Alveolar Type 2 Epithelial Cell Organoids: Focus on Culture Methods
Abstract
:1. Introduction
2. Literature Search Strategy
3. Sources of AT2 Cells
4. AT2 Organoid Culture Methods
4.1. Co-Culture Method
Cell Source | Feeder Cell Type (Epithelial-to-Feeder Ratio) | Medium | Model |
---|---|---|---|
Mouse AT2 | |||
Genetic-lineage-labeled AT2 cells [4] | PDGFRα+ lung lipofibroblasts (1:20) | MTEC+: DMEM/F12, ITS, EGF, BPE, CTX, 5% FBS, and antibiotics; RA freshly added; Y-27632 for the first 2 days | The first organoid model to show that AT2 cells are stem cells of the adult distal lung |
EpCAM+ AT2 cells [31] | Lung mesenchymal cells (EpCAM− Sca1+) (1:1) | DMEM/F12 plus L-glutamine with 10% newborn calf serum, ITS, FGF-7, FGF-10, penicillin/streptomycin, HGF, BMP-4, TGF-, and PDGF-AA | Epithelial stem/progenitor cell hierarchy in mouse lung |
Axin2+ or Sftpc+ AT2 cells [65] | Adult primary lung fibroblasts (1:10) | MTEC-SAGM with Wnt3a | Wnt signaling regulates lung alveologenesis |
EpCAM+ AT2 cells [60] | Lung endothelial cells (LUMECs) (1:50,000) | DMEM/F12 with ITS, 10% FBS, 1 mM HEPES pH 7.5, glutamine, and antibiotics | AT2 lineage regulation via endothelial cells |
EpCAM (CD326)+ [66] | AXIN2+ mesenchymal alveolar niche cells (1:10) | MTEC plus media (DMEM/Ham’s F-12, HEPES, penicillin and streptomycin, fungizone, insulin, transferrin, cholera toxin, EGF, and bovine pituitary extract) | Effect of disease or aged fibroblast on organoid |
Plau−/− AT2, Scnn1D Tg AT2 [16,42] | Mlg2980 (3:100) | DMEM/F12 with ITS, 10% FBS, glutamine, antibiotics, and SB431542 | AT2 lineage regulation via fibrinolytic niche and dENaC |
PAI-1 Tg AT2 [43] | Mlg2980 (1:50) and feeder-free | DMEM/F12, penicillin–streptomycin, CHIR, DMH, BIRb 1, rmsNoggin, rmsFGF-10, heparin, rhEGF, Y-27632, dihydrochloride, B27 supplement, glutaMAX, and HEPES | AT2 lineage regulation via fibrinolytic niche |
FACS sorted AT2 cells [3,67] | Feeder-free | DMEM/F12, penicillin–streptomycin, CHIR, DMH, BIRb 1, rmsNoggin, rmsFGF-10, heparin, rhEGF, Y-27632, dihydrochloride, B27 supplement, glutaMAX, and HEPES | Method for FF alveolar organoid |
CD45− EpCAM+ β4− AT2 [34] | Feeder-free | 5% charcoal-treated FBS, penicillin–streptomycin, SABMTM Basal Medium + SAGMTM Supplement Pack, A83-01, ms Wnt3a, msNoggin, h FGF-10, hKGF (FGF-7), msEGF, hRspondin-1, Y-27632, dihydrochloride, B27 supplement, glutaMAX, HEPES, and N2 supplement | Transplantation and cell therapy after lung injury |
EpCAM+ AT2 cells [58] | Feeder-free | DMEM/F12, 1%FBS, and Fgf-7 | Single-cell Wnt signaling niche |
CD31-CD45-EPCAM+ Sca1− cells [68] | Neonatal stromal cells (1:10) | DMEM/F12 with 10% FBS, penicillin/streptomycin, 1 mM HEPES, and insulin/transferrin/selenium (Corning) (3D media) | Early-stage lung adenocarcinoma |
Human AT2 | |||
EpCAM+and HTII-280+ AT2 [4] | MRC5 fibroblasts (Not reported) | ALI medium [69] | The first organoid model to show that AT2 cells are stem cells of the adult distal lung |
EpCAM+, HTII-280+, and TM4SF1+ AT2 [62] | MRC5 fibroblasts (1:10) | Small Airway Growth medium, Y27632, Wnt3a, FGF-7, FGF-10, XAV939, and CHIR99021 | Lung regeneration |
AT2 cells [9,67] | Feeder-free | Chemically defined EGF/Noggin medium | SARS-CoV-2 infection and COVID-19-associated pneumonia |
MACS sorted AT2 cells [3] | Feeder-free | DMEM/F12, penicillin–streptomycin, CHIR, DMH, BIRb 1, rmsNoggin, rmsFGF-10, heparin, rhEGF, Y-27632, dihydrochloride, B27 supplement, glutaMAX, and HEPES | Method for FF alveolar organoid |
4.1.1. EpCAM+ AT2 Co-Cultured with Fibroblast Cells
4.1.2. AT2 Co-Cultured with PDGFRA+ Cells
4.1.3. Human iPSC-Derived AT2
Cell Source | Feeder Cell Type (Epithelial-to-Feeder Ratio) | Medium | Model |
---|---|---|---|
Mouse iPSC | |||
iPSC-derived Nkx2-1mCherry± AT2 cells [78] | iPSC-derived mesenchyme (1:20) | cSFDM (with RA-containing B27 supplement) rmWNT3A, rhFGF-2, rhFGF-10, and Y-27632 | Epithelial–mesenchymal crosstalk in a multi-lineage lung organoid model |
Human iPC | |||
iPSC-derived AT2 cells [68] | Feeder-free | CK+DCI+Y-27632 medium (cAMP/IBMX), CHIR, rhKGF, dexamethasone, and Y-27632 rho-associated kinase inhibitor | Early-stage lung adenocarcinoma model |
hIPSC-derived CPM+ NKX2.1+ foregut endoderm cells [57] | Human fetal lung fibroblasts (1:50) | Medium consisted of RA, CHIR99021, and BMP4, FGF-10, dexamethasone, 8-Br-cAMP, 3-IBMX, and FGF-7 | Carboxypeptidase M (CPM) as a surface marker of NKX2-1+ AEPCs |
hIPSC-derived NKX2.1+ anterior foregut endoderm cells [56] | Fetal lung fibroblast (1:50) and feeder-free | FGF-7, FGF-10, dexamethasone, B27, ITS, 8-Br-cAMP, 3IBMX, CHIR-99021, BSA, CaCl2, Y-27632, and SB431542 | Long-term culture model for drug toxicity screening |
hIPSC-derived anterior foregut endoderm cells NKX2.1 GFP+/SFTPC tdTomato+ expression or CD47hi/CD26lo [55,77] | Feeder-free | FGF-7, FGF-10, dexamethasone, 8-Br-cAMP, 3IBMX, CHIR99021, and SB431542 | Gene mutation correction model |
hIPSc-derived NKX2.1+ progenitor cells [59] | Human fetal lung fibroblasts (1:50) | DCIK medium containing dexamethasone, 100 μM of 8-Br-cAMP, 100 μM of 3-isobutyl-1-methylxanthine, and 10 ng/mL of KGF | Hermansky–Pudlak syndrome type I modeling |
hiPSC-derived GFP+ iAT2 cells [79] | Feeder-free | IMDM/Ham’s F12 media with CHIR99021, KGF, dexamethasone, 3-Isobutyl-1-methylxanthine (IBMX), 8-bromo-cAMP and primocin (CK+DCI medium), Y-27632, 5 days in K+DCI (without CHIR99021), and 7 days in CK+DCI | Matrigel-free synthetic hydrogel with microcavities for organoid culture |
4.1.4. Mouse and Human ESC-Derived AT2 Cells
Cell Source | Feeder Cell Type (Epithelial to Feeder Ratio) | Medium | Model |
---|---|---|---|
Mouse ESC | |||
Very small embryonic-like stem cells (VSELs) [80] | Mlg2908 (3:100) | DMEM/F12, FBS (10%, v/v), penicillin/streptomycin (0.5%, v/v), 1 M HEPES (0.1%, v/v), and ITS (1%, v/v) | VSELs produce functional BASC and AT2 |
Mouse fetal lung bud tip-derived PSC [82] | Feeder-free | Medium including B27 supplement, BSA, FGF-7, all trans retinoic acid, and CHIR-99021 | Lung developmental model |
EPCAM + embryonic (e16.5) bi-progenitor cells [2] | Feeder-free | DMEM/F12, 1%FBS, and Fgf-7 | Fgf signaling regulates alveolar fate |
Human ESC | |||
hESCs-derived AT2 cells [19] | unknown | Ham’s F12 dexamethasone (8-Br-cAMP (3-isobutyl-1-methylxanthine) KGF, B-27, BSA, ITS premix, CHIR99021 and SB431542 | SARS-CoV-2 infection model |
Human fetal lung-bud-tip-derived PSC [82] | Feeder-free | Medium including B27 supplement, BSA, FGF-7, all trans retinoic acid, and CHIR-99021 | Lung developmental model |
Human embryonic lung tips and stalks [33] | PDGFRB+ lung embryonic mesenchyme | rhEGF, rhNoggin, rhFGF-10, rhFGF-7, CHIR99021, RSPO-1, and SB431542 | Lung developmental model |
Fetal lung bud tip progenitor cells [81] | Mesenchymal cells | B27 supplement, 0.05% BSA, FGF-7, FGF-10, BMP4, all trans retinoic acid, and CHIR-9902 | Lung developmental and disease models |
4.2. Feeder-Free Organoid Culture Systems
4.3. 3D Matrix Alternatives to Matrigel for Organoid Cultures
5. Applications
5.1. Modeling Lung Diseases with Organoids
5.2. Lung Developmental Studies
5.3. Drug Discovery/Target Screening
5.4. Preclinical Cell Therapy
5.5. Drug Toxicity Screening
5.6. Cancer Models
6. Limitations and Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chong, L.; Ahmadvand, N.; Noori, A.; Lv, Y.; Chen, C.; Bellusci, S.; Zhang, J.S. Injury activated alveolar progenitors (IAAPs): The underdog of lung repair. Cell Mol. Life Sci. 2023, 80, 145. [Google Scholar] [CrossRef]
- Brownfield, D.G.; de Arce, A.D.; Ghelfi, E.; Gillich, A.; Desai, T.J.; Krasnow, M.A. Alveolar cell fate selection and lifelong maintenance of AT2 cells by FGF signaling. Nat. Commun. 2022, 13, 7137. [Google Scholar] [CrossRef] [PubMed]
- Konishi, S.; Tata, A.; Tata, P.R. Defined conditions for long-term expansion of murine and human alveolar epithelial stem cells in three-dimensional cultures. STAR Protoc. 2022, 3, 101447. [Google Scholar] [CrossRef]
- Barkauskas, C.E.; Cronce, M.J.; Rackley, C.R.; Bowie, E.J.; Keene, D.R.; Stripp, B.R.; Randell, S.H.; Noble, P.W.; Hogan, B.L. Type 2 alveolar cells are stem cells in adult lung. J. Clin. Investig. 2013, 123, 3025–3036. [Google Scholar] [CrossRef] [PubMed]
- Martinez, F.J.; Collard, H.R.; Pardo, A.; Raghu, G.; Richeldi, L.; Selman, M.; Swigris, J.J.; Taniguchi, H.; Wells, A.U. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Primers 2017, 3, 17074. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J.; Burney, P.G.; Silverman, E.K.; Celli, B.R.; Vestbo, J.; Wedzicha, J.A.; Wouters, E.F. Chronic obstructive pulmonary disease. Nat. Rev. Dis. Primers 2015, 1, 15076. [Google Scholar] [CrossRef]
- Lamers, M.M.; Beumer, J.; van der Vaart, J.; Knoops, K.; Puschhof, J.; Breugem, T.I.; Ravelli, R.B.G.; Paul van Schayck, J.; Mykytyn, A.Z.; Duimel, H.Q.; et al. SARS-CoV-2 productively infects human gut enterocytes. Science 2020, 369, 50–54. [Google Scholar] [CrossRef]
- Franks, T.J.; Chong, P.Y.; Chui, P.; Galvin, J.R.; Lourens, R.M.; Reid, A.H.; Selbs, E.; McEvoy, C.P.; Hayden, C.D.; Fukuoka, J.; et al. Lung pathology of severe acute respiratory syndrome (SARS): A study of 8 autopsy cases from Singapore. Hum. Pathol. 2003, 34, 743–748. [Google Scholar] [CrossRef]
- Katsura, H.; Sontake, V.; Tata, A.; Kobayashi, Y.; Edwards, C.E.; Heaton, B.E.; Konkimalla, A.; Asakura, T.; Mikami, Y.; Fritch, E.J.; et al. Human Lung Stem Cell-Based Alveolospheres Provide Insights into SARS-CoV-2-Mediated Interferon Responses and Pneumocyte Dysfunction. Cell Stem Cell 2020, 27, 890–904.e898. [Google Scholar] [CrossRef]
- Baldassi, D.; Gabold, B.; Merkel, O.M. Air-Liquid Interface Cultures of the Healthy and Diseased Human Respiratory Tract: Promises, Challenges, and Future Directions. Adv. NanoBiomed Res. 2021, 1, 2000111. [Google Scholar] [CrossRef]
- Miller, A.J.; Spence, J.R. In Vitro Models to Study Human Lung Development, Disease and Homeostasis. Physiology 2017, 32, 246–260. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Korogi, Y.; Hirai, T.; Gotoh, S. A method of generating alveolar organoids using human pluripotent stem cells. Methods Cell Biol. 2020, 159, 115–141. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Song, Y.; Hirsch, J.; Galietta, L.J.; Pedemonte, N.; Zemans, R.L.; Dolganov, G.; Verkman, A.S.; Matthay, M.A. Contribution of CFTR to apical-basolateral fluid transport in cultured human alveolar epithelial type II cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 290, L242–L249. [Google Scholar] [CrossRef]
- Cheek, J.M.; Kim, K.J.; Crandall, E.D. Tight monolayers of rat alveolar epithelial cells: Bioelectric properties and active sodium transport. Am. J. Physiol. 1989, 256, C688–C693. [Google Scholar] [CrossRef] [PubMed]
- Demaio, L.; Tseng, W.; Balverde, Z.; Alvarez, J.R.; Kim, K.J.; Kelley, D.G.; Senior, R.M.; Crandall, E.D.; Borok, Z. Characterization of mouse alveolar epithelial cell monolayers. Am. J. Physiol. Lung Cell Mol. Physiol. 2009, 296, L1051–L1058. [Google Scholar] [CrossRef] [PubMed]
- Ali, G.; Zhang, M.; Zhao, R.; Jain, K.G.; Chang, J.; Komatsu, S.; Zhou, B.; Liang, J.; Matthay, M.A.; Ji, H.L. Fibrinolytic niche is required for alveolar type 2 cell-mediated alveologenesis via a uPA-A6-CD44(+)-ENaC signal cascade. Signal Transduct. Target. Ther. 2021, 6, 97. [Google Scholar] [CrossRef] [PubMed]
- Ali, G.; Zhang, M.; Chang, J.; Zhao, R.; Jin, Y.; Zhang, J.; Ji, H.-L. PAI-1 regulates AT2-mediated re-alveolarization and ion permeability. Stem Cell Res. Ther. 2023, 14, 185. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, X.; Dowbaj, A.M.; Sljukic, A.; Bratlie, K.; Lin, L.; Fong, E.L.S.; Balachander, G.M.; Chen, Z.; Soragni, A.; et al. Organoids. Nat. Rev. Methods Primers 2022, 2, 94. [Google Scholar] [CrossRef]
- Pei, R.; Feng, J.; Zhang, Y.; Sun, H.; Li, L.; Yang, X.; He, J.; Xiao, S.; Xiong, J.; Lin, Y.; et al. Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection. Protein Cell 2021, 12, 717–733. [Google Scholar] [CrossRef]
- Smith, E.; Cochrane, W.J. CYSTIC ORGANOID TERATOMA: (Report of a Case). Can. Med. Assoc. J. 1946, 55, 151–152. [Google Scholar]
- Lancaster, M.A.; Knoblich, J.A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science 2014, 345, 1247125. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Vries, R.G.; Snippert, H.J.; van de Wetering, M.; Barker, N.; Stange, D.E.; van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009, 459, 262–265. [Google Scholar] [CrossRef]
- Clevers, H. Modeling Development and Disease with Organoids. Cell 2016, 165, 1586–1597. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Stange, D.E.; Ferrante, M.; Vries, R.G.; Van Es, J.H.; Van den Brink, S.; Van Houdt, W.J.; Pronk, A.; Van Gorp, J.; Siersema, P.D.; et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 2011, 141, 1762–1772. [Google Scholar] [CrossRef]
- Huch, M.; Dorrell, C.; Boj, S.F.; van Es, J.H.; Li, V.S.; van de Wetering, M.; Sato, T.; Hamer, K.; Sasaki, N.; Finegold, M.J.; et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 2013, 494, 247–250. [Google Scholar] [CrossRef]
- Chua, C.W.; Shibata, M.; Lei, M.; Toivanen, R.; Barlow, L.J.; Bergren, S.K.; Badani, K.K.; McKiernan, J.M.; Benson, M.C.; Hibshoosh, H.; et al. Single luminal epithelial progenitors can generate prostate organoids in culture. Nat. Cell Biol. 2014, 16, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Boj, S.F.; Hwang, C.I.; Baker, L.A.; Chio, I.I.; Engle, D.D.; Corbo, V.; Jager, M.; Ponz-Sarvise, M.; Tiriac, H.; Spector, M.S.; et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 2015, 160, 324–338. [Google Scholar] [CrossRef]
- Jo, J.; Xiao, Y.; Sun, A.X.; Cukuroglu, E.; Tran, H.D.; Göke, J.; Tan, Z.Y.; Saw, T.Y.; Tan, C.P.; Lokman, H.; et al. Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. Cell Stem Cell 2016, 19, 248–257. [Google Scholar] [CrossRef]
- Maimets, M.; Rocchi, C.; Bron, R.; Pringle, S.; Kuipers, J.; Giepmans, B.N.; Vries, R.G.; Clevers, H.; de Haan, G.; van Os, R.; et al. Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals. Stem Cell Rep. 2016, 6, 150–162. [Google Scholar] [CrossRef]
- Rock, J.R.; Onaitis, M.W.; Rawlins, E.L.; Lu, Y.; Clark, C.P.; Xue, Y.; Randell, S.H.; Hogan, B.L. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl. Acad. Sci. USA 2009, 106, 12771–12775. [Google Scholar] [CrossRef]
- McQualter, J.L.; Yuen, K.; Williams, B.; Bertoncello, I. Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc. Natl. Acad. Sci. USA 2010, 107, 1414–1419. [Google Scholar] [CrossRef]
- Dye, B.R.; Hill, D.R.; Ferguson, M.A.H.; Tsai, Y.-H.; Nagy, M.S.; Dyal, R.; Wells, J.M.; Mayhew, C.N.; Nattiv, R.; Klein, O.D.; et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 2015, 4, e05098. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, M.Z.; Caritg, O.; Jeng, Q.; Johnson, J.-A.; Sun, D.; Howell, K.J.; Brady, J.L.; Laresgoiti, U.; Allen, G.; Butler, R.; et al. Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids. eLife 2017, 6, e26575. [Google Scholar] [CrossRef] [PubMed]
- Weiner, A.I.; Jackson, S.R.; Zhao, G.; Quansah, K.K.; Farshchian, J.N.; Neupauer, K.M.; Littauer, E.Q.; Paris, A.J.; Liberti, D.C.; Scott Worthen, G.; et al. Mesenchyme-free expansion and transplantation of adult alveolar progenitor cells: Steps toward cell-based regenerative therapies. NPJ Regen. Med. 2019, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Sachs, N.; Papaspyropoulos, A.; Zomer-van Ommen, D.D.; Heo, I.; Böttinger, L.; Klay, D.; Weeber, F.; Huelsz-Prince, G.; Iakobachvili, N.; Amatngalim, G.D.; et al. Long-term expanding human airway organoids for disease modeling. Embo J. 2019, 38, e100300. [Google Scholar] [CrossRef]
- van Riet, S.; van Schadewijk, A.; Khedoe, P.; Limpens, R.; Bárcena, M.; Stolk, J.; Hiemstra, P.S.; van der Does, A.M. Organoid-based expansion of patient-derived primary alveolar type 2 cells for establishment of alveolus epithelial Lung-Chip cultures. Am. J. Physiol. Lung Cell Mol. Physiol. 2022, 322, L526–L538. [Google Scholar] [CrossRef]
- Lim, K.; Donovan, A.P.A.; Tang, W.; Sun, D.; He, P.; Pett, J.P.; Teichmann, S.A.; Marioni, J.C.; Meyer, K.B.; Brand, A.H.; et al. Organoid modeling of human fetal lung alveolar development reveals mechanisms of cell fate patterning and neonatal respiratory disease. Cell Stem Cell 2023, 30, 20–37.e29. [Google Scholar] [CrossRef]
- Nadkarni, R.R.; Abed, S.; Draper, J.S. Stem Cells in Pulmonary Disease and Regeneration. Chest 2018, 153, 994–1003. [Google Scholar] [CrossRef]
- Aichler, M.; Kunzke, T.; Buck, A.; Sun, N.; Ackermann, M.; Jonigk, D.; Gaumann, A.; Walch, A. Molecular similarities and differences from human pulmonary fibrosis and corresponding mouse model: MALDI imaging mass spectrometry in comparative medicine. Lab. Investig. 2018, 98, 141–149. [Google Scholar] [CrossRef]
- Pan, H.; Deutsch, G.H.; Wert, S.E. Comprehensive anatomic ontologies for lung development: A comparison of alveolar formation and maturation within mouse and human lung. J. Biomed. Semant. 2019, 10, 18. [Google Scholar] [CrossRef]
- Huang, X.; Fan, W.; Sun, J.; Yang, J.; Zhang, Y.; Wang, Q.; Li, P.; Zhang, Y.; Zhang, S.; Li, H.; et al. SARS-CoV-2 induces cardiomyocyte apoptosis and inflammation but can be ameliorated by ACE inhibitor Captopril. Antivir. Res. 2023, 215, 105636. [Google Scholar] [CrossRef]
- Zhao, R.; Ali, G.; Chang, J.; Komatsu, S.; Tsukasaki, Y.; Nie, H.G.; Chang, Y.; Zhang, M.; Liu, Y.; Jain, K.; et al. Proliferative regulation of alveolar epithelial type 2 progenitor cells by human Scnn1d gene. Theranostics 2019, 9, 8155–8170. [Google Scholar] [CrossRef]
- Jain, K.G.; Zhao, R.; Liu, Y.; Guo, X.; Yi, G.; Ji, H.L. Wnt5a/β-catenin axis is involved in the downregulation of AT2 lineage by PAI-1. Am. J. Physiol. Lung Cell Mol. Physiol. 2022, 323, L515–L524. [Google Scholar] [CrossRef]
- Warren, H.S.; Tompkins, R.G.; Moldawer, L.L.; Seok, J.; Xu, W.; Mindrinos, M.N.; Maier, R.V.; Xiao, W.; Davis, R.W. Mice are not men. Proc. Natl. Acad. Sci. USA 2015, 112, E345. [Google Scholar] [CrossRef]
- Martić-Kehl, M.I.; Schibli, R.; Schubiger, P.A. Can animal data predict human outcome? Problems and pitfalls of translational animal research. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 1492–1496. [Google Scholar] [CrossRef]
- Yuan, T.; Volckaert, T.; Chanda, D.; Thannickal, V.J.; De Langhe, S.P. Fgf10 Signaling in Lung Development, Homeostasis, Disease, and Repair After Injury. Front. Genet. 2018, 9, 418. [Google Scholar] [CrossRef]
- Abraham, V.; Chou, M.L.; DeBolt, K.M.; Koval, M. Phenotypic control of gap junctional communication by cultured alveolar epithelial cells. Am. J. Physiol. 1999, 276, L825–L834. [Google Scholar] [CrossRef]
- Weller, N.K.; Karnovsky, M.J. Improved isolation of rat lung alveolar type II cells. More representative recovery and retention of cell polarity. Am. J. Pathol. 1986, 122, 92–100. [Google Scholar]
- Choi, J.; Park, J.E.; Tsagkogeorga, G.; Yanagita, M.; Koo, B.K.; Han, N.; Lee, J.H. Inflammatory Signals Induce AT2 Cell-Derived Damage-Associated Transient Progenitors that Mediate Alveolar Regeneration. Cell Stem Cell 2020, 27, 366–382.e367. [Google Scholar] [CrossRef]
- Gonzalez, R.F.; Allen, L.; Gonzales, L.; Ballard, P.L.; Dobbs, L.G. HTII-280, a Biomarker Specific to the Apical Plasma Membrane of Human Lung Alveolar Type II Cells. J. Histochem. Cytochem. 2010, 58, 891–901. [Google Scholar] [CrossRef]
- Hasegawa, K.; Sato, A.; Tanimura, K.; Uemasu, K.; Hamakawa, Y.; Fuseya, Y.; Sato, S.; Muro, S.; Hirai, T. Fraction of MHCII and EpCAM expression characterizes distal lung epithelial cells for alveolar type 2 cell isolation. Respir. Res. 2017, 18, 150. [Google Scholar] [CrossRef]
- Toulmin, S.A.; Bhadiadra, C.; Paris, A.J.; Lin, J.H.; Katzen, J.; Basil, M.C.; Morrisey, E.E.; Worthen, G.S.; Eisenlohr, L.C. Type II alveolar cell MHCII improves respiratory viral disease outcomes while exhibiting limited antigen presentation. Nat. Commun. 2021, 12, 3993. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, X.; Tan, Z.; Ren, Y.; Li, L.; Ou, J.; Lin, Y.; Song, H.; Feng, L.; Seto, D.; et al. Generation of Human Embryonic Stem Cell-Derived Lung Organoids for Modeling Infection and Replication Differences between Human Adenovirus Types 3 and 55 and Evaluating Potential Antiviral Drugs. J. Virol. 2023, 97, e0020923. [Google Scholar] [CrossRef]
- Hoffman, E.T.; Uriarte, J.J.; Uhl, F.E.; Eckstrom, K.; Tanneberger, A.E.; Becker, C.; Moulin, C.; Asarian, L.; Ikonomou, L.; Kotton, D.N.; et al. Human alveolar hydrogels promote morphological and transcriptional differentiation in iPSC-derived alveolar type 2 epithelial cells. Sci. Rep. 2023, 13, 12057. [Google Scholar] [CrossRef]
- Jacob, A.; Morley, M.; Hawkins, F.; McCauley, K.B.; Jean, J.C.; Heins, H.; Na, C.L.; Weaver, T.E.; Vedaie, M.; Hurley, K.; et al. Differentiation of Human Pluripotent Stem Cells into Functional Lung Alveolar Epithelial Cells. Cell Stem Cell 2017, 21, 472–488.e410. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Gotoh, S.; Korogi, Y.; Seki, M.; Konishi, S.; Ikeo, S.; Sone, N.; Nagasaki, T.; Matsumoto, H.; Muro, S.; et al. Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat. Methods 2017, 14, 1097–1106. [Google Scholar] [CrossRef]
- Gotoh, S.; Ito, I.; Nagasaki, T.; Yamamoto, Y.; Konishi, S.; Korogi, Y.; Matsumoto, H.; Muro, S.; Hirai, T.; Funato, M.; et al. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Rep. 2014, 3, 394–403. [Google Scholar] [CrossRef]
- Nabhan, A.N.; Brownfield, D.G.; Harbury, P.B.; Krasnow, M.A.; Desai, T.J. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science 2018, 359, 1118–1123. [Google Scholar] [CrossRef]
- Suezawa, T.; Kanagaki, S.; Korogi, Y.; Nakao, K.; Hirai, T.; Murakami, K.; Hagiwara, M.; Gotoh, S. Modeling of lung phenotype of Hermansky-Pudlak syndrome type I using patient-specific iPSCs. Respir. Res. 2021, 22, 284. [Google Scholar] [CrossRef]
- Lee, J.H.; Bhang, D.H.; Beede, A.; Huang, T.L.; Stripp, B.R.; Bloch, K.D.; Wagers, A.J.; Tseng, Y.H.; Ryeom, S.; Kim, C.F. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell 2014, 156, 440–455. [Google Scholar] [CrossRef]
- Tamai, K.; Sakai, K.; Yamaki, H.; Moriguchi, K.; Igura, K.; Maehana, S.; Suezawa, T.; Takehara, K.; Hagiwara, M.; Hirai, T.; et al. iPSC-derived mesenchymal cells that support alveolar organoid development. Cell Rep. Methods 2022, 2, 100314. [Google Scholar] [CrossRef] [PubMed]
- Zacharias, W.J.; Frank, D.B.; Zepp, J.A.; Morley, M.P.; Alkhaleel, F.A.; Kong, J.; Zhou, S.; Cantu, E.; Morrisey, E.E. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 2018, 555, 251–255. [Google Scholar] [CrossRef]
- Barkauskas, C.E.; Chung, M.I.; Fioret, B.; Gao, X.; Katsura, H.; Hogan, B.L. Lung organoids: Current uses and future promise. Development 2017, 144, 986–997. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, K.; Shichino, S.; Ueha, S.; Nakajima, T.; Hashimoto, S.; Yamazaki, S.; Matsushima, K. Mesenchymal-Epithelial Interactome Analysis Reveals Essential Factors Required for Fibroblast-Free Alveolosphere Formation. iScience 2019, 11, 318–333. [Google Scholar] [CrossRef] [PubMed]
- Frank, D.B.; Peng, T.; Zepp, J.A.; Snitow, M.; Vincent, T.L.; Penkala, I.J.; Cui, Z.; Herriges, M.J.; Morley, M.P.; Zhou, S.; et al. Emergence of a Wave of Wnt Signaling that Regulates Lung Alveologenesis by Controlling Epithelial Self-Renewal and Differentiation. Cell Rep. 2016, 17, 2312–2325. [Google Scholar] [CrossRef]
- Gokey, J.J.; Snowball, J.; Green, J.; Waltamath, M.; Spinney, J.J.; Black, K.E.; Hariri, L.P.; Xu, Y.; Perl, A.K. Pretreatment of aged mice with retinoic acid supports alveolar regeneration via upregulation of reciprocal PDGFA signalling. Thorax 2021, 76, 456–467. [Google Scholar] [CrossRef]
- Salahudeen, A.A.; Choi, S.S.; Rustagi, A.; Zhu, J.; van Unen, V.; de la O, S.M.; Flynn, R.A.; Margalef-Català, M.; Santos, A.J.M.; Ju, J.; et al. Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature 2020, 588, 670–675. [Google Scholar] [CrossRef]
- Dost, A.F.M.; Moye, A.L.; Vedaie, M.; Tran, L.M.; Fung, E.; Heinze, D.; Villacorta-Martin, C.; Huang, J.; Hekman, R.; Kwan, J.H.; et al. Organoids Model Transcriptional Hallmarks of Oncogenic KRAS Activation in Lung Epithelial Progenitor Cells. Cell Stem Cell 2020, 27, 663–678.e668. [Google Scholar] [CrossRef]
- Randell, S.H.; Fulcher, M.L.; O’Neal, W.; Olsen, J.C. Primary Epithelial Cell Models for Cystic Fibrosis Research. In Cystic Fibrosis: Diagnosis and Protocols, Volume II: Methods and Resources to Understand Cystic Fibrosis; Amaral, M.D., Kunzelmann, K., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 285–310. [Google Scholar] [CrossRef]
- Nyeng, P.; Norgaard, G.A.; Kobberup, S.; Jensen, J. FGF10 maintains distal lung bud epithelium and excessive signaling leads to progenitor state arrest, distalization, and goblet cell metaplasia. BMC Dev. Biol. 2008, 8, 2. [Google Scholar] [CrossRef]
- Ohmichi, H.; Koshimizu, U.; Matsumoto, K.; Nakamura, T. Hepatocyte growth factor (HGF) acts as a mesenchyme-derived morphogenic factor during fetal lung development. Development 1998, 125, 1315–1324. [Google Scholar] [CrossRef]
- McQualter, J.L.; McCarty, R.C.; Van der Velden, J.; O’Donoghue, R.J.J.; Asselin-Labat, M.-L.; Bozinovski, S.; Bertoncello, I. TGF-β signaling in stromal cells acts upstream of FGF-10 to regulate epithelial stem cell growth in the adult lung. Stem Cell Res. 2013, 11, 1222–1233. [Google Scholar] [CrossRef]
- Taghizadeh, S.; Chao, C.M.; Guenther, S.; Glaser, L.; Gersmann, L.; Michel, G.; Kraut, S.; Goth, K.; Koepke, J.; Heiner, M.; et al. FGF10 Triggers De Novo Alveologenesis in a Bronchopulmonary Dysplasia Model: Impact on Resident Mesenchymal Niche Cells. Stem Cells 2022, 40, 605–617. [Google Scholar] [CrossRef] [PubMed]
- Zepp, J.A.; Zacharias, W.J.; Frank, D.B.; Cavanaugh, C.A.; Zhou, S.; Morley, M.P.; Morrisey, E.E. Distinct Mesenchymal Lineages and Niches Promote Epithelial Self-Renewal and Myofibrogenesis in the Lung. Cell 2017, 170, 1134–1148.e1110. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef]
- Hawkins, F.; Kramer, P.; Jacob, A.; Driver, I.; Thomas, D.C.; McCauley, K.B.; Skvir, N.; Crane, A.M.; Kurmann, A.A.; Hollenberg, A.N.; et al. Prospective isolation of NKX2-1-expressing human lung progenitors derived from pluripotent stem cells. J. Clin. Investig. 2017, 127, 2277–2294. [Google Scholar] [CrossRef] [PubMed]
- Jacob, A.; Vedaie, M.; Roberts, D.A.; Thomas, D.C.; Villacorta-Martin, C.; Alysandratos, K.D.; Hawkins, F.; Kotton, D.N. Derivation of self-renewing lung alveolar epithelial type II cells from human pluripotent stem cells. Nat. Protoc. 2019, 14, 3303–3332. [Google Scholar] [CrossRef] [PubMed]
- Alber, A.B.; Marquez, H.A.; Ma, L.; Kwong, G.; Thapa, B.R.; Villacorta-Martin, C.; Lindstrom-Vautrin, J.; Bawa, P.; Wang, F.; Luo, Y.; et al. Directed differentiation of mouse pluripotent stem cells into functional lung-specific mesenchyme. Nat. Commun. 2023, 14, 3488. [Google Scholar] [CrossRef]
- Loebel, C.; Weiner, A.I.; Eiken, M.K.; Katzen, J.B.; Morley, M.P.; Bala, V.; Cardenas-Diaz, F.L.; Davidson, M.D.; Shiraishi, K.; Basil, M.C.; et al. Microstructured Hydrogels to Guide Self-Assembly and Function of Lung Alveolospheres. Adv. Mater. 2022, 34, e2202992. [Google Scholar] [CrossRef]
- Ciechanowicz, A.K.; Sielatycka, K.; Cymer, M.; Skoda, M.; Suszyńska, M.; Bujko, K.; Ratajczak, M.Z.; Krause, D.S.; Kucia, M. Bone Marrow-Derived VSELs Engraft as Lung Epithelial Progenitor Cells after Bleomycin-Induced Lung Injury. Cells 2021, 10, 1570. [Google Scholar] [CrossRef]
- Chen, Y.-W.; Huang, S.X.; de Carvalho, A.L.R.T.; Ho, S.-H.; Islam, M.N.; Volpi, S.; Notarangelo, L.D.; Ciancanelli, M.; Casanova, J.-L.; Bhattacharya, J.; et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat. Cell Biol. 2017, 19, 542–549. [Google Scholar] [CrossRef]
- Miller, A.J.; Hill, D.R.; Nagy, M.S.; Aoki, Y.; Dye, B.R.; Chin, A.M.; Huang, S.; Zhu, F.; White, E.S.; Lama, V.; et al. In Vitro Induction and In Vivo Engraftment of Lung Bud Tip Progenitor Cells Derived from Human Pluripotent Stem Cells. Stem Cell Rep. 2018, 10, 101–119. [Google Scholar] [CrossRef] [PubMed]
- Rock, J.R.; Barkauskas, C.E.; Cronce, M.J.; Xue, Y.; Harris, J.R.; Liang, J.; Noble, P.W.; Hogan, B.L.M. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc. Natl. Acad. Sci. USA 2011, 108, E1475–E1483. [Google Scholar] [CrossRef] [PubMed]
- Tanjore, H.; Xu, X.C.; Polosukhin, V.V.; Degryse, A.L.; Li, B.; Han, W.; Sherrill, T.P.; Plieth, D.; Neilson, E.G.; Blackwell, T.S.; et al. Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am. J. Respir. Crit. Care Med. 2009, 180, 657–665. [Google Scholar] [CrossRef]
- Alysandratos, K.-D.; Garcia-de-Alba, C.; Yao, C.; Pessina, P.; Huang, J.; Villacorta-Martin, C.; Hix, O.T.; Minakin, K.; Burgess, C.L.; Bawa, P.; et al. Culture impact on the transcriptomic programs of primary and iPSC-derived human alveolar type 2 cells. JCI Insight 2023, 8, e158937. [Google Scholar] [CrossRef] [PubMed]
- Raslan, A.A.; Oh, Y.J.; Jin, Y.R.; Yoon, J.K. R-Spondin2, a Positive Canonical WNT Signaling Regulator, Controls the Expansion and Differentiation of Distal Lung Epithelial Stem/Progenitor Cells in Mice. Int. J. Mol. Sci. 2022, 23, 89. [Google Scholar] [CrossRef]
- Ding, B.S.; Nolan, D.J.; Guo, P.; Babazadeh, A.O.; Cao, Z.; Rosenwaks, Z.; Crystal, R.G.; Simons, M.; Sato, T.N.; Worgall, S.; et al. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 2011, 147, 539–553. [Google Scholar] [CrossRef]
- Arman, E.; Haffner-Krausz, R.; Gorivodsky, M.; Lonai, P. Fgfr2 is required for limb outgrowth and lung-branching morphogenesis. Proc. Natl. Acad. Sci. USA 1999, 96, 11895–11899. [Google Scholar] [CrossRef]
- Bejoy, J.; Wang, Z.; Bijonowski, B.; Yang, M.; Ma, T.; Sang, Q.-X.; Li, Y. Differential Effects of Heparin and Hyaluronic Acid on Neural Patterning of Human Induced Pluripotent Stem Cells. ACS Biomater. Sci. Eng. 2018, 4, 4354–4366. [Google Scholar] [CrossRef]
- Bonfanti, P.; Nobecourt, E.; Oshima, M.; Albagli-Curiel, O.; Laurysens, V.; Stangé, G.; Sojoodi, M.; Heremans, Y.; Heimberg, H.; Scharfmann, R. Ex Vivo Expansion and Differentiation of Human and Mouse Fetal Pancreatic Progenitors Are Modulated by Epidermal Growth Factor. Stem Cells Dev. 2015, 24, 1766–1778. [Google Scholar] [CrossRef]
- Abler, L.L.; Mansour, S.L.; Sun, X. Conditional gene inactivation reveals roles for Fgf10 and Fgfr2 in establishing a normal pattern of epithelial branching in the mouse lung. Dev. Dyn. 2009, 238, 1999–2013. [Google Scholar] [CrossRef]
- Min, H.; Danilenko, D.M.; Scully, S.A.; Bolon, B.; Ring, B.D.; Tarpley, J.E.; DeRose, M.; Simonet, W.S. Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes. Dev. 1998, 12, 3156–3161. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Li, J.; Dang, S.; Schurmann, P.; Dost, A.; Moye, A.; Paschini, M.; Bhetariya, P.; Bronson, R.; Sui, S.H. Organoid modeling reveals the tumorigenic potential of the alveolar progenitor cell state. Res. Sq. 2023; preprint. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, J.; Zhao, S.; Han, L.; Yang, H.; Lin, Y.; Rong, Z. Long-Term Engraftment Promotes Differentiation of Alveolar Epithelial Cells from Human Embryonic Stem Cell Derived Lung Organoids. Stem Cells Dev. 2018, 27, 1339–1349. [Google Scholar] [CrossRef] [PubMed]
- Attarwala, H. TGN1412: From Discovery to Disaster. J. Young Pharm. 2010, 2, 332–336. [Google Scholar] [CrossRef]
- Jüni, P.; Nartey, L.; Reichenbach, S.; Sterchi, R.; Dieppe, P.A.; Egger, M. Risk of cardiovascular events and rofecoxib: Cumulative meta-analysis. Lancet 2004, 364, 2021–2029. [Google Scholar] [CrossRef] [PubMed]
- Suntharalingam, G.; Perry, M.R.; Ward, S.; Brett, S.J.; Castello-Cortes, A.; Brunner, M.D.; Panoskaltsis, N. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 2006, 355, 1018–1028. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.; Müller, M.; Costa, P.F.; Kohl, Y. Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Adv. Biol. 2022, 6, 2101139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, H.; Ding, Q.; Xing, Y.; Xu, Z.; Lu, C.; Luo, D.; Xu, L.; Xia, W.; Zhou, C.; et al. Establishment of patient-derived tumor spheroids for non-small cell lung cancer. PLoS ONE 2018, 13, e0194016. [Google Scholar] [CrossRef]
- Kaisani, A.; Delgado, O.; Fasciani, G.; Kim, S.B.; Wright, W.E.; Minna, J.D.; Shay, J.W. Branching morphogenesis of immortalized human bronchial epithelial cells in three-dimensional culture. Differentiation 2014, 87, 119–126. [Google Scholar] [CrossRef]
- Kim, M.; Mun, H.; Sung, C.O.; Cho, E.J.; Jeon, H.J.; Chun, S.M.; Jung, D.J.; Shin, T.H.; Jeong, G.S.; Kim, D.K.; et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun. 2019, 10, 3991. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, R.; Zhao, M.; Liang, X.; Bhattarai, D.; Dhiman, R.; Shetty, S.; Idell, S.; Ji, H.L. Regulation of epithelial sodium channels in urokinase plasminogen activator deficiency. Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 307, L609–L617. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Cui, Y.; Zhou, Z.; Liu, H.; Zhang, H.; Ding, Y.; Nie, H.; Ji, H.L. Upregulation of the WNK4 Signaling Pathway Inhibits Epithelial Sodium Channels of Mouse Tracheal Epithelial Cells After Influenza A Infection. Front. Pharmacol. 2019, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Louie, S.M.; Moye, A.L.; Wong, I.G.; Lu, E.; Shehaj, A.; Garcia-de-Alba, C.; Ararat, E.; Raby, B.A.; Lu, B.; Paschini, M.; et al. Progenitor potential of lung epithelial organoid cells in a transplantation model. Cell Rep. 2022, 39, 110662. [Google Scholar] [CrossRef] [PubMed]
Growth Factor/Component | Function |
---|---|
SB431542 [72] | TGF-β inhibitor; the TGF-β signaling pathway is a key regulator of the epithelial-supportive capacity of lung stromal cells |
CHIR99021 [32] | Wnt pathway activator/(GSK) 3 inhibitor, inhibiting both GSK3β (IC₅₀ = 6.7 nM) and GSK3α (IC₅₀ = 10 nM) |
BIRB796 | Potent inhibitor of p38 MAPK (Kd = 0.1 nM)/At 10 μM; BIRB-796 can also inhibit JNK2α2 |
R-spondin2 [86] | A co-activator of Wnt/β-catenin signaling; plays an important role in embryonic lung development and adult lung homeostasis and regeneration |
DMH-1 (dorsomorphin homolog 1) | Inhibitor of activin receptor-like kinase 2 (ALK2; IC₅₀ = 13–108 nM) |
N-AcetylL-Cysteine | Antioxidant |
EGF [87] | Regulates cell cycle, proliferation, and developmental processes; promotes regenerative alveolarization |
HGF [31] | Regulates epithelial proliferation and lineage commitment |
FGF10 [31,70] | Regulates epithelial proliferation and lineage commitment |
FGF-7 (KGF) [2,88] | Stimulates the growth of AT2 organoids through fgfr2 signaling |
Heparin [89] | Activates Wnt signaling |
B-27 supplement | Serum-free supplement used to support the low- or high-density growth and short- or long-term viability of cells |
Noggin [32] | BMP signaling inhibitors |
IL-1β (0–4 days) [49] | IL-1β signaling directly promotes the reprogramming of AT2 Cells/ IL-1β treatment increased organoid size and formation efficiency |
Y-27632 (0–4 days) [90] | RHO/ROCK pathway inhibitor |
ITS | Insulin promotes glucose and amino acid uptake, lipogenesis, intracellular transport, and the synthesis of proteins and nucleic acids; transferrin is an iron carrier, and it may also help to reduce toxic levels of oxygen radicals and peroxide; selenium, as sodium selenite, is a co-factor for glutathione peroxidase and other proteins and is used as an antioxidant in media |
N2 supplement | Serum-free supplement based on Bottenstein’s N-1 formulation; it is recommended for the growth and expression of neuroblastomas |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jain, K.G.; Xi, N.M.; Zhao, R.; Ahmad, W.; Ali, G.; Ji, H.-L. Alveolar Type 2 Epithelial Cell Organoids: Focus on Culture Methods. Biomedicines 2023, 11, 3034. https://doi.org/10.3390/biomedicines11113034
Jain KG, Xi NM, Zhao R, Ahmad W, Ali G, Ji H-L. Alveolar Type 2 Epithelial Cell Organoids: Focus on Culture Methods. Biomedicines. 2023; 11(11):3034. https://doi.org/10.3390/biomedicines11113034
Chicago/Turabian StyleJain, Krishan Gopal, Nan Miles Xi, Runzhen Zhao, Waqas Ahmad, Gibran Ali, and Hong-Long Ji. 2023. "Alveolar Type 2 Epithelial Cell Organoids: Focus on Culture Methods" Biomedicines 11, no. 11: 3034. https://doi.org/10.3390/biomedicines11113034
APA StyleJain, K. G., Xi, N. M., Zhao, R., Ahmad, W., Ali, G., & Ji, H.-L. (2023). Alveolar Type 2 Epithelial Cell Organoids: Focus on Culture Methods. Biomedicines, 11(11), 3034. https://doi.org/10.3390/biomedicines11113034