The Clinical Relevance of Selected Cytokines in Newly Diagnosed Multiple Myeloma Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Cytokine and Chemokine Measurements
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Study Group
3.2. Comparison of Serum Concentrations of Tested Cytokines between the Study and Control Group
3.3. Comparison of Serum Concentrations of Tested Cytokines Depending on Demographic and Clinical Factors
3.4. Comparison of the Concentrations of the Tested Cytokines Depending on the Response to CTH
3.5. Correlations between the Selected Demographic, Clinical, and Laboratory Variables and the Tested Cytokines
3.6. Survival Analysis
3.6.1. Progression-Free Survival
3.6.2. Overall Survival
3.7. The Usefulness of the Tested Cytokines in Differentiating Various Clinical Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van de Donk, N.W.C.J.; Pawlyn, C.; Yong, K.L. Multiple Myeloma. Lancet 2021, 397, 410–427. [Google Scholar] [CrossRef]
- Seidl, S.; Kaufmann, H.; Drach, J. New Insights into the Pathophysiology of Multiple Myeloma. Lancet Oncol. 2003, 4, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Jasrotia, S.; Gupta, R.; Sharma, A.; Halder, A.; Kumar, L. Cytokine Profile in Multiple Myeloma. Cytokine 2020, 136, 155271. [Google Scholar] [CrossRef]
- Musolino, C.; Allegra, A.; Innao, V.; Allegra, A.G.; Pioggia, G.; Gangemi, S. Inflammatory and Anti-Inflammatory Equilibrium, Proliferative and Antiproliferative Balance: The Role of Cytokines in Multiple Myeloma. Mediat. Inflamm. 2017, 2017, 1852517. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.C.; Lin, S.F. Mechanisms of Drug Resistance in Relapse and Refractory Multiple Myeloma. Biomed. Res. Int. 2015, 2015, 341430. [Google Scholar] [CrossRef] [PubMed]
- Papadas, A.; Asimakopoulos, F. Mechanisms of Resistance in Multiple Myeloma. Handb. Exp. Pharmacol. 2018, 249, 251–288. [Google Scholar] [CrossRef]
- Dewald, J.H.; Colomb, F.; Bobowski-Gerard, M.; Groux-Degroote, S.; Delannoy, P. Role of Cytokine-Induced Glycosylation Changes in Regulating Cell Interactions and Cell Signaling in Inflammatory Diseases and Cancer. Cells 2016, 5, 43. [Google Scholar] [CrossRef] [PubMed]
- Coussens, L.M.; Werb, Z. Inflammation and Cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Möller, C.; Strömberg, T.; Juremalm, M.; Nilsson, K.; Nilsson, G. Expression and Function of Chemokine Receptors in Human Multiple Myeloma. Leukemia 2003, 17, 203–210. [Google Scholar] [CrossRef]
- Aggarwal, R.; Ghobrial, I.M.; Roodman, G.D. Chemokines in Multiple Myeloma. Exp. Hematol. 2006, 34, 1289–1295. [Google Scholar] [CrossRef]
- Gu, J.; Huang, X.; Zhang, Y.; Bao, C.; Zhou, Z.; Jin, J. Cytokine Profiles in Patients with Newly Diagnosed Multiple Myeloma: Survival Is Associated with IL-6 and IL-17A Levels. Cytokine 2021, 138, 155358. [Google Scholar] [CrossRef]
- Ogiya, D.; Liu, J.; Ohguchi, H.; Kurata, K.; Samur, M.K.; Tai, Y.T.; Adamia, S.; Ando, K.; Hideshima, T.; Anderson, K.C. The JAK-STAT Pathway Regulates CD38 on Myeloma Cells in the Bone Marrow Microenvironment: Therapeutic Implications. Blood 2020, 136, 2334–2345. [Google Scholar] [CrossRef] [PubMed]
- Waugh, D.J.J.; Wilson, C. The Interleukin-8 Pathway in Cancer. Clin. Cancer Res. 2008, 14, 6735–6741. [Google Scholar] [CrossRef]
- Zeilhofer, H.U.; Schorr, W. Role of Interleukin-8 in Neutrophil Signaling. Curr. Opin. Hematol. 2000, 7, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, A.; Knapp, M.; Lang, I.; Köhler, G. Interleukin 8 (IL-8)-a Universal Biomarker? Int. Arch. Med. 2010, 3, 1–4. [Google Scholar] [CrossRef]
- Yuan, A.; Chen, J.J.W.; Yao, P.L.; Yang, P.C. The Role of Interleukin-8 in Cancer Cells and Microenvironment Interaction. Front. Biosci. 2005, 10, 853–865. [Google Scholar] [CrossRef]
- Carmeliet, P. Angiogenesis in Life, Disease and Medicine. Nature 2005, 438, 932–936. [Google Scholar] [CrossRef]
- Podar, K.; Anderson, K.C. The Pathophysiologic Role of VEGF in Hematologic Malignancies: Therapeutic Implications. Blood 2005, 105, 1383–1395. [Google Scholar] [CrossRef]
- Vacca, A.; Ria, R.; Ribatti, D.; Semeraro, F.; Djonov, V.; Di Raimondo, F.; Dammacco, F. A Paracrine Loop in the Vascular Ebnothelial Growth Factor Pathway Triggers Tumor Angiogenesis and Growth in Multiple Myeloma. Haematologica 2003, 88, 176–185. [Google Scholar] [PubMed]
- Podar, K.; Tai, Y.T.; Davies, F.E.; Lentzsch, S.; Sattler, M.; Hideshima, T.; Lin, B.K.; Gupta, D.; Shima, Y.; Chauhan, D.; et al. Vascular Endothelial Growth Factor Triggers Signaling Cascades Mediating Multiple Myeloma Cell Growth and Migration. Blood 2001, 98, 428–435. [Google Scholar] [CrossRef]
- Ria, R.; Reale, A.; De Luisi, A.; Ferrucci, A.; Moschetta, M.; Vacca, A. Bone Marrow Angiogenesis and Progression in Multiple Myeloma. Am. J. Blood Res. 2011, 1, 76–89. [Google Scholar] [PubMed]
- Baggiolini, M.; Loetscher, P. Chemokines in Inflammation and Immunity. Immunol. Today 2000, 21, 418–420. [Google Scholar] [CrossRef] [PubMed]
- Vande Broek, I.; Asosingh, K.; Vanderkerken, K.; Straetmans, N.; Van Camp, B.; Van Riet, I. Chemokine Receptor CCR2 Is Expressed by Human Multiple Myeloma Cells and Mediates Migration to Bone Marrow Stromal Cell-Produced Monocyte Chemotactic Proteins MCP-1, -2 and -3. Br. J. Cancer 2003, 88, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Salcedo, R.; Ponce, M.L.; Young, H.A.; Wasserman, K.; Ward, J.M.; Kleinman, H.K.; Oppenheim, J.J.; Murphy, W.J. Human Endothelial Cells Express CCR2 and Respond to MCP-1: Direct Role of MCP-1 in Angiogenesis and Tumor Progression. Blood 2000, 96, 34–40. [Google Scholar] [CrossRef]
- Mulholland, B.S.; Forwood, M.R.; Morrison, N.A. Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) Drives Activation of Bone Remodelling and Skeletal Metastasis. Curr. Osteoporos. Rep. 2019, 17, 538–547. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group Updated Criteria for the Diagnosis of Multiple Myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef] [PubMed]
- Durie, B.G.M.; Salmon, S.E. A Clinical Staging System for Multiple Myeloma Correlation of Measured Myeloma Cell Mass with Presenting Clinical Features, Response to Treatment, and Survival. Cancer 1975, 36, 842–854. [Google Scholar] [CrossRef]
- Greipp, P.R.; Miguel, J.S.; Dune, B.G.M.; Crowley, J.J.; Barlogie, B.; Bladé, J.; Boccadoro, M.; Child, J.A.; Harousseau, J.L.; Kyle, R.A.; et al. International Staging System for Multiple Myeloma. J. Clin. Oncol. 2005, 23, 3412–3420. [Google Scholar] [CrossRef]
- Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity and Response Criteria of the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. 1982, 5, 649–656. [Google Scholar] [CrossRef]
- Terebelo, H.R.; Reap, L.; Terebelo, H.R.; Reap, L. Prognostic and Predictive Factors in Newly Diagnosed Multiple Myeloma Patients with Early Mortality with Prediction Matrix and Three and Five-Year Overall Survival. In Multiple Myeloma; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Schaefers, C.; Seidel, C.; Bokemeyer, F.; Bokemeyer, C. The Prognostic Impact of the Smoking Status of Cancer Patients Receiving Systemic Treatment, Radiation Therapy, and Surgery: A Systematic Review and Meta-Analysis. Eur. J. Cancer 2022, 172, 130–137. [Google Scholar] [CrossRef]
- Mansoor, W.; Roeland, E.J.; Chaudhry, A.; Liepa, A.M.; Wei, R.; Knoderer, H.; Abada, P.; Chatterjee, A.; Klempner, S.J. Early Weight Loss as a Prognostic Factor in Patients with Advanced Gastric Cancer: Analyses from REGARD, RAINBOW, and RAINFALL Phase III Studies. Oncologist 2021, 26, e1538–e1547. [Google Scholar] [CrossRef] [PubMed]
- Bumma, N.; Nagasaka, M.; Hemingway, G.; Miyashita, H.; Chowdhury, T.; Kim, S.; Vankayala, H.M.; Ahmed, S.; Jasti, P. Effect of Exposure to Agent Orange on the Risk of Monoclonal Gammopathy and Subsequent Transformation to Multiple Myeloma: A Single-Center Experience From the Veterans Affairs Hospital, Detroit. Clin. Lymphoma Myeloma Leuk. 2020, 20, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.V.; et al. International Myeloma Working Group Consensus Criteria for Response and Minimal Residual Disease Assessment in Multiple Myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef]
- National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) Common Terminology Criteria for Adverse Events (CTCAE) v5.0; National Cancer Institute: Rockville, MD, USA, 2017.
- Morgan, E.; Varro, R.; Sepulveda, H.; Ember, J.A.; Apgar, J.; Wilson, J.; Lowe, L.; Chen, R.; Shivraj, L.; Agadir, A.; et al. Cytometric Bead Array: A Multiplexed Assay Platform with Applications in Various Areas of Biology. Clin. Immunol. 2004, 110, 252–266. [Google Scholar] [CrossRef] [PubMed]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef]
- Than, S.; Hu, R.; Oyaizu, N.; Romano, J.; Wang, X.P.; Sheikh, S.; Pahwa, S. Cytokine Pattern in Relation to Disease Progression in Human Immunodeficiency Virus-Infected Children. J. Infect. Dis. 1997, 175, 47–56. [Google Scholar] [CrossRef]
- Mehtap, O.; Atesoglu, E.B.; Tarkun, P.; Hacihanefioglu, A.; Dolasik, I.; Musul, M.M. IL-21 and Other Serum Proinflammatory Cytokine Levels in Patients with Multiple Myeloma at Diagnosis. J. Postgrad. Med. 2014, 60, 141–144. [Google Scholar] [CrossRef]
- Fairfield, H.; Falank, C.; Avery, L.; Reagan, M.R. Multiple Myeloma in the Marrow: Pathogenesis and Treatments. Ann. N. Y. Acad. Sci. 2016, 1364, 32–51. [Google Scholar] [CrossRef]
- Gernone, A.; Dammacco, F. Molecular Alterations of IL-6R, Lck and c-Myc Genes in Transforming Monoclonal Gammopathies of Undetermined Significance. Br. J. Haematol. 1996, 93, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Lauta, V.M. A Review of the Cytokine Network in Multiple Myeloma: Diagnostic, Prognostic, and Therapeutic Implications. Cancer 2003, 97, 2440–2452. [Google Scholar] [CrossRef] [PubMed]
- Gadó, K.; Domján, G.; Hegyesi, H.; Falus, A. Role of Interleukin-6 in the Pathogenesis of Multiple Myeloma. Cell Biol. Int. 2000, 24, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.A.; Matulis, S.M.; Conage-Pough, J.E.; Nooka, A.K.; Kaufman, J.L.; Lonial, S.; Boise, L.H. Bone Marrow Microenvironment-Derived Signals Induce Mcl-1 Dependence in Multiple Myeloma. Blood 2017, 129, 1969–1979. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, J.; Zhu, S.; Zheng, J.; Xie, Y.; Jiang, H.; Guo, J.; Wang, Y.; Peng, Z.; Wang, M.; et al. DKK1 Activates Noncanonical NF-ΚB Signaling via IL-6–Induced CKAP4 Receptor in Multiple Myeloma. Blood Adv. 2021, 5, 3656–3667. [Google Scholar] [CrossRef] [PubMed]
- Mondello, P.; Cuzzocrea, S.; Navarra, M.; Mian, M. Bone Marrow Micro-Environment Is a Crucial Player for Myelomagenesis and Disease Progression. Oncotarget 2017, 8, 20394–20409. [Google Scholar] [CrossRef] [PubMed]
- Kyrtsonis, M.C.; Dedoussis, G.; Zervas, C.; Perifanis, V.; Baxevanis, C.; Stamatelou, M.; Maniatis, A. Soluble Interleukin-6 Receptor (SIL-6R), a New Prognostic Factor in Multiple Myeloma. Br. J. Haematol. 1996, 93, 398–400. [Google Scholar] [CrossRef]
- Bataille, R.; Jourdan, M.; Zhang, X.G.; Klein, B. Serum Levels of Interleukin 6, a Potent Myeloma Cell Growth Factor, as a Reflect of Disease Severity in Plasma Cell Dyscrasias. J. Clin. Investig. 1989, 84, 2008–2011. [Google Scholar] [CrossRef] [PubMed]
- Huber, H.; Krainer, M.; Herold, M.; Ludwig, H.; Wachter, H.; Huber, H. Predictive Value of Interleukin-6 and Neopterin in Patients with Multiple Myeloma. Cancer Res. 1991, 51, 6250–6253. [Google Scholar]
- Sfiridaki, K.; Pappa, C.A.; Tsirakis, G.; Kanellou, P.; Kaparou, M.; Stratinaki, M.; Sakellaris, G.; Kontakis, G.; Alexandrakis, M.G. Angiogenesis-Related Cytokines, RANKL, and Osteoprotegerin in Multiple Myeloma Patients in Relation to Clinical Features and Response to Treatment. Mediat. Inflamm. 2011, 2011, 867576. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Steensberg, A.; Schjerling, P. Muscle-Derived Interleukin-6: Possible Biological Effects. J. Physiol. 2001, 536, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Febbraio, M.A.; Pedersen, B.K. Muscle-Derived Interleukin-6: Mechanisms for Activation and Possible Biological Roles. FASEB J. 2002, 16, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Steensberg, A.; Fischer, C.; Keller, C.; Keller, P.; Plomgaard, P.; Febbraio, M.; Saltin, B. Searching for the Exercise Factor: Is IL-6 a Candidate? J. Muscle Res. Cell Motil. 2003, 24, 113–119. [Google Scholar] [CrossRef]
- Darko, S.N.; Yar, D.D.; Owusu-Dabo, E.; Awuah, A.A.A.; Dapaah, W.; Addofoh, N.; Salifu, S.P.; Awua-Boateng, N.Y.; Adomako-Boateng, F. Variations in Levels of IL-6 and TNF-α in Type 2 Diabetes Mellitus between Rural and Urban Ashanti Region of Ghana. BMC Endocr. Disord. 2015, 15, 50. [Google Scholar] [CrossRef]
- Sunyer, J.; Forastiere, F.; Pekkanen, J.; Plana, E.; Kolz, M.; Pistelli, R.; Jacquemin, B.; Brüske-Hohlfeld, I.; Pitsavos, C.; Bellander, T.; et al. Interaction between Smoking and the Interleukin-6 Gene Affects Systemic Levels of Inflammatory Biomarkers. Nicotine Tob. Res. 2009, 11, 1347–1353. [Google Scholar] [CrossRef]
- Chakraborty, B.; Vishnoi, G.; Gowda, S.H.; Goswami, B. Interleukin-6 Gene-174 G/C Promoter Polymorphism and Its Association with Clinical Profile of Patients with Multiple Myeloma. Asia Pac. J. Clin. Oncol. 2017, 13, e402–e407. [Google Scholar] [CrossRef] [PubMed]
- Scott, H.R.; McMillan, D.C.; Crilly, A.; McArdle, C.S.; Milroy, R. The Relationship between Weight Loss and Interleukin 6 in Non-Small-Cell Lung Cancer. Br. J. Cancer 1996, 73, 1560–1562. [Google Scholar] [CrossRef] [PubMed]
- Fearon, K.C.H.; Glass, D.J.; Guttridge, D.C. Cancer Cachexia: Mediators, Signaling, and Metabolic Pathways. Cell Metab. 2012, 16, 153–166. [Google Scholar] [CrossRef]
- Moses, A.G.W.; Maingay, J.; Sangster, K.; Fearon, K.C.H.; Ross, J.A. Pro-Inflammatory Cytokine Release by Peripheral Blood Mononuclear Cells from Patients with Advanced Pancreatic Cancer: Relationship to Acute Phase Response and Survival. Oncol. Rep. 2009, 21, 1091–1095. [Google Scholar] [CrossRef]
- Han, J.; Meng, Q.; Shen, L.; Wu, G. Interleukin-6 Induces Fat Loss in Cancer Cachexia by Promoting White Adipose Tissue Lipolysis and Browning. Lipids Health Dis. 2018, 17, 14. [Google Scholar] [CrossRef]
- Paval, D.R.; Patton, R.; McDonald, J.; Skipworth, R.J.E.; Gallagher, I.J.; Laird, B.J. A Systematic Review Examining the Relationship between Cytokines and Cachexia in Incurable Cancer. J. Cachexia Sarcopenia Muscle 2022, 13, 824–838. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Han, D.; Zhao, Y.; Yan, X.; Cui, S. Association between Environmental Chemicals Co-Exposure and Peripheral Blood Immune-Inflammatory Indicators. Front. Public. Health 2022, 10, 980987. [Google Scholar] [CrossRef] [PubMed]
- Brighton, T.A.; Khot, A.; Harrison, S.J.; Ghez, D.; Weiss, B.M.; Kirsch, A.; Magen, H.; Gironella, M.; Oriol, A.; Streetly, M.; et al. Randomized, Double-Blind, Placebo-Controlled, Multicenter Study of Siltuximab in High-Risk Smoldering Multiple Myeloma. Clin. Cancer Res. 2019, 25, 3772–3775. [Google Scholar] [CrossRef]
- Orlowski, R.Z.; Gercheva, L.; Williams, C.; Sutherland, H.; Robak, T.; Masszi, T.; Goranova-Marinova, V.; Dimopoulos, M.A.; Cavenagh, J.D.; Špička, I.; et al. A Phase 2, Randomized, Double-Blind, Placebo-Controlled Study of Siltuximab (Anti-IL-6 MAb) and Bortezomib versus Bortezomib Alone in Patients with Relapsed or Refractory Multiple Myeloma. Am. J. Hematol. 2015, 90, 42–49. [Google Scholar] [CrossRef]
- Harmer, D.; Falank, C.; Reagan, M.R. Interleukin-6 Interweaves the Bone Marrow Microenvironment, Bone Loss, and Multiple Myeloma. Front. Endocrinol. 2019, 9, 788. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, V.S.; Mollenauer, M.N.; Weiss, A. Endogenous CD28 Expressed on Myeloma Cells Up-Regulates Interleukin-8 Production: Implications for Multiple Myeloma Progression. Blood 2001, 98, 187–193. [Google Scholar] [CrossRef]
- Pellegrino, A.; Ria, R.; Di Pietro, G.; Cirulli, T.; Surico, G.; Pennisi, A.; Morabito, F.; Ribatti, D.; Vacca, A. Bone Marrow Endothelial Cells in Multiple Myeloma Secrete CXC-Chemokines That Mediate Interactions with Plasma Cells. Br. J. Haematol. 2005, 129, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Wyczalkowska-Tomasik, A.; Czarkowska-Paczek, B.; Zielenkiewicz, M.; Paczek, L. Inflammatory Markers Change with Age, but Do Not Fall Beyond Reported Normal Ranges. Arch. Immunol. Ther. Exp. 2016, 64, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.A.; Peterson, T.C. Cytokine Production and Aging: Overproduction of IL-8 in Elderly Males in Response to Lipopolysaccharide. Mech. Ageing Dev. 1994, 77, 127–139. [Google Scholar] [CrossRef]
- Liu, K.D.; Altmann, C.; Smits, G.; Krawczeski, C.D.; Edelstein, C.L.; Devarajan, P.; Faubel, S. Serum Interleukin-6 and Interleukin-8 Are Early Biomarkers of Acute Kidney Injury and Predict Prolonged Mechanical Ventilation in Children Undergoing Cardiac Surgery: A Case-Control Study. Crit. Care 2009, 13, R104. [Google Scholar] [CrossRef]
- Tunçay, S.C.; Doğan, E.; Hakverdi, G.; Tutar, Z.Ü.; Mir, S. Interleukin-8 Is Increased in Chronic Kidney Disease in Children, but not Related to Cardiovascular Disease. J. Bras. Nefrol. 2021, 43, 359–364. [Google Scholar] [CrossRef]
- Polańska, B.; Augustyniak, D.; Makulska, I.; Niemczuk, M.; Jankowski, A.; Zwolińska, D. Elastase, A1-Proteinase Inhibitor, and Interleukin-8 in Children and Young Adults with End-Stage Kidney Disease Undergoing Continuous Ambulatory Peritoneal Dialysis. Arch. Immunol. Ther. Exp. 2014, 62, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-Y.; Chen, J.; Li, Y.-F. Clinical Significance of Serum Interleukin-8 and Soluble Tumor Necrosis Factor-like Weak Inducer of Apoptosis Levels in Patients with Diabetic Nephropathy. J. Diabetes Investig. 2018, 9, 1182–1188. [Google Scholar] [CrossRef] [PubMed]
- D’agostino, M.; Cairns, D.A.; Lahuerta, J.J.; Wester, R.; Bertsch, U.; Waage, A.; Zamagni, E.; Mateos, M.V.; Dall’olio, D.; Van De Donk, N.W.C.J.; et al. Second Revision of the International Staging System (R2-ISS) for Overall Survival in Multiple Myeloma: A European Myeloma Network (EMN) Report Within the HARMONY Project. J. Clin. Oncol. 2022, 40, 3406–3418. [Google Scholar] [CrossRef] [PubMed]
- Ikezumi, Y.; Uemura, O.; Nagai, T.; Ishikura, K.; Ito, S.; Hataya, H.; Fujita, N.; Akioka, Y.; Kaneko, T.; Iijima, K.; et al. Beta-2 Microglobulin-Based Equation for Estimating Glomerular Filtration Rates in Japanese Children and Adolescents. Clin. Exp. Nephrol. 2015, 19, 450–457. [Google Scholar] [CrossRef]
- Bianchi, C.; Donadio, C.; Tramonti, G.; Consani, C.; Lorusso, P.; Rossi, G. Reappraisal of Serum Beta2-Microglobulin as Marker of GFR. Ren. Fail. 2001, 23, 419–429. [Google Scholar] [CrossRef]
- Assounga, A.G. Beta 2 Microglobulin in Kidney Failure: A Review and an Algorithm for Renal Replacement Therapy. Saudi J. Kidney Dis. Transplant. 2021, 32, 1214–1219. [Google Scholar] [CrossRef]
- Sedighi, O.; Abediankenari, S.; Omranifar, B. Association Between Plasma Beta-2 Microglobulin Level and Cardiac Performance in Patients with Chronic Kidney Disease. Nephrourol. Mon. 2015, 7, e23563. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, N.K.; Vibhuti; Nityanand, S. Bone Marrow and Blood Plasma Levels of IL-8 in Aplastic Anemia and Their Relationship with Disease Severity. Am. J. Hematol. 2005, 79, 240–242. [Google Scholar] [CrossRef]
- Saltarella, I.; Morabito, F.; Giuliani, N.; Terragna, C.; Omedè, P.; Palumbo, A.; Bringhen, S.; De Paoli, L.; Martino, E.; Larocca, A.; et al. Prognostic or Predictive Value of Circulating Cytokines and Angiogenic Factors for Initial Treatment of Multiple Myeloma in the GIMEMA MM0305 Randomized Controlled Trial. J. Hematol. Oncol. 2019, 12, 4. [Google Scholar] [CrossRef]
- Ribas, C.; Colleoni, G.W.B.; Regis Silva, M.R.; Carregoza, M.J.; Bordin, J.O. Prognostic Significance of Vascular Endothelial Growth Factor Immunoexpression in the Context of Adverse Standard Prognostic Factors in Multiple Myeloma. Eur. J. Haematol. 2004, 73, 311–317. [Google Scholar] [CrossRef]
- Palta, A.; Kaur, M.; Tahlan, A.; Dimri, K. Evaluation of Angiogenesis in Multiple Myeloma by VEGF Immunoexpression and Microvessel Density. J. Lab. Physicians 2020, 12, 38–43. [Google Scholar] [CrossRef]
- Di Raimondo, F.; Azzaro, M.P.; Palumbo, G.; Bagnato, S.; Giustolisi, G.; Florida, P.M.; Sortino, G.; Giustolisi, R. Angiogenic factors in multiple myeloma: Higher levels in bone marrow than in peripheral blood. Haematologica 2000, 85, 800–805. [Google Scholar] [PubMed]
- Podar, K.; Tonon, G.; Sattler, M.; Tai, Y.T.; LeGouill, S.; Yasui, H.; Ishitsuka, K.; Kumar, S.; Kumar, R.; Pandite, L.N.; et al. The Small-Molecule VEGF Receptor Inhibitor Pazopanib (GW786034B) Targets Both Tumor and Endothelial Cells in Multiple Myeloma. Proc. Natl. Acad. Sci. USA 2006, 103, 19478–19483. [Google Scholar] [CrossRef] [PubMed]
- Zangari, M.; Anaissie, E.; Stopeck, A.; Morimoto, A.; Tan, N.; Lancet, J.; Cooper, M.; Hannah, A.; Garcia-Manero, G.; Faderl, S.; et al. Phase II Study of SU5416, a Small Molecule Vascular Endothelial Growth Factor Tyrosine Kinase Receptor Inhibitor, in Patients with Refractory Multiple Myeloma. Clin. Cancer Res. 2004, 10, 88–95. [Google Scholar] [CrossRef]
- Prince, H.M.; Hönemann, D.; Spencer, A.; Rizzieri, D.A.; Stadtmauer, E.A.; Roberts, A.W.; Bahlis, N.; Tricot, G.; Bell, B.; DeMarini, D.J.; et al. Vascular Endothelial Growth Factor Inhibition Is Not an Effective Therapeutic Strategy for Relapsed or Refractory Multiple Myeloma: A Phase 2 Study of Pazopanib (GW786034). Blood 2009, 113, 4819–4820. [Google Scholar] [CrossRef]
- Kovacs, M.J.; Reece, D.E.; Marcellus, D.; Meyer, R.M.; Mathews, S.; Dong, R.P.; Eisenhauer, E. A Phase II Study of ZD6474 (ZactimaTM), a Selective Inhibitor of VEGFR and EGFR Tyrosine Kinase in Patients with Relapsed Multiple Myeloma—NCIC CTG IND.145. Investig. New Drugs 2006, 24, 529–535. [Google Scholar] [CrossRef]
- Valković, T.; Babarović, E.; Lučin, K.; Štifter, S.; Aralica, M.; Seili-Bekafigo, I.; Duletić-Načinović, A.; Jonjić, N. Plasma Levels of Monocyte Chemotactic Protein-1 Are Associated with Clinical Features and Angiogenesis in Patients with Multiple Myeloma. Biomed. Res. Int. 2016, 2016, 7870590. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Li, H.; Zheng, Y.; He, J.; Liu, H.; Zhong, Y.; Lu, Y.; Hong, B.; Zhang, M.; et al. Bone Marrow Stromal Cells Derived MCP-1 Reverses the Inhibitory Effects of Multiple Myeloma Cells on Osteoclastogenesis by Upregulating the RANK Expression. PLoS ONE 2013, 8, e82453. [Google Scholar] [CrossRef]
- Bird, S.; Cairns, D.; Menzies, T.; Boyd, K.; Davies, F.; Cook, G.; Drayson, M.; Gregory, W.; Jenner, M.; Jones, J.; et al. Sex Differences in Multiple Myeloma Biology but Not Clinical Outcomes: Results from 3894 Patients in the Myeloma XI Trial. Clin. Lymphoma Myeloma Leuk. 2021, 21, 667–675. [Google Scholar] [CrossRef]
- Cook, M.B.; McGlynn, K.A.; Devesa, S.S.; Freedman, N.D.; Anderson, W.F. Sex Disparities in Cancer Mortality and Survival. Cancer Epidemiol. Biomarkers Prev. 2011, 20, 1629–1637. [Google Scholar] [CrossRef]
- Cavo, M.; Gay, F.; Beksac, M.; Pantani, L.; Petrucci, M.T.; Dimopoulos, M.A.; Dozza, L.; van der Holt, B.; Zweegman, S.; Oliva, S.; et al. Autologous Haematopoietic Stem-Cell Transplantation versus Bortezomib-Melphalan-Prednisone, with or without Bortezomib-Lenalidomide-Dexamethasone Consolidation Therapy, and Lenalidomide Maintenance for Newly Diagnosed Multiple Myeloma (EMN02/HO95): A Multicentre, Randomised, Open-Label, Phase 3 Study. Lancet Haematol. 2020, 7, e456–e468. [Google Scholar] [CrossRef]
- Corre, J.; Perrot, A.; Caillot, D.; Belhadj, K.; Hulin, C.; Leleu, X.; Mohty, M.; Facon, T.; Buisson, L.; Do Souto, L.; et al. Del(17p) without TP53 Mutation Confers a Poor Prognosis in Intensively Treated Newly Diagnosed Patients with Multiple Myeloma. Blood 2021, 137, 1192–1195. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V. Multiple Myeloma: 2022 Update on Diagnosis, Risk-Stratification and Management. Am. J. Hematol. 2022, 97, 1086–1107. [Google Scholar] [CrossRef] [PubMed]
Variable | Study Group (n = 82) |
---|---|
Sex Women Men | 40 (48.8%) 42 (51.2%) |
Age [years] <65 >65 | 40 (48.8%) 42 (51.2%) |
Smoking No Yes Ex-smoker | 59 (72.8%) 9 (11.1%) 13 (16.0%) |
Diagnosis Disease with monoclonal protein present Light chain disease | 72 (87.8%) 10 (12.2%) |
A type of monoclonal protein IgA IgG | 20 (27.8%) 52 (72.2%) |
Light chains Kappa Lambda | 48 (58.5%) 34 (41.5%) |
ISS Stage 1 2 3 | 23 (28.4%) 23 (28.4%) 35 (43.2%) |
A/B renal function * A B | 67 (81.7%) 15 (18.3%) |
ECOG scale 0 1 2 3 4 | 8 (9.8%) 34 (41.5%) 25 (30.5%) 12 (14.6%) 3 (3.7%) |
Cytogenetic abnormalities Presence of abnormality/no. of evaluated patients 17p deletion | 9/54 |
Translocation (4; 14) | 6/54 |
Translocation (14; 16) | 3/54 |
A type of CTH CTD V(C)D, VMP, PAD VTD Cyclophosphamide | 38 (46.3%) 29 (35.4%) 14 (17.1%) 1 (1.2%) |
auto-HSCT No Yes | 45 (59.2%) 31 (40.8%) |
Variable | Study Group (n = 82) | IL-6 [fg/mL] | IL-8 [fg/mL] | VEGF [pg/mL] | MCP-1 [pg/mL] | ||||
---|---|---|---|---|---|---|---|---|---|
Median [Interquartile Range] | p | Median [Interquartile Range] | p | Median [Interquartile Range] | p | Median [Interquartile Range] | p | ||
Sex Women Men | 40 (48.8%) 42 (51.2%) | 0.10 [0.10–1423.36] 1241.92 [0.10–7534.10] | 0.187 | 17,285.32 [10,817.30–28,443.36] 12,519.28 [5973.07–24,851.20] | 0.1576 | 34.23 [24.06–57.54] 44.02 [26.30–74.28] | 0.372 | 163.65 [109.59–267.43] 159.37 [101.74–216.58] | 0.301 |
Age > 65 Below the median Above the median | 40 (48.8%) 42 (51.2%) | 0.10 [0.10–9005.17] 631.53 [0.10–16,546.52] | 0.519 | 10,768.45 [6671.11–16,091] 18,836.52 [11,748.83–42,411.06] | 0.005 * | 39.73 [26.93–60.07] 34.23 [23.85–62.61] | 0.698 | 159.36 [101.54–221.77] 163.65 [108.07–250.70] | 0.390 |
Place of residence City Countryside | 49 (59.8%) 33 (40.2%) | 0.10 [0.10–1611.02] 756.68 [0.10–18,932.64] | 0.047 * | 14,380.48 [1692.04–23,876] 18,364.81 [6961.40–34,823.52] | 0.504 | 36.46 [24.13–63.22] 40.69 [25.41–55.57] | 0.935 | 169.30 [104.75–233.36] 147.59 [108.03–244.83] | 0.942 |
Exposure to chemical or physical agents No Yes | 54 (68.4%) 25 (31.6%) | 0.10 [0.10–8807.95] 2389.75 [0.10–19,950.49] | 0.038 * | 13,534.43 [7056.82–24,843.10] 18,364.81 [6961.40–29,343.91] | 0.363 | 35.08 [25.07–59.27] 47.74 [25.12–55.35] | 0.847 | 157.07 [102.25–228.62] 161.66 [107.35–246.56] | 0.661 |
Smoking No Yes | 59 (72.8%) 22 (27.2%) | 0.10 [0.10–8310.60] 3873.71 [0.10–15,071.58] | 0.032 * | 13,899.46 [7229.50–24,851.20] 17,681.67 [6870.38–33,111.58] | 0.383 | 40.23 [22.81–58.72] 36.67 [29.89–72.05] | 0.379 | 172.48 [108.41–224.37] 147.67 [102.43–212.71] | 0.401 |
Diagnosis Secretory disease Light chain disease | 72 (87.8%) 10 (12.2%) | 0.10 [0.10–10,114.65] 4197.73 [0.10–15,514.61] | 0.525 | 14,496.47 [7051.18–24,653.44] 31,684.17 [11,029.50–49,241.79] | 0.214 | 35.51 [24.48–59.08] 48.28 [30.43–65.51] | 0.405 | 165.12 [113.65–237.98] 104.13 [83.04–202.21] | 0.115 |
A type of monoclonal protein IgA IgG | 20 (27.4%) 53 (72.6%) | 0.10 [0.10–9452.95] 296.51 [0.10–10,276.49] | 0.715 | 15,641.41 [11,472.77–22,428.66] 14,380.48 [6719.68–27,525.48] | 0.542 | 31.47 [23.07–50.13] 39.94 [26.05–66.49] | 0.274 | 153.71 [109.85–235.67] 172.48 [112.09–236.73] | 0.646 |
Light chains Kappa Lambda | 48 (58.5%) 34 (41.5%) | 0.10 [0.10–10,114.65] 1819.51 [0.10–18,603.44] | 0.161 | 14,264.49 [6674.67–22,816.84] 17,825.06 [9555.49–33,111.58] | 0.286 | 35.08 [23.58–60.50] 44.21 [29.89–58.72] | 0.389 | 150.32 [108.38–234.08] 173.16 [101.35–248.97] | 0.822 |
ISS Stage 1 2 or 3 | 23 (28.4%) 58 (71.6%) | 0.10 [0.10–1140.65] 1049.94 [0.10–15,860.88] | 0.045 * | 10,976.64 [5758.83–18,760.78] 17,219.26 [10,350.34–31,515.43] | 0.032 * | 32.70 [22.70–48.39] 47.54 [25.80–74.28] | 0.133 | 154.50 [97.04–227.33] 162.65 [108.41–243.46] | 0.324 |
A/B renal function A B | 67 (81.7%) 15 (18.3%) | 0.10 [0.10–8310.60] 8860.32 [0.10–23,928.07] | 0.177 | 12,186.41 [6538.78–19,816.70] 46,279.57 [21,276.26–62,116.15] | <0.001 * | 32.83 [23.45–56.79] 50.15 [48.01–96.14] | 0.004 * | 153.71 [107.08–232.49] 212.71 [107.05–310.70] | 0.261 |
Weight loss No Yes | 41 (50.6%) 40 (49.4%) | 0.10 [0.10–694.10] 4076.92 [0.10–19,980.73] | <0.001 * | 11,989.80 [6931.06–21,387.32] 16,761.99 [9766.08–32,729.32] | 0.166 | 44.75 [27.31–74.31] 33.49 [23.13–53.02] | 0.157 | 168.62 [107.95–236.44] 151.98 [101.54–230.60] | 0.507 |
17p deletion No Yes | 45 (83.3%) 9 (16.7%) | 0.10 [0.10–4828.74] 8310.60 [473.67–21,877.49] | 0.025 * | 14,264.49 [6208.55–24,257.92] 15,736.18 [7064.37–22,405.28] | 0.745 | 38.77 [25.41–59.64] 37.84 [24.11–48.80] | 0.458 | 165.12 [106.06–232.78] 107.08 [84.86–142.97] | 0.060 |
Translocation t (4; 14) No Yes | 48 (88.9%) 6 (11.1%) | 0.10 [0.10–7387.02] 5228.21 [0.10–19,920.26] | 0.268 | 14,380.48 [6553.88–23,230.32] 15,006.21 [10,793.25–24,060.16] | 0.731 | 39.27 [29.28–57.02] 20.79 [14.85–47.74] | 0.191 | 152.33 [101.54–221.26] 179.80 [106.91–316.11] | 0.449 |
Translocation t (14; 16) No Yes | 51 (94.4%) 3 (5.6%) | 756.68 [0.10–10,114.65] 0.10 [–] | 0.256 | 15,546.65 [6674.67–24,653.44] 9555.49 [–] | 0.345 | 38.77 [24.65–58.11] 32.91 [–] | 0.623 | 147.59 [101.44–223.60] 179.58 [–] | 0.473 |
Degree of anemia before treatment (WHO) No Yes | 21 (25.6%) 61 (74.4%) | 0.10 [0.10–1581.35] 830.03 [0.10–17,232.16] | 0.053 | 7229.50 [5919.51–10,852.31] 18,798.65 [11,736.45–32,729.32] | <0.001 * | 32.91 [19.83–53.73] 40.23 [25.32–69.89] | 0.142 | 150.36 [100.27–196.99] 164.38 [107.29–247.55] | 0.290 |
Variable | Study Group (n = 82) | IL-6 [fg/mL] | IL-8 [fg/mL] | VEGF [pg/mL] | MCP-1 [pg/mL] | ||||
---|---|---|---|---|---|---|---|---|---|
Median [Interquartile Range] | p | Median [Interquartile Range] | p | Median [Interquartile Range] | p | Median [Interquartile Range] | p | ||
Response to CTH after two cycles No Yes | 14 (18.7%) 61 (81.3%) | 17,777.91 [1165.03–38,143.62] 0.10 [0.10–4030.78] | <0.001 * | 36,113.32 [18,364.81–51,165.99] 12,096.70 [6719.68–18,897.67] | <0.001 * | 53.97 [31.81–103.41] 34.65 [23.40–54.54] | 0.040 * | 148.88 [117.66–328.97] 159.37 [101.54–233.94] | 0.525 |
Response to CTH during the treatment period No Yes | 10 (13.0%) 65 (87.0%) | 1147.96 [0.10–10,252.95] 0.10 [0.10–8448.03] | 0.728 | 19,277.90 [10,350.34–24,060.16] 12,397.80 [6795.03–22,419.88] | 0.374 | 44.34 [31.81–117.28] 37.84 [24.73–59.64] | 0.233 | 153.85 [120.95–212.71] 157.09 [101.64–240.51] | 0.827 |
Variable | n | IL-6 [fg/mL] | IL-8 [fg/mL] | VEGF [pg/mL] | MCP-1 [pg/mL] | ||||
---|---|---|---|---|---|---|---|---|---|
rho | p | rho | p | rho | p | rho | p | ||
Demographic and clinical | |||||||||
Age at diagnosis | 81 | 0.095 | 0.398 | 0.297 | 0.007 * | −0.036 | 0.748 | 0.006 | 0.955 |
ISS Stage | 80 | 0.245 | 0.028 | 0.242 | 0.030 * | 0.170 | 0.132 | 0.112 | 0.325 |
Percentage of plasmacytes in the bone marrow | 76 | 0.059 | 0.611 | 0.101 | 0.383 | 0.060 | 0.605 | 0.043 | 0.715 |
The number of lytic bone lesions | 80 | 0.121 | 0.286 | −0.094 | 0.405 | −0.136 | 0.231 | −0.165 | 0.144 |
eGFR before treatment (mL/min/1.73 m2) | 81 | −0.246 | 0.026 | −0.397 | <0.001 * | −0.155 | 0.166 | 0.013 | 0.906 |
The grade of kidney disease | 81 | 0.226 | 0.042 | 0.396 | <0.001 * | 0.122 | 0.279 | −0.003 | 0.981 |
A/B renal function | 81 | 0.217 | 0.051 | 0.466 | <0.001 * | 0.319 | 0.003 * | 0.126 | 0.261 |
ECOG scale | 81 | 0.369 | <0.001 * | 0.445 | <0.001 * | 0.082 | 0.466 | 0.029 | 0.799 |
BMI | 54 | −0.086 | 0.537 | −0.113 | 0.414 | 0.060 | 0.664 | 0.152 | 0.272 |
Weight loss | 80 | 0.410 | <0.001 * | 0.145 | 0.199 | −0.204 | 0.069 | −0.095 | 0.399 |
Grade of anemia before treatment according to WHO | 81 | 0.360 | 0.001 * | 0.520 | <0.001 * | 0.247 | 0.026 * | 0.074 | 0.512 |
Laboratory | |||||||||
HGB (g/dL) | 81 | −0.467 | <0.001 * | −0.554 | <0.001 * | −0.180 | 0.108 | −0.075 | 0.503 |
LYM before treatment (K/uL) | 81 | 0.049 | 0.661 | −0.120 | 0.286 | 0.110 | 0.330 | 0.031 | 0.783 |
NEU before treatment (K/uL) | 81 | 0.178 | 0.112 | 0.045 | 0.689 | 0.070 | 0.533 | −0.104 | 0.356 |
NEU/LYM | 81 | 0.090 | 0.426 | 0.112 | 0.320 | −0.003 | 0.979 | −0.106 | 0.348 |
PLT (K/uL) | 81 | −0.003 | 0.978 | −0.118 | 0.294 | 0.091 | 0.421 | −0.014 | 0.902 |
MPV | 81 | 0.037 | 0.744 | 0.150 | 0.183 | −0.097 | 0.387 | −0.102 | 0.364 |
Albumin | 81 | −0.466 | <0.001 * | −0.498 | <0.001 * | −0.132 | 0.239 | 0.046 | 0.684 |
Creatinine (mg/dL) | 81 | 0.196 | 0.079 | 0.321 | 0.004 * | 0.229 | 0.040 * | 0.071 | 0.531 |
β2-microglobulin (ng/L) | 79 | 0.301 | 0.007 | 0.415 | 0.001 * | 0.168 | 0.138 | 0.152 | 0.180 |
LDH (IU/L) | 70 | −0.136 | 0.260 | −0.090 | 0.459 | 0.081 | 0.507 | −0.172 | 0.155 |
Calcium (mmol/L) | 81 | 0.074 | 0.511 | −0.181 | 0.106 | −0.073 | 0.515 | −0.093 | 0.406 |
CRP (mg/L) | 77 | 0.503 | <0.001 * | 0.361 | 0.002 * | 0.258 | 0.023 * | −0.021 | 0.855 |
Cytokines | |||||||||
IL-8 | 81 | 0.580 | <0.001 * | X | X | X | X | X | X |
IL-6 | 81 | X | X | X | X | X | X | X | X |
VEGF | 81 | 0.112 | 0.320 | 0.233 | 0.036 * | X | X | X | X |
MCP-1 | 81 | −0.023 | 0.840 | 0.210 | 0.060 | −0.016 | 0.888 | X | X |
Related to treatment | |||||||||
Time to auto-HSCT (months) | 78 | −0.196 | 0.086 | −0.294 | 0.009 * | −0.073 | 0.527 | −0.138 | 0.229 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mielnik, M.; Szudy-Szczyrek, A.; Homa-Mlak, I.; Mlak, R.; Podgajna-Mielnik, M.; Gorący, A.; Małecka-Massalska, T.; Hus, M. The Clinical Relevance of Selected Cytokines in Newly Diagnosed Multiple Myeloma Patients. Biomedicines 2023, 11, 3012. https://doi.org/10.3390/biomedicines11113012
Mielnik M, Szudy-Szczyrek A, Homa-Mlak I, Mlak R, Podgajna-Mielnik M, Gorący A, Małecka-Massalska T, Hus M. The Clinical Relevance of Selected Cytokines in Newly Diagnosed Multiple Myeloma Patients. Biomedicines. 2023; 11(11):3012. https://doi.org/10.3390/biomedicines11113012
Chicago/Turabian StyleMielnik, Michał, Aneta Szudy-Szczyrek, Iwona Homa-Mlak, Radosław Mlak, Martyna Podgajna-Mielnik, Aneta Gorący, Teresa Małecka-Massalska, and Marek Hus. 2023. "The Clinical Relevance of Selected Cytokines in Newly Diagnosed Multiple Myeloma Patients" Biomedicines 11, no. 11: 3012. https://doi.org/10.3390/biomedicines11113012
APA StyleMielnik, M., Szudy-Szczyrek, A., Homa-Mlak, I., Mlak, R., Podgajna-Mielnik, M., Gorący, A., Małecka-Massalska, T., & Hus, M. (2023). The Clinical Relevance of Selected Cytokines in Newly Diagnosed Multiple Myeloma Patients. Biomedicines, 11(11), 3012. https://doi.org/10.3390/biomedicines11113012