrating lymphocytes in primary breast cancer and metastasis. Mod. Pathol. 2019, 32, 70–80. [Google Scholar] [CrossRef]
- Sautès-Fridman, C.; Petitprez, F.; Calderaro, J.; Fridman, W.H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 2019, 19, 307–325. [Google Scholar] [CrossRef]
- Buisseret, L.; Desmedt, C.; Garaud, S.; Fornili, M.; Wang, X.; Eyden, G.V.D.; de Wind, A.; Duquenne, S.; Boisson, A.; Naveaux, C.; et al. Reliability of tumor-infiltrating lymphocyte and tertiary lymphoid structure assessment in human breast cancer. Mod. Pathol. 2017, 30, 1204–1212. [Google Scholar] [CrossRef]
- Finotello, F.; Trajanoski, Z. Quantifying tumor-infiltrating immune cells from transcriptomics data. Cancer Immunol. Immunother. 2018, 67, 1031–1040. [Google Scholar] [CrossRef]
- Dannenfelser, R.; Nome, M.; Tahiri, A.; Ursini-Siegel, J.; Vollan, H.K.M.; Haakensen, V.D.; Helland, Å.; Naume, B.; Caldas, C.; Børresen-Dale, A.-L.; et al. Data-driven analysis of immune infiltrate in a large cohort of breast cancer and its association with disease progression, ER activity, and genomic complexity. Oncotarget 2017, 8, 57121–57133. [Google Scholar] [CrossRef]
- Li, B.; Severson, E.; Pignon, J.-C.; Zhao, H.; Li, T.; Novak, J.; Jiang, P.; Shen, H.; Aster, J.C.; Rodig, S.; et al. Comprehensive analyzes of tumor immunity: Implications for cancer immunotherapy. Genome Biol. 2016, 17, 174. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.; Eum, H.H.; Lee, H.-O.; Lee, K.-M.; Lee, H.-B.; Kim, K.-T.; Ryu, H.S.; Kim, S.; Lee, J.E.; Park, Y.H.; et al. Single-cell RNA-seq enables comprehensive tumor and immune cell profiling in primary breast cancer. Nat. Commun. 2017, 8, 15081. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Anderson, A.C. Revolutionizing cancer immunology: The power of next generation sequencing technologies. Cancer Immunol. Res. 2019, 7, 168–173. [Google Scholar] [CrossRef]
- Parra, E.R.; Francisco-Cruz, A.; Wistuba, I.I. State-of-the-art of profiling immune context in the era of multiplexed staining and digital analysis to study paraffin tumor tissues. Cancers 2019, 11, 247. [Google Scholar] [CrossRef]
- Nederlof, I.; De Bortoli, D.; Bareche, Y.; Nguyen, B.; De Maaker, M.; Hooijer, G.K.J.; Buisseret, L.; Kok, M.; Smid, M.; Van den Eynden, G.G.G.M.; et al. Comprehensive evaluation of methods to assess overall and cell-specific immune infiltrates in breast cancer. Breast Cancer Res. 2019, 21, 151. [Google Scholar] [CrossRef] [PubMed]
- Klauschen, F.; Müller, K.-R.; Binder, A.; Bockmayr, M.; Hägele, M.; Seegerer, P.; Wienert, S.; Pruneri, G.; de Maria, S.; Badve, S.; et al. Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning. Seed. Cancer Biol. 2018, 52 Pt 2, 151–157. [Google Scholar] [CrossRef]
- Amgad, M.; Stovgaard, E.S.; Balslev, E.; Thagaard, J.; Chen, W.; Dudgeon, S.; Sharma, A.; Kerner, J.K.; Denkert, C.; Yuan, Y.; et al. Report on computational assessment of tumor infiltrating lymphocytes from the International Immuno-Oncology Biomarker Working Group. NPJ Breast Cancer 2020, 6, 16. [Google Scholar] [CrossRef]
- Denkert, C.; Von Minckwitz, G.; Darb-Esfahani, S.; Lederer, B.; Heppner, B.I.; Weber, K.E.; Budczies, J.; Huober, J.; Klauschen, F.; Furlanetto, J.; et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018, 19, 40–50. [Google Scholar] [CrossRef]
- Stanton, S.E.; Adams, S.; Disis, M.L. Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: A systematic review. JAMA Oncol. 2016, 2, 1354–1360. [Google Scholar] [CrossRef]
- Hammerl, D.; Smid, M.; Timmermans, A.; Sleijfer, S.; Martens, J.; Debets, R. Breast cancer genomics and immuno-oncological markers to guide immune therapies. Seed. Cancer Biol. 2018, 52 Pt 2, 178–188. [Google Scholar] [CrossRef]
- Thomas, A.; Routh, E.D.; Pullikuth, A.; Jin, G.; Su, J.; Chou, J.W.; Hoadley, K.A.; Print, C.; Knowlton, N.; Black, M.A.; et al. Tumor mutational burden is a determinant of immune-mediated survival in breast cancer. Oncoimmunology 2018, 7, e1490854. [Google Scholar] [CrossRef] [PubMed]
- Cortés, J.; Lipatov, O.; Im, S.-A.; Gonçalves, A.; Lee, K.S.; Schmid, P.; Tamura, K.; Testa, L.; Witzel, I.; Ohtani, S.; et al. LBA21 KEYNOTE-119: PhaseIII study of pembrolizumab (pembro) versus single-agent chemotherapy (chemo) for metastatic triple negative breast cancer (mTNBC). Ann. Oncol. 2019, 94, 010. [Google Scholar]
- Samstein, R.M.; Lee, C.-H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Nanda, R.; Liu, M.C.; Yau, C.; Asare, S.; Hylton, N.; Veer, L.V.; Perlmutter, J.; Wallace, A.M.; Chien, A.J.; Forero-Torres, A.; et al. Pembrolizumab plus standard neoadjuvant therapy for high-risk breast cancer (BC): Results from I-SPY 2. J. Clin. Oncol. 2017, 35 (Suppl. S15), 506. [Google Scholar] [CrossRef]
- McGranahan, N.; Furness, A.J.S.; Rosenthal, R.; Ramskov, S.; Lyngaa, R.; Saini, S.K.; Jamal-Hanjani, M.; Wilson, G.A.; Birkbak, N.J.; Hiley, C.T.; et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016, 351, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Karn, T.; Jiang, T.; Hatzis, C.; Sänger, N.; El-Balat, A.; Rody, A.; Holtrich, U.; Becker, S.; Bianchini, G.; Pusztai, L. Association between genomic metrics and immune infiltration in triple-negative breast cancer. JAMA Oncol. 2019, 3, 1707–1711. [Google Scholar] [CrossRef]
- Issa-Nummer, Y.; Darb-Esfahani, S.; Loibl, S.; Kunz, G.; Nekljudova, V.; Schrader, I.; Sinn, B.V.; Ulmer, H.U.; Kronenwett, R.; Just, M.; et al. Prospective validation of immunological infiltrate for prediction of response to neoadjuvant chemotherapy in HER2 -negative breast cancer—A substudy of the neoadjuvant GeparQuinto trial. PLoS ONE 2013, 8, e79775. [Google Scholar] [CrossRef]
- Ingold Heppner, B.; Untch, M.; Denkert, C.; Pfitzner, B.M.; Lederer, B.; Schmitt, W.; Eidtmann, H.; Fasching, P.A.; Tesch, H.; Solbach, C.; et al. Tumor-Infiltrating Lymphocytes: A Predictive and Prognostic Biomarker in Neoadjuvant-Treated HER2-Positive Breast Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016, 22, 5747–5754. [Google Scholar] [CrossRef]
- Wang, Q.; Xiang, Q.; Yu, L.; Hu, T.; Chen, Y.; Wang, J.; Nie, X.; Cheng, J. Changes in Tumor-Infiltrating Lymphocytes and Vascular Normalization in Breast Cancer Patients After Neoadjuvant Chemotherapy and Their Correlations With DFS. Front. Oncol. 2020, 9, 1545. [Google Scholar] [CrossRef]
- Angelico, G.; Broggi, G.; Caltabiano, R.; Santoro, A.; Spadola, S.; D’Alessandris, N.; Scaglione, G.; Valente, M.; Arciuolo, D.; Sanchez, A.M.; et al. Histopathological Evaluation of Tumor-Infiltrating Lymphocytes (STIL) as Predictive Biomarker for Hormone Receptors Status, Proliferative Activity and Clinical Outcome in Her-2 Positive Breast Cancer. Appl. Sci. 2021, 11, 6788. [Google Scholar] [CrossRef]
- Ignatiadis, M.; Sledge, G.W.; Jeffrey, S.S. Liquid Biopsy Enters the Clinic—Implementation Issues and Future Challenges. Nat. Rev. Clin. Oncol. 2021, 18, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Valenza, C.; Trapani, D.; Curigliano, G. Circulating Tumour DNA Dynamics for Assessment of Molecular Residual Disease and for Interceping Resistance in Breast Cancer. Curr. Opin. Oncol. 2022, 34, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Kok, M. LBA13—Nivolumab and Ipilimumab in Early-Stage Triple Negative Breast Cancer (TNBC) with Tumor-Infiltrating Lymphocytes (STIL): First Results from the BELLINI Trial. Ann. Oncol. 2022, 33, S808–S869. [Google Scholar] [CrossRef]
Parameters | n | % |
---|---|---|
Luminal A | 46 | 37.7 |
Luminal B Her2− | 11 | 9.01 |
Luminal B Her2+ | 9 | 7.37 |
Her2+ | 25 | 20.49 |
TNBC | 31 | 25.9 |
Parameters | n | % |
---|---|---|
Unifocal | 81 | 66.39 |
Multifocal | 26 | 21.31 |
Multicentric | 15 | 12.29 |
The type of intervention | ||
MRM | 35 | 28.66 |
OBCS | 28 | 22.95 |
BCS | 59 | 48.36 |
Parameters | n | % |
---|---|---|
Age | ||
<50 | 71 | 58.19 |
≥50 | 51 | 41.8 |
Menopausal status | ||
Premenopausal | 72 | 59.01 |
Postmenopausal | 50 | 40.99 |
Grading (mBloom Richardson) | ||
1 | 33 | 45,043 |
2 | 54 | 44.26 |
3 | 35 | 28.68 |
Mitotic Count | ||
0–5 | 25 | 20.49 |
45,205 | 36 | 29.50 |
≥11 | 61 | 50 |
Tumor size | ||
<2 | 17 | 13.93 |
45,048 | 73 | 59.83 |
>5 | 32 | 26.22 |
Lymphovascular invasion | ||
Present | 41 | 33.66 |
Absent | 81 | 66.39 |
Distant metastases | ||
Present | 26 | 21.31 |
Absent | 96 | 78.68 |
TNM | ||
I | 17 | 13.93 |
II | 73 | 59.83 |
III | 24 | 19.67 |
IV | 8 | 20,241 |
Location | ||
External superior quadrant (ESQ) | 76 | 62.29 |
Internal superior quadrant (ISQ) | 12 | 30,560 |
External lower quadrant (ELQ) | 21 | 17.21 |
Internal lower quadrant (ILQ) | 7 | 26,785 |
Central quadrant (CQ) | 6 | 33,329 |
Post-NAC tumor bed cellularity (RTC) | ||
below 30% | 26 | 21.31 |
30–60% | 77 | 63.11 |
over 60% | 19 | 15.57 |
Breast | ||
Right | 48 | 39.35 |
Left | 74 | 60.65 |
Parameters | n | % |
---|---|---|
NAC response | ||
pCR i | 33 | 27.04 |
PR. ii (over 30%) | 42 | 34.42 |
SD iii | 29 | 23.77 |
PD iv (over 20%) | 18 | 14.75 |
Histological type | ||
Infiltrative Ductal Carcinoma | 89 | 72.95 |
Lobular | 17 | 13.93 |
Mucinous | 4 | 3.27 |
Medullary | 9 | 7.37 |
Metaplastic | 3 | 2.45 |
GROUP | No. of Cases | % |
---|---|---|
A | 17 | 13.93 |
B | 41 | 33.6 |
C | 62 | 50.81 |
D | 2 | 1.63 |
Parameters | n | Stil (Mean ± SD) | p Value | ITIL | p Value |
---|---|---|---|---|---|
T Grade | |||||
1 | 33 | 7.01 ± 3.9 | 0.001 | 21.71 ± 11.03 | 0.001 |
2 | 54 | 39.4 ± 19.06 | 73.01 ± 39.03 | ||
3 | 35 | 68.63 ± 20.13 | 171.31 ± 41.32 | ||
Tumor Size | |||||
2 | 17 | 41.23 ± 22.13 | 0.002 | 83.41 ± 44.24 | 0.002 |
2–5 | 73 | 57.28 ± 29.17 | 101.38 ± 33.17 | ||
≥5 | 32 | 69.11 ± 20.19 | 153.31 ± 42.19 | ||
Molecular Subtype | |||||
Luminal A | 46 | 21.29 ± 17.55 | 0.001 | 43.12 ± 29.12 | 0.002 |
Luminal B | 20 | 33.19 ± 19.23 | 68.47 ± 38.12 | ||
HER2+ | 25 | 44.21 ± 28.24 | 98.42 ± 56.44 | ||
TNBC | 31 | 69.11 ± 27.31 | 128.12 ± 54.12 | ||
Distant Metastasis | |||||
Present | 26 | 71.23 ± 23.97 | 0.1931 | 162.23 ± 46.32 | 0.005 |
Absent | 96 | 44.23 ± 27.28 | 95.21 ± 61.12 | ||
Lymphovascular Invasion (Lvi) | |||||
Present | 41 | 68.12 ± 28.67 | 0.001 | 152.21 ± 50.12 | 0.05 |
Absent | 81 | 39.19 ± 27.12 | 79.12 ± 54.18 | ||
TNM | |||||
I | 17 | 31.23 ± 21.83 | 0.068 | 62.46 ± 54.12 | 0.01 |
II | 73 | 48.23 ± 28.13 | 91.46 ± 51.12 | ||
III | 24 | 68.23 ± 27.13 | 138.18 ± 46.23 | ||
IV | 8 | 61.17 ± 23.97 | 141.12 ± 44.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faur, I.F.; Dobrescu, A.; Clim, A.I.; Pasca, P.; Prodan-Barbulescu, C.; Gherle, B.D.; Tarta, C.; Isaic, A.; Brebu, D.; Duta, C.; et al. The Value of Tumor Infiltrating Lymphocytes (TIL) for Predicting the Response to Neoadjuvant Chemotherapy (NAC) in Breast Cancer according to the Molecular Subtypes. Biomedicines 2023, 11, 3037. https://doi.org/10.3390/biomedicines11113037
Faur IF, Dobrescu A, Clim AI, Pasca P, Prodan-Barbulescu C, Gherle BD, Tarta C, Isaic A, Brebu D, Duta C, et al. The Value of Tumor Infiltrating Lymphocytes (TIL) for Predicting the Response to Neoadjuvant Chemotherapy (NAC) in Breast Cancer according to the Molecular Subtypes. Biomedicines. 2023; 11(11):3037. https://doi.org/10.3390/biomedicines11113037
Chicago/Turabian StyleFaur, Ionut Flaviu, Amadeus Dobrescu, Adelina Ioana Clim, Paul Pasca, Catalin Prodan-Barbulescu, Bogdan Daniel Gherle, Cristi Tarta, Alexandru Isaic, Dan Brebu, Ciprian Duta, and et al. 2023. "The Value of Tumor Infiltrating Lymphocytes (TIL) for Predicting the Response to Neoadjuvant Chemotherapy (NAC) in Breast Cancer according to the Molecular Subtypes" Biomedicines 11, no. 11: 3037. https://doi.org/10.3390/biomedicines11113037
APA StyleFaur, I. F., Dobrescu, A., Clim, A. I., Pasca, P., Prodan-Barbulescu, C., Gherle, B. D., Tarta, C., Isaic, A., Brebu, D., Duta, C., Totolici, B., & Lazar, G. (2023). The Value of Tumor Infiltrating Lymphocytes (TIL) for Predicting the Response to Neoadjuvant Chemotherapy (NAC) in Breast Cancer according to the Molecular Subtypes. Biomedicines, 11(11), 3037. https://doi.org/10.3390/biomedicines11113037