Hypoxia-Induced Biosynthesis of the Extracellular Matrix Molecules, Perlecan and Fibronectin, Promotes the Growth of Pleomorphic Adenoma Cells In Vitro Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines
2.2. Antibodies
2.3. Immunohistochemistry
2.4. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)
2.5. Immunofluorescence
2.6. Western Blotting
2.7. RNA Interference (RNAi)
2.8. Cell Proliferation Assay
2.9. Cell Migration Assay
2.10. Xenografts in Nude Mice
2.11. Statistical Analysis
3. Results
3.1. Hypoxia-Induced HIF-1α in SM-AP Cells
3.2. Increased Expression of Perlecan and FN in SM-AP Cells under Hypoxic Conditions
3.3. Perlecan Promoted Proliferation and Inhibited Invasion of SM-AP Cells
3.4. FN Promoted Proliferation of SM-AP Cells but Exerted Differential Effects on Invasion in SM-AP1 and SM-AP4 Cells
3.5. SM-AP Cells Promoted ECM Synthesis in Xenografts under Hypoxia
3.6. Inhibition of HIF-1α Suppressed the Proliferation, Migration, and ECM Synthesis in SM-AP1 Cells
3.7. Inhibition of HIF-1α and ECM Synthesis under Hypoxia Suppressed the Proliferation in SM-AP1 Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bell, D.; Bullerdiek, J.; Gnepp, D.R.; Schwartz, M.R.; Stenman, G.; Triantafyllou, A. Benign tumor (pleomorphic adenoma). In WHO Classification of Head and Neck Tumors, 4th ed.; El-Naggar Adel, K., Chan John, K.C., Grandis Jennifer, R., Takata, T., Slootweg Piter, J., Eds.; World Health Organization: Geneva, Switzerland, 2017; pp. 185–186. [Google Scholar]
- Bishop Justin, A.; Thompson Lester, D.R.; Wakely, P.E., Jr.; Paul, E.; Weneb, I. Tumors of the Salivary Glands: AFIP Atlas of Tumor and Non-Tumor Pathology, 5th ed; American Registry of Pathology: Arlington, VA, USA, 2021; pp. 109–138. [Google Scholar]
- Stennert, E.; Guntinas-Lichius, O.; Klussmann, J.P.; Arnold, G. Histopathology of pleomorphic adenoma in the parotid gland: A prospective unselected series of 100 cases. Laryngoscope 2001, 111, 2195–2200. [Google Scholar] [CrossRef] [PubMed]
- LiVolsi, V.A.; Perzin, K.H. Malignant mixed tumors arising in salivary glands. part I. Carcinomas arising in benign tumors: A clinicopathologic study. Cancer 1977, 39, 2209–2230. [Google Scholar] [CrossRef] [PubMed]
- Di Palma, S.; Skálová, A.; Vanìèek, T.; Simpson, R.H.; Stárek, I.; Leivo, I. Non-invasive (intracapsular) carcinoma ex pleomorphic adenoma: Recognition of focal carcinoma by HER-2/neu and MIB1 immunohistochemistry. Histopathology 2005, 46, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Antony, J.; Gopalan, V.; Smith, R.A.; Lam, A.K. Carcinoma ex pleomorphic adenoma: A comprehensive review of clinical, pathological and molecular data. Head Neck Pathol. 2012, 6, 1–9. [Google Scholar] [CrossRef]
- Brandwein, M.; Huvos, A.G.; Dardick, I.; Thomas, M.J.; Theise, N.D. Noninvasive and minimally invasive carcinoma ex mixed tumor: A clinicopathologic and ploidy of 12 patients with major salivary tumors of low (or no?) malignant potential. Oral. Surg. Oral. Med. Oral. Pathol. Radiol. Endod. 1996, 81, 655–664. [Google Scholar] [CrossRef]
- Takeda, Y. An immunohistochemical study of bizarre neoplastic cells in pleomorphic adenoma: Its cytological nature and proliferative activity. Pathol. Int. 1999, 49, 993–999. [Google Scholar] [CrossRef]
- Maruyama, S.; Cheng, J.; Shingaki, S.; Tamura, T.; Asakawa, S.; Minoshima, S.; Shimizu, Y.; Shimizu, N.; Saku, T. Establishment and characterization of pleomorphic adenoma systems: An in-vitro demonstration of carcinomas arising secondarily from adenomas in the salivary gland. BMC Cancer 2009, 21, 247. [Google Scholar] [CrossRef]
- Maruyama, S.; Cheng, J.; Yamazaki, M.; Liu, A.; Saku, T. Keratinocyte growth factor colocalized with perlecan at the site of capsular invasion and vascular involvement in salivary pleomorphic adenomas. J. Oral. Pathol. Med. 2009, 38, 377–385. [Google Scholar] [CrossRef]
- Raitz, R.; Martins, M.D.; Araújo, V.C. A study of the extracellular matrix in salivary gland tumors. J. Oral. Pathol. Med. 2003, 32, 290–296. [Google Scholar] [CrossRef]
- Cheng, J.; Saku, T.; Okabe, H.; Furthmayr, H. Basement membranes in adenoid cystic carcinoma. An immunohistochemical study. Cancer 1992, 69, 2631–2640. [Google Scholar] [CrossRef]
- Mishra, M.; Naik, V.V.; Kale, A.D.; Ankola, A.V.; Pilli, G.S. Perlecan (basement membrane heparan sulfate proteoglycan) and its role in oral malignancies: An overview. Indian J. Dent. Res. 2011, 22, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Chandavarkar, V.; Naik, V.V.; Kale, A.D. An immunohistochemical study of basement membrane heparan sulfate proteoglycan (perlecan) in oral epithelial dysplasia and squamous cell carcinoma. J. Oral. Maxillofac. Pathol. 2013, 17, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, S.; Shimazu, Y.; Kudo, T.; Sato, K.; Yamazaki, M.; Abé, T.; Cheng, J.; Aoba, T.; Saku, T. Three-dimensional visualization of perlecan-rich neoplastic stroma induced concurrently with the invasion of oral squamous cell carcinoma. J. Oral. Pathol. Med. 2014, 43, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Ke, Q.; Costa, M. Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol. 2006, 70, 1469–1480. [Google Scholar] [CrossRef]
- Cho, H.; Ahn, D.R.; Park, H.; Yang, E.G. Modulation of p300 binding by posttranslational modifications of the C-terminal activation domain of hypoxia-inducible factor-1alpha. FEBS Lett. 2007, 581, 1542–1548. [Google Scholar] [CrossRef]
- Dyson, H.J.; Wright, P.E. Role of Intrinsic Protein Disorder in the Function and Interactions of the Transcriptional Coactivators CREB-binding Protein (CBP) and p300. J. Biol. Chem. 2016, 291, 714–722. [Google Scholar] [CrossRef]
- Han, N.; Li, X.; Wang, Y.; Li, H.; Zhang, C.; Zhao, X.; Zhang, Z.; Ruan, M.; Zhang, C. HIF-1α induced NID1 expression promotes pulmonary metastases via the PI3K-AKT pathway in salivary gland adenoid cystic carcinoma. Oral. Oncol. 2022, 131, 105940. [Google Scholar] [CrossRef]
- Branco, D.C.; da Costa, N.M.M.; Abe, C.T.S.; Kataoka, M.S.D.S.; Pinheiro, J.J.V.; Alves Júnior, S.M. HIF-1α, NOTCH1, ADAM12, and HB-EGF are overexpressed in mucoepidermoid carcinoma. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2019, 127, e8–e17. [Google Scholar] [CrossRef]
- Saku, T.; Furthmayr, H. Characterization of the major heparan sulfate proteoglycan secreted by bovine aortic endothelial cells in culture. Homology to the large molecular weight molecule of basement membranes. J. Biol. Chem. 1989, 264, 3514–3523. [Google Scholar] [CrossRef]
- Sanderson, R.D. Heparan sulfate proteoglycans in invasion and metastasis. Semin. Cell Dev. Biol. 2001, 12, 89–98. [Google Scholar] [CrossRef]
- Elgundi, Z.; Papanicolaou, M.; Major, G.; Cox, T.R.; Melrose, J.; Whitelock, J.M.; Farrugia, B.L. Cancer metastasis. The role of the extracellular matrix and the heparan sulfate proteoglycan perlecan. Front. Oncol. 2020, 9, 1482. [Google Scholar] [CrossRef] [PubMed]
- Cruz, L.A.; Tellman, T.V.; Farach-Carson, M.C. Flipping the Molecular Switch: Influence of Perlecan and Its Modifiers in the Tumor Microenvironment. Adv. Exp. Med. Biol. 2020, 1245, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.C.; Yang, C.H.; Cheng, L.H.; Chang, W.T.; Lin, Y.R.; Cheng, H.C. Fibronectin in cancer: Friend or foe. Cells 2019, 9, 27. [Google Scholar] [CrossRef]
- Asplund, A.; Stillemark-Billton, P.; Larsson, E.; Rydberg, E.K.; Moses, J.; Hultén, L.M.; Fagerberg, B.; Camejo, G.; Bondjers, G. Hypoxic regulation of secreted proteoglycans in macrophages. Glycobiology 2010, 20, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Ryu, M.H.; Park, H.M.; Chung, J.; Lee, C.H.; Park, H.R. Hypoxia-inducible factor-1alpha mediates oral squamous cell carcinoma invasion via upregulation of alpha5 integrin and fibronectin. Biochem. Biophys. Res. Commun. 2010, 393, 11–15. [Google Scholar] [CrossRef]
- Savorè, C.; Zhang, C.; Muir, C.; Liu, R.; Wyrwa, J.; Shu, J.; Zhau, H.E.; Chung, L.W.; Carson, D.D.; Farach-Carson, M.C. Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo. Clin. Exp. Metastasis 2005, 22, 377–390. [Google Scholar] [CrossRef]
- Kawahara, R.; Granato, D.C.; Carnielli, C.M.; Cervigne, N.K.; Oliveria, C.E.; Rivera, C.; Yokoo, S.; Fonseca, F.P.; Lopes, M.; Santos-Silva, A.R.; et al. Agrin and perlecan mediate tumorigenic processes in oral squamous cell carcinoma. PLoS ONE 2014, 9, e115004. [Google Scholar] [CrossRef]
- Tam, S.Y.; Wu, V.W.C.; Law, H.K.W. Hypoxia-Induced Epithelial-Mesenchymal Transition in Cancers: HIF-1α and Beyond. Front. Oncol. 2020, 10, 486. [Google Scholar] [CrossRef]
- Matsumiya-Matsumoto, Y.; Morita, Y.; Uzawa, N. Pleomorphic Adenoma of the Salivary Glands and Epithelial-Mesenchymal Transition. J. Clin. Med. 2022, 11, 4210. [Google Scholar] [CrossRef]
- Amelio, I.; Melino, G. The p53 family and the hypoxia-inducible factors (HIFs): Determinants of cancer progression. Trends Biochem. Sci. 2015, 40, 425–434. [Google Scholar] [CrossRef]
- Amelio, I.; Mancini, M.; Petrova, V.; Cairns, R.A.; Vikhreva, P.; Nicolai, S.; Marini, A.; Antonov, A.A.; Le Quesne, J.; Baena Acevedo, J.D.; et al. p53 mutants cooperate with HIF-1 in transcriptional regulation of extracellular matrix components to promote tumor progression. Proc. Natl. Acad. Sci. USA 2018, 115, E10869–E10878. [Google Scholar] [CrossRef] [PubMed]
- Ribatti, D.; Solimando, A.G.; Pezzella, F. The anti-VEGF(R) drug discovery legacy: Improving attrition rates by breaking the vicious cycle of angiogenesis in cancer. Cancers 2021, 13, 3433. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.M.; de Jesus, S.F.; de Souza, M.G.; Santos, E.M.; Santos, C.K.C.; Silveira, C.M.; Santos, S.H.S.; de Paula, A.M.B.; Farias, L.C.; Guimarães, A.L.S. Is HIF1-a deregulated in malignant salivary neoplasms? Gene 2019, 701, 41–45. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maruyama, S.; Yamazaki, M.; Abé, T.; Cheng, J.; Saku, T.; Tanuma, J.-i. Hypoxia-Induced Biosynthesis of the Extracellular Matrix Molecules, Perlecan and Fibronectin, Promotes the Growth of Pleomorphic Adenoma Cells In Vitro Models. Biomedicines 2023, 11, 2981. https://doi.org/10.3390/biomedicines11112981
Maruyama S, Yamazaki M, Abé T, Cheng J, Saku T, Tanuma J-i. Hypoxia-Induced Biosynthesis of the Extracellular Matrix Molecules, Perlecan and Fibronectin, Promotes the Growth of Pleomorphic Adenoma Cells In Vitro Models. Biomedicines. 2023; 11(11):2981. https://doi.org/10.3390/biomedicines11112981
Chicago/Turabian StyleMaruyama, Satoshi, Manabu Yamazaki, Tatsuya Abé, Jun Cheng, Takashi Saku, and Jun-ichi Tanuma. 2023. "Hypoxia-Induced Biosynthesis of the Extracellular Matrix Molecules, Perlecan and Fibronectin, Promotes the Growth of Pleomorphic Adenoma Cells In Vitro Models" Biomedicines 11, no. 11: 2981. https://doi.org/10.3390/biomedicines11112981
APA StyleMaruyama, S., Yamazaki, M., Abé, T., Cheng, J., Saku, T., & Tanuma, J.-i. (2023). Hypoxia-Induced Biosynthesis of the Extracellular Matrix Molecules, Perlecan and Fibronectin, Promotes the Growth of Pleomorphic Adenoma Cells In Vitro Models. Biomedicines, 11(11), 2981. https://doi.org/10.3390/biomedicines11112981