Relationship between the Ubiquitin–Proteasome System and Autophagy in Colorectal Cancer Tissue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bubko, I.; Gruber, B.; Anuszewska, E. The role of the proteasome for therapy of incurable diseases. Postepy Hig. Med. Dosw. 2010, 64, 314–325. [Google Scholar]
- Bednarczyk, M.; Muc-Wierzgoń, M.; Zmarzły, N.; Grabarek, B.; Mazurek, U.; Janikowska, G. Expression profile of genes associated with the proteins degradation pathways in colorectal adenocarcinoma. Curr. Pharm. Biotechnol. 2019, 20, 551–561. [Google Scholar]
- Bednarczyk, M.; Muc-Wierzgoń, M.; Dzięgielewska-Gęsiak, S.; Fatyga, E.; Waniczek, D. Transcription of Autophagy Associated Gene Expression as Possible Predictors of a Colorectal Cancer Prognosis. Biomedicines 2023, 11, 418. [Google Scholar] [CrossRef]
- Li, X.; He, S.; Ma, B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer 2020, 19, 12. [Google Scholar] [CrossRef] [PubMed]
- Bednarczyk, M.; Zmarzły, N.; Grabarek, B.; Mazurek, M.; Muc-Wierzgoń, M. Genes involved in the regulation of different types of autophagy and their participation in cancer pathogenesis. Oncotarget 2018, 9, 34413–34428. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Mills, J.; Lapierre, L. Selective Autophagy Receptor p62/SQSTM1, a Pivotal Player in Stress and Aging. Front. Cell Dev. Biol. 2022, 10, 793328. [Google Scholar] [CrossRef]
- Zhong, J.; Huang, C. Ubiquitin proteasome system research in gastrointestinal cancer. World J. Gastrointest. Oncol. 2016, 8, 198–206. [Google Scholar] [CrossRef]
- Lee, H.; Park, J.; Kim, E.; Yoo, Y.; Song, E. Proteasome inhibitors attenuated cholesterol-induced cardiac hypertrophy in H9c2 cells. BMP Rep. 2016, 49, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Grumati, P.; Dikic, I. Ubiquitin signaling and autophagy. J. Biol. Chem. 2018, 293, 5404. [Google Scholar] [CrossRef]
- Infrastruktura PL-Grid. Available online: http://www.plgrid.pl/ (accessed on 10 October 2023).
- Spalinger, M.R.; Lang, S.; Vavricka, S.R.; Fried, M.; Rogler, G.; Scharl, M. Protein tyrosine phosphatasenon-receptor type 22 modulates NOD2- induced cytokine release and autophagy. PLoS ONE 2013, 8, e72384. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Colwell, N.; Larion, M.; Giles, A.J.; Seldomridge, A.N.; Sizdahkhani, S.; Gilbert, M.R.; Park, D.M. Hypoxia in the glioblastoma microenvi-ronment: Shaping the phenotype of cancer stem-like cells. Neuro Oncol. 2017, 19, 887–896. [Google Scholar] [CrossRef]
- Wang, E.; Yu, J.; Wong, S.H.; Cheng, A.; Chan, F.K.; Ng, S.S.M.; Cho, C.H.; Sung, J.J.Y.; Wu, W.K. A novel crosstalk between two major protein degradation systems. Autophagy 2013, 10, 1500–1508. [Google Scholar] [CrossRef]
- Wilde, I.B.; Brack, M.; Winget, J.M.; Mayor, T. Proteomic Characterization of Aggregating Proteins after the Inhibition of the Ubiquitin Proteasome System. J. Proteome Res. 2011, 10, 1062–1072. [Google Scholar] [CrossRef]
- Kocaturk, N.M.; Gozuacik, D. Crosstalk between Mammalian Autophagy and the Ubiquitin-Proteasome System. Front. Cell Dev. Biol. 2018, 6, 128–154. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, S. Crosstalk between autophagy and proteasome protein degradation systems: Possible implications for cancer therapy. Folia Histochem. Cytobiol. 2014, 51, 249–264. [Google Scholar] [CrossRef]
- Ding, W.-X.; Ni, H.-M.; Gao, W.; Yoshimori, T.; Stolz, D.B.; Ron, D.; Yin, X.-M. Linking of Autophagy to Ubiquitin-Proteasome System Is Important for the Regulation of Endoplasmic Reticulum Stress and Cell Viability. Am. J. Pathol. 2007, 171, 513–524. [Google Scholar] [CrossRef]
- Wu, W.K.K.; Wu, Y.C.; Yu, L.; Li, Z.J.; Sung, J.J.Y.; Cho, C.H. Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells. Biochem. Biophys. Res. Commun. 2008, 2, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.K.K.; Volta, V.; Cho, C.H.; Wu, Y.C.; Li, H.T.; Yu, L.; Li, Z.J.; Sung, J.J.Y. Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells. Biochem. Biophys. Res. Commun. 2009, 4, 598–601. [Google Scholar] [CrossRef] [PubMed]
- Gade, P.; Manjegowda, S.B.; Nallar, S.C.; Maachani, U.B.; Cross, A.S.; Kalvakolanu, D.V. Regulation of the Death-Associated Protein Kinase 1 Expression and Autophagy via ATF6 Requires Apoptosis Signal-Regulating Kinase 1. Mol. Cell. Biol. 2014, 34, 4033–4048. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.K.K.; Cho, C.H.; Lee, C.W.; Wu, K.; Fan, D.; Yu, J.; Sung, J.J.Y. Proteasome inhibition: A new therapeutic strategy to cancer treatment. Cancer Lett. 2010, 1, 15–22. [Google Scholar] [CrossRef]
- Gao, Z.; Gammoh, N.; Wong, P.-M.; Erdjument-Bromage, H.; Tempst, P.; Jiang, X. Processing of autophagic protein LC3 by the 20S proteasome. Autophagy 2010, 1, 126–137. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, M.; Chen, W.; Zhao, T.; Wei, Y. Cancer and ER stress: Mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed. Pharmacother. 2019, 118, 109249–109258. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Wang, M.; Li, S.; Li, X.; Bai, X.-Y.; Xu, Z.; Yang, Y.; Li, B.; Li, Y.; Wu, H. 2U-boxubiquitinligasePPIL2 suppresses breast cancer invasion and metastasis by altering cell morphology and promoting SNAI1 ubiquitination and degradation. Cell Death Dis. 2018, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, A.; Bertolotti, A. Regulation of proteasome assembly and activity in health and disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 697–712. [Google Scholar] [CrossRef] [PubMed]
- Kirkin, V.; Rogov, V.V. A Diversity of Selective Autophagy Receptors Determines the Specificity of the Autophagy Pathway. Mol. Cells 2019, 76, 268–285. [Google Scholar] [CrossRef]
- Nam, T.; Han, J.H.; Devkota, S.; Lee, H.-W. Emerging Paradigm of Crosstalk between Autophagy and the Ubiquitin-Proteasome System. Mol. Cells 2017, 40, 897–905. [Google Scholar] [PubMed]
- Sun-Wang, J.L.; Ivanova, S.; Zorzano, A. The dialogue between the ubiquitin-proteasome system and autophagy: Implications in ageing. Ageing Res. Rev. 2020, 64, 101203. [Google Scholar] [CrossRef]
- Agnihotri, S.; Golbourn, B.; Huang, X.; Remke, M.; Younger, S.; Cairns, R.A.; Chalil, A.; Smith, C.A.; Krumholtz, S.-L.; Mackenzie, D.; et al. PINK1 Is a Negative Regulator of Growth and the Warburg Effect in Glioblastoma. Cancer Res. 2016, 76, 4708–4719. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, P.; Huang, R.; Wang, C.; Sun, L.; Lan, B.; He, Y.; Zhao, H.; Gao, Y. PINK1: The guard of mitochondria. Life Sci. 2020, 259, 118247. [Google Scholar] [CrossRef] [PubMed]
- Yeo, C.W.; Ng, F.S.; Chai, C.; Tan, J.M.; Koh, G.R.; Chong, Y.K.; Lim, K.L. Parkin pathway activation mitigates glioma cell prolifera-tion and predicts patient survival. Cancer Res. 2012, 72, 2543–2553. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.-C.; Xu, L.; Chen, Y.; Yan, H.; Hazawa, M.; Doan, N.; Said, J.W.; Ding, L.-W.; Liu, L.-Z.; Yang, H.; et al. Genomic and Functional Analysis of the E3 Ligase PARK2 in Glioma. Cancer Res. 2015, 75, 1815–1827. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Hu, Q.; Shen, H.M. Pharmacological inhibi- tors of autophagy as novel cancer therapeutic agents. Pharmacol. Res. 2016, 105, 164–175. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, D.; Yu, J.; Dong, H.; Zhang, J.; Yang, S. Targeting autophagy in cancer stem cells as an anticancer therapy. Cancer Lett. 2017, 393, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wu, W.; Jiang, S.; Yu, S.; Yan, Y.; Wang, K.; He, J.; Ren, Y.; Wang, B. Pan-cancer analysis of the mitophagy-related protein PINK1 as a biomarker for the immunological and prognostic role. Front Oncol 2020, 10, 569887. [Google Scholar] [CrossRef] [PubMed]
- Clague, M.J.; Heride, C.; Urbé, S. The demographics of the ubiquitin system. Trends Cell Biol. 2015, 25, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Sulkshane, P.; Ram, J.; Glickman, M.H. Ubiquitination of intramitochondrial proteins: Implications for metabolic adaptability. Biomolecules 2020, 10, 1559. [Google Scholar] [CrossRef] [PubMed]
- Burman, J.L.; Pickles, S.; Wang, C.; Sekine, S.; Vargas, J.N.S.; Zhang, Z. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. JCB J. Cell Biol. 2017, 216, 3231–3247. [Google Scholar] [CrossRef]
- Pickles, S.; Vigié, P.; Youle, R.J. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 2018, 28, R170–R185. [Google Scholar] [CrossRef] [PubMed]
- Youle, R.J.; Van Der Bliek, A.M. Mitochondrial fission, fusion, and stress. Science 2012, 337, 1062–1065. [Google Scholar] [CrossRef]
- Sulkshane, P.; Duek, I.; Ram, J.; Thakur, A.; Reis, N.; Ziv, T. Inhibition of proteasome reveals basal mitochondrial ubiquitination. J. Proteonomics 2020, 229, 103949. [Google Scholar] [CrossRef] [PubMed]
- Korolchuk, V.I.; Menzies, F.M.; Rubinsztein, D.C. A novel link between autophagy and the ubiquitin-proteasome system. Autophagy 2009, 5, 862–863. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.-M.; Livnat-Levanon, N.; Taylor, E.B.; Jones, K.T.; Dephoure, N.; Ring, J. A stress-responsive system for mitochondrial protein degradation. Mol. Cell. 2010, 40, 465–480. [Google Scholar] [CrossRef] [PubMed]
- Palikaras, K.; Lionaki, E.; Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 2018, 20, 1013–1022. [Google Scholar] [CrossRef]
- Harper, J.W.; Ordureau, A.; Heo, J.-M. Building and decoding ubiquitin chains for mitophagy. Nat. Rev. Mol. Cell Biol. 2018, 19, 93. [Google Scholar] [CrossRef]
- Rehman, J.; Zhang, H.J.; Toth, P.T.; Zhang, Y.; Marsboom, G.; Hong, Z.; Salgia, R.; Husain, A.N.; Wietholt, C.; Archer, S.L. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J. 2012, 26, 2175–2186. [Google Scholar] [CrossRef]
- 48. Zhao, J.; Zhang, J.; Yu, M.; Xie, Y.; Huang, Y.; Wolff, D.W.; Abel, P.W.; Tu, Y. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 2013, 32, 4814–4824. [Google Scholar] [CrossRef]
- Li, X.; Wang, F.S.; Wu, Z.Y.; Lin, J.L.; Lan, W.B.; Lin, J.H. MicroRNA-19b targets Mfn1 to inhibit Mfn1-induced apoptosis in osteosarcoma cells. Neoplasma 2014, 61, 265–273. [Google Scholar] [CrossRef]
- Urquhart, K.R.; Zhao, Y.; Baker, J.A.; Lu, Y.; Yan, L.; Cook, M.N.; Jones, B.C.; Hamre, K.M.; Lu, L. A novel heat shock protein alpha 8 (Hspa8) molecular network mediating responses to stress- and ethanol-related behaviors. Neurogenetics 2016, 17, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Calderwood, S.K.; Khaleque, M.A.; Sawyer, D.B.; Ciocca, D.R. Heat shock proteins in cancer: Chaperones of tumorigenesis. Trends Biochem. Sci. 2006, 31, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Nirdé, P.; Derocq, D.; Maynadier, M.; Chambon, M.; Basile, I.; Gary-Bobo, M.; Garcia, M. Heat shock cognate 70 protein secretion as a new growth arrest signal for cancer cells. Oncogene 2010, 29, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; You, X.-M.; Li, L.-Q. Expression of HSP90AA1/HSPA8 in hepatocellular carcinoma patients with depression. Oncotargets Ther. 2018, 11, 3013–3023. [Google Scholar] [CrossRef] [PubMed]
- Shan, N.; Zhou, W.; Zhang, S.; Zhang, Y. Identification of HSPA8 as a candidate biomarker for endometrial carcinoma by using iTRAQ-based proteomic analysis. Oncotargets Ther. 2016, 9, 2169–2179. [Google Scholar]
- Tian, Y.; Xu, H.; Farooq, A.A.; Nie, B.; Chen, X.; Su, S.; Yuan, R.; Qiao, G.; Li, C.; Li, X.; et al. Maslinic acid induces autophagy by down-regulating HSPA8 in pancreatic cancer cells. Phytother. Res. 2018, 32, 1320–1331. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lan, T.; Xiao, H.; Chen, Z.H.; Wei, C.; Chen, L.F.; Guan, J.F.; Yuan, R.F.; Yu, X.; Hu, Z.G.; et al. The expression profiles and prognostic values of HSP70s in hepatocellular carcinoma. Cancer Cell Int. 2021, 21, 286. [Google Scholar] [CrossRef]
- Fan, Y.; Hou, T.; Gao, Y.; Dan, W.; Liu, T.; Liu, B.; Chen, Y.; Xie, H.; Yang, Z.; Chen, J.; et al. Acetylation-dependent regulation of TPD52 isoform 1 modulates chaperone-mediated autophagy in prostate cancer. Autophagy 2021, 17, 4386–4400. [Google Scholar] [CrossRef]
- Yang, Z.; Zhuang, L.; Szatmary, P.; Wen, L.; Sun, H.; Lu, Y.; Xu, Q.; Chen, X. Upregulation of heat shock proteins (HSPA12A, HSP90B1, HSPA4, HSPA5 and HSPA6) in tumour tissues is associated with poor outcomes from HBV-related early-stage hepatocellular carcinoma. Int. J. Med. Sci. 2015, 12, 256–263. [Google Scholar] [CrossRef]
- Li, J.; Ge, Z. High HSPA8 expression predicts adverse outcomes of acute myeloid leukemia. BMC Cancer 2021, 21, 475. [Google Scholar] [CrossRef]
- Loeffler, D.A.; Klaver, A.C.; Coffey, M.P.; Aasly, J.O.; LeWitt, P.A. Age-related decrease in Heat Shock 70-kDa protein 8 in cerebrospinal fluid is associated with increased oxidative stress. Front. Aging Neurosc. 2016, 8, 178. [Google Scholar] [CrossRef]
- Gadhave, K.; Bolshette, N.; Ahire, A.; Pardeshi, R.; Thakur, K.; Trandafir, C.; Istrate, A.; Ahmed, S.; Lahkar, M.; Muresanu, D. The ubiquiti proteasomal system a potential target for the managment of Alzheimer’s disease. J. Cell. Moll. Med. 2016, 20, 1392–1407. [Google Scholar] [CrossRef]
- Matsumoto, G.; Wada, K.; Okuno, M.; Kurosawa, M.; Nukina, N. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell 2011, 44, 279–289. [Google Scholar] [CrossRef]
- Oh, C.; Park, S.; Lee, E.K.; Yoo, Y.J. Downregulation of ubiquitin level via knockdown of polyubiquitin gene Ubb as potential cancer therapeutic intervention. Sci. Rep. 2013, 3, 2623–2631. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Geng, Y.; Luo, J.; Shen, W.; Zhu, W.; Meng, C.; Li, M.; Zhou, X.; Zhang, S.; Cao, J.; et al. Downregulation of ubiquitin inhibits the proliferation and radioresistance of non-small cell lung cancer cells in vitro and in vivo. Sci. Rep. 2015, 5, 9476–9487. [Google Scholar] [CrossRef] [PubMed]
- Deshaies, R.J. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol. 2014, 12, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Behrends, C.; Fulda, S. Receptor proteins in selective autophagy. Int. J. Cell Biol. 2012, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shaid, S.; Brandts, C.H.; Serve, H.; Dikic, I. Ubiquitination and selective autophagy. Cell Death Different. 2013, 20, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Nowakowska, D.J.; Kissler, S. PTPN22 modifies regulatory T cel homeostasis via GITR upregulation. J. Immunol. 2016, 196, 2145–2152. [Google Scholar] [CrossRef] [PubMed]
- Bottini, N.; Peterson, E.J. Tyrosine phosphatase PTPN22: Multifunctional regulator of immune signalling, development and diseases. Annu. Rev. Immunol. 2014, 32, 83–119. [Google Scholar] [CrossRef] [PubMed]
- Dikic, I. Proteasomal and autophagic degradation systems. Annu. Rev. Biochem. 2017, 8, 193–224. [Google Scholar] [CrossRef]
CSI | CSII | CSIII | CSIV | Control | |
---|---|---|---|---|---|
Number of specimens | 7 | 7 | 8 | 8 | 17 |
Affymetrix ID | Gene Name | p | Fold Change | Strongest Statistical Comparison | |||
---|---|---|---|---|---|---|---|
CSI vs. C | CSII vs. C | CSIII vs. C | CSIV vs. C | ||||
209018_s_at | PINK1 | 6 × 10−6 | −2.12 ↓ | −1.83 ↓ | −1.40 ↓ | −2.15 ↓ | CSI vs. C CSII vs. C CSIII vs. C CSIV vs. C |
201155_s_at | MFN1 | 2.7 × 10−6 | −1.53 ↓ | −1.69 ↓ | −1.75 ↓ | −2.39 ↓ | CSIII vs. C |
221891_x_at | HSPA8 | 2 × 10−3 | 1.19 ↑ | 1.16 ↑ | −1.37 ↓ | −1.37 ↓ | CSI vs. CSIV CSII vs. CSIII |
208011_at | PTPN22 | 4.9 × 10−3 | 1.06 ↑ | 1.01 ↑ | 1.07 ↑ | 1.18 ↑ | CSIV vs. C |
208945_s_at | BECN1 | 8.9 × 10−7 | −1.32 ↓ | −1.42 ↓ | −1.63 ↓ | −1.77 ↓ | CSIII vs. C CSIV vs. C |
202723_s_at | FOXO1 | 3.3 × 10−4 | −2.29 ↓ | −1.31 ↓ | −1.21 ↓ | −1.42 ↓ | CSI vs. C |
201383_s_at | NBR1 | 8.8 × 10−4 | −1.67 ↓ | −1.52 ↓ | −1.86 ↓ | −1.98 ↓ | |
200804_at | TMBIM6 | 2.8 × 10−4 | −1.46 ↓ | −1.15 ↓ | −1.50 ↓ | −1.90 ↓ | CSIV vs. C |
201178_at | FBXO7 | 4.6 × 10−5 | −1.14 ↓ | −1.09 ↓ | −1.35 ↓ | −1.53 ↓ | CSIII vs. C CSIV vs. C |
200633_at | UBB | 7.4 × 10−3 | 1.03 ↑ | −1.25 ↓ | −1.25 ↓ | −1.13 ↓ | CSI vs. C |
208980_s_at | UBC | 1.9 × 10−3 | −1.51 ↓ | −1.42 ↓ | −1.38 ↓ | −1.47 ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bednarczyk, M.; Muc-Wierzgoń, M.; Dzięgielewska-Gęsiak, S.; Waniczek, D. Relationship between the Ubiquitin–Proteasome System and Autophagy in Colorectal Cancer Tissue. Biomedicines 2023, 11, 3011. https://doi.org/10.3390/biomedicines11113011
Bednarczyk M, Muc-Wierzgoń M, Dzięgielewska-Gęsiak S, Waniczek D. Relationship between the Ubiquitin–Proteasome System and Autophagy in Colorectal Cancer Tissue. Biomedicines. 2023; 11(11):3011. https://doi.org/10.3390/biomedicines11113011
Chicago/Turabian StyleBednarczyk, Martyna, Małgorzata Muc-Wierzgoń, Sylwia Dzięgielewska-Gęsiak, and Dariusz Waniczek. 2023. "Relationship between the Ubiquitin–Proteasome System and Autophagy in Colorectal Cancer Tissue" Biomedicines 11, no. 11: 3011. https://doi.org/10.3390/biomedicines11113011
APA StyleBednarczyk, M., Muc-Wierzgoń, M., Dzięgielewska-Gęsiak, S., & Waniczek, D. (2023). Relationship between the Ubiquitin–Proteasome System and Autophagy in Colorectal Cancer Tissue. Biomedicines, 11(11), 3011. https://doi.org/10.3390/biomedicines11113011