Resistance Modulation of Individual and Polymicrobial Culture of S. aureus and E. coli through Nanoparticle-Coupled Antibiotics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation of E. coli and S. aureus
2.3. Antibiotic Susceptibility of E. coli and S. aureus
2.4. Response of Mixed Culture against Different Antibiotics
2.5. Synthesis and Characterization of Nanoparticle-Coupled Antibiotics
Synthesis of WO3 Nanoparticles
2.6. Resistance Modulation by Nanoparitcle Coupled Antibiotics against Individuals and Mixed Culture
2.6.1. Agar Well Diffusion Method
2.6.2. Minimum Inhibitory Concentration (MIC)
2.7. Statistical Analysis
3. Results
3.1. Characterization of Nanoparticles
3.1.1. Tungsten Oxide
3.1.2. Tungsten Oxide Coupled Antibiotics
3.2. Antibiotic Susceptibility of Individual Bacteria
3.3. Response of Mixed-Culture Bacteria against Antibiotics
3.4. Antibacterial Potential of Nanoparticle-Coupled Antibiotics against individual and Mixed-Culture Bacteria
4. Discussion
4.1. Characterization of Nanoparticle-Coupled Antibiotics
4.2. Antibiotic Susceptibility
4.3. Resistance Modulation by Nanoparticle Coupled Antibiotics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarwar, I.; Ashar, A.; Mahfooz, A.; Aqib, A.I.; Saleem, M.I.; Butt, A.A. Evaluation of antibacterial potential of raw turmeric, nano-turmeric, and NSAIDs against multiple drug resistant S. aureus and E. coli isolated from animal wounds. Pak. Vet. J. 2021, 41, 14. [Google Scholar]
- Busanello, M.; Rossi, R.S.; Cassoli, L.D.; Pantoja, J.C.F.; Machado, P.F. Estimation of prevalence and incidence of subclinical mastitis in a large population of Brazilian dairy herds. J. Dairy Sci. 2017, 100, 6545–6553. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development; Infection Control Africa Network: Cape Town, South Africa, 2017. [Google Scholar]
- El-Sayed, A.; Kamel, M. Bovine mastitis prevention and control in the post-antibiotic era. Trop. Anim. Health Prod. 2021, 53, 236. [Google Scholar] [CrossRef] [PubMed]
- Akers, R.M.; Nickerson, S.C. Mastitis and its impact on structure and function in the ruminant mammary gland. J. Mammary Gland. Biol. Neoplasia 2011, 16, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. FDA drug approvals. Nat. Rev. Drug Discov. 2018, 17, 81–86. [Google Scholar] [CrossRef]
- Ko, J.H.; Müller, M.A.; Seok, H.; Park, G.E.; Lee, J.Y.; Cho, S.Y.; Peck, K.R. Serologic responses of 42 MERS-coronavirus-infected patients according to the disease severity. Diagn. Microbiol. Infect. Dis. 2017, 89, 106–111. [Google Scholar] [CrossRef]
- Aymen; Naima; Aqib, A.I.; Akram, K.; Majeed, H.; Murtaza, M.; Muneer, A.; Alsayeqh, A.F. Resistance modulation of dairy milk borne Streptococcus agalactiae and Klebsiella pneumoniae through metallic oxide nanoparticles. Pak. Vet. J. 2022, 42, 424–428. [Google Scholar] [CrossRef]
- Ahmed, A.; Ijaz, M.; Khan, J.A.; Anjum, A.A. Molecular characterization and therapeutic insights into biofilm positive Staphylococcus aureus isolated from bovine subclinical mastitis. Pak. Vet. J. 2022, 42, 584–590. [Google Scholar] [CrossRef]
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules 2019, 25, 112. [Google Scholar] [CrossRef]
- Troncarelli, M.Z.; Brandão, H.M.; Gern, J.C.; Guimarães, A.S.; Langoni, H. Nanotechnology and antimicrobials in veterinary medicine. Formatex 2013, 13, 543–556. [Google Scholar]
- Li, X.; Bai, H.; Yang, Y.; Yoon, J.; Wang, S.; Zhang, X. Supramolecular antibacterial materials for combatting antibiotic resistance. Adv. Mater. 2019, 31, 1805092. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, J.; Yu, S.; Zhou, Y.; Yan, X. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation. J. Hazard. Mater. 2016, 318, 407–416. [Google Scholar] [CrossRef]
- Acosta, M.; M’endez, R.A.; Riech, I.; Rodríguez-Pérez, M.; Gattorno, G.R. Structural, optical and photoelectrochemical properties of tungsten oxide thin films grown by non-reactive RF-sputtering, Superlattice. Superlattices Microstruct. 2019, 127, 123–127. [Google Scholar] [CrossRef]
- Duan, G.; Chen, L.; Jing, Z.; De Luna, P.; Wen, L.; Zhang, L.; Zhao, L.; Xu, J.; Li, Z.; Yang, Z.; et al. Robust antibacterial activity of tungsten oxide (WO3-X) nanodots, Chem. Res. Toxicol. 2019, 32, 1357–1366. [Google Scholar] [CrossRef]
- Matharu, R.K.; Ciric, L.; Ren, G.; Edirisinghe, M. Comparative study of the antimicrobial effects of tungsten nanoparticles and tungsten nanocomposite fibres on hospital acquired bacterial and viral pathogens. Nanomaterials 2020, 10, 1017. [Google Scholar] [CrossRef]
- Thrusfield, M. Sampling. In Veterinary Epidemiology; Blackwell Science Ltd.: London, UK, 2007; pp. 214–256. [Google Scholar]
- Muhammad, G.; Naureen, A.; Asi, M.N.; Saqib, M. Evaluation of a 3% surf solution (surf field mastitis test) for the diagnosis of subclinical bovine and bubaline mastitis. Trop. Anim. Health Prod. 2010, 42, 457–464. [Google Scholar] [CrossRef]
- Sobur, M.A.; Sabuj, A.A.M.; Sarker, R.; Rahman, A.T. Antibiotic-resistant Escherichia coli and Salmonella spp. associated with dairy cattle and farm environment having public health significance. Vet. World 2019, 12, 984. [Google Scholar] [CrossRef]
- M02-A11; Performance Standards for Antimicrobial Disk Susceptibility Testing. CLSI: Berwyn, PA, USA, 2018.
- Anwar, M.A.; Aqib, A.I.; Ashfaq, K.; Deeba, F.; Khan, M.K.; Khan, S.R.; Muzammil, I.; Shoaib, M.; Naseer, M.A.; Riaz, T.; et al. Antimicrobial resistance modulation of MDR E. coli by antibiotic-coated ZnO nanoparticles. Microb. Pathog. 2020, 148, 104450. [Google Scholar] [CrossRef]
- Muneer, A.; Kumar, S.; Aqib, A.I.; Khan, S.R.; Shah, S.Q.A.; Zaheer, I.; Rehman, T.U.; Abbas, A.; Hussain, K.; Rehman, A.; et al. Evaluation of Sodium Alginate Stabilized Nanoparticles and Antibiotics against Drug-Resistant Escherichia coli Isolated from Gut of Houbara Bustard Bird. Oxidative Med. Cell. Longev. 2022, 2022, 7627759. [Google Scholar] [CrossRef]
- Sharma, N.; Deepa, M.; Varshney, P.; Agnihotry, S.A. FTIR and absorption edge studies on tungsten oxide based precursor materials synthesized by sol–gel technique. J. Non-Cryst. Solids 2002, 306, 129–137. [Google Scholar] [CrossRef]
- Ingham, B.; Chong, S.V.; Tallon, J.L. Layered tungsten oxide-based organic-inorganic hybrid materials: An infrared and Raman study. J. Phys. Chem. B 2005, 109, 4936–4940. [Google Scholar] [CrossRef] [PubMed]
- Tanzin, T.; Nazir, K.N.H.; Zahan, M.N.; Parvej, M.S.; Zesmin, K.; Rahman, M.T. Antibiotic resistance profile of bacteria isolated from raw milk samples of cattle and buffaloes. J. Adv. Vet. Anim. Res. 2016, 3, 62–67. [Google Scholar] [CrossRef]
- Singh, K.; Chandra, M.; Kaur, G.; Narang, D.; Gupta, D.K. Prevalence and antibiotic resistance pattern among the mastitis-causing microorganisms. Open J. Vet. Med. 2018, 8, 54. [Google Scholar] [CrossRef]
- Mir, A.Q.; Bansal, B.K.; Gupta, D.K. Subclinical mastitis in machine milked dairy farms in Punjab: Prevalence, distribution of bacteria and current antibiogram. Vet. World 2014, 7, 291–294. [Google Scholar] [CrossRef]
- Dhakal, I.P.; Dhakal, P.; Koshihara, T.; Nagahata, H. Epidemiological and bacteriological survey of buffalo mastitis in Nepal. J. Vet. Med. Sci. 2007, 69, 1241–1245. [Google Scholar] [CrossRef]
- Verma, H.; Rawat, S.; Sharma, N.; Jaiswal, V.; Singh, R.; Harshit, V. Prevalence, bacterial etiology and antibiotic susceptibility pattern of bovine mastitis in Meerut. J. Entomol. Zool. Stud. 2018, 6, 706–709. [Google Scholar]
- León-Galván, M.F.; Barboza-Corona, J.E.; Lechuga-Arana, A.A.; Valencia-Posadas, M.; Aguayo, D.D.; Cedillo-Pelaez, C.; Gutierrez-Chavez, A.J. Molecular detection and sensitivity to antibiotics and bacteriocins of pathogens isolated from bovine mastitis in family dairy herds of central Mexico. BioMed Res. Int. 2015, 2015, 615153. [Google Scholar] [CrossRef]
- Liu, X.; Duan, G.; Li, W.; Zhou, Z.; Zhou, R. Membrane destruction-mediated antibacterial activity of tungsten disulfide (WS2). RSC Adv. 2017, 7, 37873–37880. [Google Scholar] [CrossRef]
- Perelshtein, I.; Lipovsky, A.; Perkas, N.; Gedanken, A.; Moschini, E.; Mantecca, P. The influence of the crystalline nature of nano-metal oxides on their antibacterial and toxicity properties. Nano Res. 2015, 8, 695–707. [Google Scholar] [CrossRef]
- Syed, M.A.; Manzoor, U.; Shah, I.; Bukhari, S.H.A. Antibacterial effects of Tungsten nanoparticles on the Escherichia coli strains isolated from catheterized urinary tract infection (UTI) cases and Staphylococcus aureus. New Microbiol. 2010, 33, 329–335. [Google Scholar]
- Ghasempour, F.; Azimirad, R.; Amini, A.; Akhavan, O. Visible light photoinactivation of bacteria by tungsten oxide nanostructures formed on a tungsten foil. Appl. Surf. Sci. 2015, 338, 55–60. [Google Scholar] [CrossRef]
- Mansoor, A.; Mehmood, M.; Hassan, S.M.U.; Ali, M.I.; Badshah, M.; Jamal, A. Anti-bacterial effect of titanium-oxide nanoparticles and their application as alternative to antibiotics. Pak. Vet. J. 2023, 43, 269–275. [Google Scholar] [CrossRef]
Antibiotic | E. coli | S. aureus | ||||
---|---|---|---|---|---|---|
R (%) | I (%) | S (%) | R (%) | I (%) | S (%) | |
Imipenem | 40 | 20 | 40 | 10 | 30 | 60 |
Amikacin | 30 | 10 | 60 | 20 | 20 | 60 |
Oxytetracycline | 30 | 20 | 50 | 40 | 20 | 40 |
Ampicillin | 50 | 20 | 30 | 30 | 40 | 30 |
Gentamicin | 40 | 10 | 50 | 30 | 20 | 50 |
Erythromycin | 20 | 20 | 60 | 30 | 10 | 60 |
Ciprofloxacin | 30 | 10 | 60 | 40 | 20 | 40 |
Penicillin | 60 | 20 | 20 | 50 | 10 | 40 |
Bacterial Culture Type | Preparation | Minimum Inhibitory Concentration (µg/mL) at Different Incubation Periods | |||
---|---|---|---|---|---|
4 h | 20 h | 24 h | 28 h | ||
E. coli alone | WA | 520.83 ± 180.42 a | 65.10 ± 22.55 a | 52.08 ± 22.55 a | 39.06 ± 0.00 a |
WO | 312.33 ± 0.29 a | 65.10 ± 22.55 a | 39.06 ± 0.00 a | 32.55 ± 11.28 a | |
W | 1458.33 ± 954.70 a | 260.42 ± 90.21 b | 130.21 ± 45.10 b | 78.12 ± 0.00 a | |
S. aureus alone | WA | 416.67 ± 180.42 a | 65.10 ± 22.55 a | 52.08 ± 22.55 ab | 26.04 ± 11.28 a |
WO | 312.33 ± 0.29 a | 52.08 ± 22.55 a | 26.04 ± 11.28 b | 19.53 ± 0.00 a | |
W | 833.33 ± 360.84 a | 156.25 ± 0.00 b | 104.17 ± 45.10 a | 65.10 ± 22.55 b | |
Mixed (E. coli + S. aureus) | WA | 520.83 ± 180.42 a | 91.15 ± 59.67 a | 52.08 ± 22.55 a | 26.04 ± 11.28 a |
WO | 520.83 ± 180.42 a | 104.17 ± 45.10 a | 65.10 ± 22.55 a | 39.06 ± 0.00 a | |
W | 2083.33 ± 721.69 b | 625.00 ± 0.00 b | 312.50 ± 270.63 a | 156.25 ± 0.00 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zia, S.; Peng, S.; Bashir, A.; Kausar, T.; Khan, S.R.; Muneer, A.; Nawaz, A.; Alnajjar, L.I.; Saeed, M.; Alshammari, N.; et al. Resistance Modulation of Individual and Polymicrobial Culture of S. aureus and E. coli through Nanoparticle-Coupled Antibiotics. Biomedicines 2023, 11, 2988. https://doi.org/10.3390/biomedicines11112988
Zia S, Peng S, Bashir A, Kausar T, Khan SR, Muneer A, Nawaz A, Alnajjar LI, Saeed M, Alshammari N, et al. Resistance Modulation of Individual and Polymicrobial Culture of S. aureus and E. coli through Nanoparticle-Coupled Antibiotics. Biomedicines. 2023; 11(11):2988. https://doi.org/10.3390/biomedicines11112988
Chicago/Turabian StyleZia, Sana, Song Peng, Arslan Bashir, Tasleem Kausar, Shanza Rauf Khan, Afshan Muneer, Attia Nawaz, Lina I. Alnajjar, Mohd Saeed, Nawaf Alshammari, and et al. 2023. "Resistance Modulation of Individual and Polymicrobial Culture of S. aureus and E. coli through Nanoparticle-Coupled Antibiotics" Biomedicines 11, no. 11: 2988. https://doi.org/10.3390/biomedicines11112988
APA StyleZia, S., Peng, S., Bashir, A., Kausar, T., Khan, S. R., Muneer, A., Nawaz, A., Alnajjar, L. I., Saeed, M., Alshammari, N., Aqib, A. I., & Li, K. (2023). Resistance Modulation of Individual and Polymicrobial Culture of S. aureus and E. coli through Nanoparticle-Coupled Antibiotics. Biomedicines, 11(11), 2988. https://doi.org/10.3390/biomedicines11112988