Prostate Cancer in Transplant Receivers—A Narrative Review on Oncological Outcomes
Abstract
:1. Introduction
1.1. Prostate Cancer in Immunocompromised Patients—Pathophysiology and Mechanisms of Development
1.1.1. PCa as “Immunologically Cold” Neoplasm
1.1.2. Immunotherapy in PCa—Defining the Subset of Immunoreactive PCa Patients
2. Prostate Cancer Treatment in Transplant Receivers
2.1. Radical Treatment in Transplant Receivers
2.2. Functional Outcomes and Complications following Radical Treatment
2.2.1. Surgery
2.2.2. Radiotherapy
2.3. Oncological Outcomes and Prognosis
3. Metastatic and Progressive Prostate Cancer in Transplant Receivers
3.1. Metastatic Prostate Cancer in Transplant Receivers
3.2. Progression to mPCa in Organ-Confined or Locally Advanced Patients after Transplant
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kwon, J.T.W.; Bryant, R.J.; Parkes, E.E. The tumor microenvironment and immune responses in prostate cancer patients. Endocr. -Relat. Cancer 2021, 28, T95–T107. [Google Scholar] [CrossRef] [PubMed]
- Raskov, H.; Orhan, A.; Christensen, J.P.; Gögenur, I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br. J. Cancer 2021, 124, 359–367. [Google Scholar] [CrossRef]
- Fridman, W.H.; Zitvogel, L.; Sautès–Fridman, C.; Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 2017, 14, 717–734. [Google Scholar] [CrossRef]
- Bruni, D.; Angell, H.K.; Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 2020, 20, 662–680. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, H.; Luo, W.; Zhang, H.; Li, G.; Zeng, F.; Deng, F. The Landscape of Immune Cells Infiltrating in Prostate Cancer. Front. Oncol. 2020, 10, 517637. [Google Scholar] [CrossRef]
- Ness, N.; Andersen, S.; Valkov, A.; Nordby, Y.; Donnem, T.; Al-Saad, S.; Busund, L.-T.; Bremnes, R.M.; Richardsen, E. Infiltration of CD8+ lymphocytes is an independent prognostic factor of biochemical failure-free survival in prostate cancer: CD8+ Lymphocytes in Prostate Cancer. Prostate 2014, 74, 1452–1461. [Google Scholar] [CrossRef]
- Kaur, H.B.; Guedes, L.B.; Lu, J.; Maldonado, L.; Reitz, L.; Barber, J.R.; De Marzo, A.M.; Tosoian, J.J.; Tomlins, S.A.; Schaeffer, E.M.; et al. Association of tumor-infiltrating T-cell density with molecular subtype, racial ancestry and clinical outcomes in prostate cancer. Mod. Pathol. 2018, 31, 1539–1552. [Google Scholar] [CrossRef]
- Tanaka, A.; Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017, 27, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Kiniwa, Y.; Miyahara, Y.; Wang, H.Y.; Peng, W.; Peng, G.; Wheeler, T.M.; Thompson, T.C.; Old, L.J.; Wang, R.-F. CD8+ Foxp3+ Regulatory T Cells Mediate Immunosuppression in Prostate Cancer. Clin. Cancer Res. 2007, 13, 6947–6958. [Google Scholar] [CrossRef]
- Nardone, V.; Botta, C.; Caraglia, M.; Martino, E.C.; Ambrosio, M.R.; Carfagno, T.; Tini, P.; Semeraro, L.; Misso, G.; Grimaldi, A.; et al. Tumor infiltrating T lymphocytes expressing FoxP3, CCR7 or PD-1 predict the outcome of prostate cancer patients subjected to salvage radiotherapy after biochemical relapse. Cancer Biol. Ther. 2016, 17, 1213–1220. [Google Scholar] [CrossRef]
- Watanabe, M.; Kanao, K.; Suzuki, S.; Muramatsu, H.; Morinaga, S.; Kajikawa, K.; Kobayashi, I.; Nishikawa, G.; Kato, Y.; Zennami, K.; et al. Increased infiltration of CCR4-positive regulatory T cells in prostate cancer tissue is associated with a poor prognosis. Prostate 2019, 79, 1658–1665. [Google Scholar] [CrossRef]
- Woo, J.R.; Liss, M.A.; Muldong, M.T.; Palazzi, K.; Strasner, A.; Ammirante, M.; Varki, N.; Shabaik, A.; Howell, S.; Kane, C.J.; et al. Tumor infiltrating B-cells are increased in prostate cancer tissue. J. Transl. Med. 2014, 12, 30. [Google Scholar] [CrossRef]
- Biswas, S.K.; Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 2010, 11, 889–896. [Google Scholar] [CrossRef]
- Lundholm, M.; Hägglöf, C.; Wikberg, M.L.; Stattin, P.; Egevad, L.; Bergh, A.; Wikström, P.; Palmqvist, R.; Edin, S. Secreted Factors from Colorectal and Prostate Cancer Cells Skew the Immune Response in Opposite Directions. Sci. Rep. 2015, 5, 15651. [Google Scholar] [CrossRef]
- Lanciotti, M.; Masieri, L.; Raspollini, M.R.; Minervini, A.; Mari, A.; Comito, G.; Giannoni, E.; Carini, M.; Chiarugi, P.; Serni, S. The Role of M1 and M2 Macrophages in Prostate Cancer in relation to Extracapsular Tumor Extension and Biochemical Recurrence after Radical Prostatectomy. BioMed Res. Int. 2014, 2014, 486798. [Google Scholar] [CrossRef]
- Nonomura, N.; Takayama, H.; Nakayama, M.; Nakai, Y.; Kawashima, A.; Mukai, M.; Nagahara, A.; Aozasa, K.; Tsujimura, A. Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer: Tumour-associated macrophages predicts the efficacy of hormonal therapy. BJU Int. 2011, 107, 1918–1922. [Google Scholar] [CrossRef]
- Comito, G.; Giannoni, E.; Segura, C.P.; Barcellos-de-Souza, P.; Raspollini, M.R.; Baroni, G.; Lanciotti, M.; Serni, S.; Chiarugi, P. Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene 2014, 33, 2423–2431. [Google Scholar] [CrossRef]
- Malat, G.; Culkin, C. The ABCs of Immunosuppression. Med. Clin. N. Am. 2016, 100, 505–518. [Google Scholar] [CrossRef]
- Engels, E.A.; Pfeiffer, R.M.; Fraumeni, J.F.; Kasiske, B.L.; Israni, A.K.; Snyder, J.J.; Wolfe, R.A.; Goodrich, N.P.; Bayakly, A.R.; Clarke, C.A.; et al. Spectrum of Cancer Risk Among US Solid Organ Transplant Recipients. JAMA 2011, 306, 1891. [Google Scholar] [CrossRef]
- Barshes, N.R.; Goodpastor, S.E.; Goss, J.A. Pharmacologic immunosuppression. Front. Biosci. 2004, 9, 411–420. [Google Scholar] [CrossRef]
- Tewari, A.K.; Stockert, J.A.; Yadav, S.S.; Yadav, K.K.; Khan, I. Inflammation and Prostate Cancer. In Cell & Molecular Biology of Prostate Cancer; Schatten, H., Ed.; Springer International Publishing: Cham, Switzerland, 2018; Volume 1095, pp. 41–65, (Advances in Experimental Medicine and Biology). [Google Scholar] [CrossRef]
- Kawahara, T.; Kashiwagi, E.; Ide, H.; Li, Y.; Zheng, Y.; Ishiguro, H.; Miyamoto, H. The role of NFATc1 in prostate cancer progression: Cyclosporine A and tacrolimus inhibit cell proliferation, migration, and invasion: NFAT in Prostate Cancer. Prostate 2015, 75, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Alshaker, H.; Wang, Q.; Kawano, Y.; Arafat, T.; Böhler, T.; Winkler, M.; Cooper, C.; Pchejetski, D. Everolimus (RAD001) sensitizes prostate cancer cells to docetaxel by down-regulation of HIF-1α and sphingosine kinase 1. Oncotarget 2016, 7, 80943–80956. [Google Scholar] [CrossRef] [PubMed]
- Alshaker, H.; Wang, Q.; Böhler, T.; Mills, R.; Winkler, M.; Arafat, T.; Kawano, Y.; Pchejetski, D. Combination of RAD001 (everolimus) and docetaxel reduces prostate and breast cancer cell VEGF production and tumour vascularisation independently of sphingosine-kinase-1. Sci. Rep. 2017, 7, 3493. [Google Scholar] [CrossRef] [PubMed]
- Yano, A.; Fujii, Y.; Iwai, A.; Kageyama, Y.; Kihara, K. Glucocorticoids Suppress Tumor Angiogenesis and In vivo Growth of Prostate Cancer Cells. Clin. Cancer Res. 2006, 12, 3003–3009. [Google Scholar] [CrossRef]
- Yano, A.; Fujii, Y.; Iwai, A.; Kawakami, S.; Kageyama, Y.; Kihara, K. Glucocorticoids Suppress Tumor Lymphangiogenesis of Prostate Cancer Cells. Clin. Cancer Res. 2006, 12, 6012–6017. [Google Scholar] [CrossRef]
- Engl, T.; Makarević, J.; Relja, B.; Natsheh, I.; Müller, I.; Beecken, W.-D.; Jonas, D.; Blaheta, R.A. Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: Impact on tumor recurrence and malignancy. BMC Cancer 2005, 5, 4. [Google Scholar] [CrossRef]
- Sagnelli, C.; Sica, A.; Gallo, M.; Peluso, G.; Varlese, F.; D’Alessandro, V.; Ciccozzi, M.; Crocetto, F.; Garofalo, C.; Fiorelli, A.; et al. Renal involvement in COVID-19: Focus on kidney transplant sector. Infection 2021, 49, 1265–1275. [Google Scholar] [CrossRef]
- Farkash, E.A.; Wilson, A.M.; Jentzen, J.M. Ultrastructural Evidence for Direct Renal Infection with SARS-CoV-2. J. Am. Soc. Nephrol. 2020, 31, 1683–1687. [Google Scholar] [CrossRef]
- Hassanein, M.; Radhakrishnan, Y.; Sedor, J.; Vachharajani, T.; Vachharajani, V.T.; Augustine, J.; Demirjian, S.; Thomas, G. COVID-19 and the kidney. Cleve. Clin. J. Med. 2020, 87, 619–631. [Google Scholar] [CrossRef]
- Yang, X.; Tian, S.; Guo, H. Acute kidney injury and renal replacement therapy in COVID-19 patients: A systematic review and meta-analysis. Int. Immunopharmacol. 2021, 90, 107159. [Google Scholar] [CrossRef]
- Hirsch, J.S.; Ng, J.H.; Ross, D.W.; Sharma, P.; Shah, H.H.; Barnett, R.L.; Hazzan, A.D.; Fishbane, S.; Jhaveri, K.D. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020, 98, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Coates, P.T.; Wong, G.; Drueke, T.; Rovin, B.; Ronco, P. Early experience with COVID-19 in kidney transplantation. Kidney Int. 2020, 97, 1074–1075. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Popoola, J.; Shah, S.; Ster, I.C.; Quan, V.; Phanish, M. COVID-19 infection in kidney transplant recipients. Kidney Int. 2020, 97, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, S.; McFarland, T.R.; Agarwal, N.; Swami, U. Immune Checkpoint Inhibitors in Prostate Cancer. Cancers 2021, 13, 2187. [Google Scholar] [CrossRef]
- Vitkin, N.; Nersesian, S.; Siemens, D.R.; Koti, M. The Tumor Immune Contexture of Prostate Cancer. Front. Immunol. 2019, 10, 603. [Google Scholar] [CrossRef]
- Wang, I.; Song, L.; Wang, B.Y.; Rezazadeh Kalebasty, A.; Uchio, E.; Zi, X. Prostate cancer immunotherapy: A review of recent advancements with novel treatment methods and efficacy. Am. J. Clin. Exp. Urol. 2022, 10, 210–233. [Google Scholar]
- Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion. Science 2011, 331, 1565–1570. [Google Scholar] [CrossRef]
- Samstein, R.M.; Lee, C.-H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef]
- Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499, 214–218. [Google Scholar] [CrossRef]
- Sanda, M.G.; Restifo, N.P.; Walsh, J.C.; Kawakami, Y.; Nelson, W.G.; Pardoll, D.M.; Simons, J.W. Molecular Characterization of Defective Antigen Processing in Human Prostate Cancer. JNCI J. Natl. Cancer Inst. 1995, 87, 280–285. [Google Scholar] [CrossRef]
- Bander, N.H.; Yao, D.; Liu, H.; Chen, Y.-T.; Steiner, M.; Zuccaro, W.; Moy, P. MHC class I and II expression in prostate carcinoma and modulation by interferon-alpha and -gamma. Prostate 1997, 33, 233–239. [Google Scholar] [CrossRef]
- Martin, A.M.; Nirschl, T.R.; Nirschl, C.J.; Francica, B.J.; Kochel, C.M.; Van Bokhoven, A.; Meeker, A.K.; Lucia, M.S.; Anders, R.A.; DeMarzo, A.M.; et al. Paucity of PD-L1 expression in prostate cancer: Innate and adaptive immune resistance. Prostate Cancer Prostatic Dis. 2015, 18, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; et al. Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2010, 363, 411–422. [Google Scholar] [CrossRef]
- Schellhammer, P.F.; Chodak, G.; Whitmore, J.B.; Sims, R.; Frohlich, M.W.; Kantoff, P.W. Lower Baseline Prostate-specific Antigen Is Associated With a Greater Overall Survival Benefit From Sipuleucel-T in the Immunotherapy for Prostate Adenocarcinoma Treatment (IMPACT) Trial. Urology 2013, 81, 1297–1302. [Google Scholar] [CrossRef]
- Crawford, E.D.; Petrylak, D.P.; Higano, C.S.; Kibel, A.S.; Kantoff, P.W.; Small, E.J.; Shore, N.D.; Ferrari, A. Optimal timing of sipuleucel-T treatment in metastatic castration-resistant prostate cancer. Can. J. Urol. 2015, 22, 8048–8055. [Google Scholar]
- Kantoff, P.W.; Schuetz, T.J.; Blumenstein, B.A.; Glode, L.M.; Bilhartz, D.L.; Wyand, M.; Manson, K.; Panicali, D.L.; Laus, R.; Schlom, J.; et al. Overall Survival Analysis of a Phase II Randomized Controlled Trial of a Poxviral-Based PSA-Targeted Immunotherapy in Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2010, 28, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Gulley, J.L.; Borre, M.; Vogelzang, N.J.; Ng, S.; Agarwal, N.; Parker, C.C.; Pook, D.W.; Rathenborg, P.; Flaig, T.W.; Carles, J.; et al. Phase III Trial of PROSTVAC in Asymptomatic or Minimally Symptomatic Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2019, 37, 1051–1061. [Google Scholar] [CrossRef]
- Westdorp, H.; Creemers, J.H.A.; Van Oort, I.M.; Schreibelt, G.; Gorris, M.A.J.; Mehra, N.; Simons, M.; De Goede, A.L.; Van Rossum, M.M.; Croockewit, A.J.; et al. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. J. Immunother. Cancer 2019, 7, 302. [Google Scholar] [CrossRef] [PubMed]
- Podrazil, M.; Horvath, R.; Becht, E.; Rozkova, D.; Bilkova, P.; Sochorova, K.; Hromadkova, H.; Kayserova, J.; Vavrova, K.; Lastovicka, J.; et al. Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget 2015, 6, 18192–18205. [Google Scholar] [CrossRef]
- Vogelzang, N.J.; Beer, T.M.; Gerritsen, W.; Oudard, S.; Wiechno, P.; Kukielka-Budny, B.; Samal, V.; Hajek, J.; Feyerabend, S.; Khoo, V.; et al. Efficacy and Safety of Autologous Dendritic Cell–Based Immunotherapy, Docetaxel, and Prednisone vs Placebo in Patients With Metastatic Castration-Resistant Prostate Cancer: The VIABLE Phase 3 Randomized Clinical Trial. JAMA Oncol. 2022, 8, 546. [Google Scholar] [CrossRef]
- Kwon, E.D.; Drake, C.G.; Scher, H.I.; Fizazi, K.; Bossi, A.; Van Den Eertwegh, A.J.M.; Krainer, M.; Houede, N.; Santos, R.; Mahammedi, H.; et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014, 15, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Fizazi, K.; Drake, C.G.; Beer, T.M.; Kwon, E.D.; Scher, H.I.; Gerritsen, W.R.; Bossi, A.; Den Eertwegh, A.J.M.V.; Krainer, M.; Houede, N.; et al. Final Analysis of the Ipilimumab Versus Placebo Following Radiotherapy Phase III Trial in Postdocetaxel Metastatic Castration-resistant Prostate Cancer Identifies an Excess of Long-term Survivors. Eur. Urol. 2020, 78, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Beer, T.M.; Kwon, E.D.; Drake, C.G.; Fizazi, K.; Logothetis, C.; Gravis, G.; Ganju, V.; Polikoff, J.; Saad, F.; Humanski, P.; et al. Randomized, Double-Blind, Phase III Trial of Ipilimumab Versus Placebo in Asymptomatic or Minimally Symptomatic Patients With Metastatic Chemotherapy-Naive Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2017, 35, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Antonarakis, E.S.; Piulats, J.M.; Gross-Goupil, M.; Goh, J.; Ojamaa, K.; Hoimes, C.J.; Vaishampayan, U.; Berger, R.; Sezer, A.; Alanko, T.; et al. Pembrolizumab for Treatment-Refractory Metastatic Castration-Resistant Prostate Cancer: Multicohort, Open-Label Phase II KEYNOTE-199 Study. J. Clin. Oncol. 2020, 38, 395–405. [Google Scholar] [CrossRef]
- Cristescu, R.; Aurora-Garg, D.; Albright, A.; Xu, L.; Liu, X.Q.; Loboda, A.; Lang, L.; Jin, F.; Rubin, E.H.; Snyder, A.; et al. Tumor mutational burden predicts the efficacy of pembrolizumab monotherapy: A pan-tumor retrospective analysis of participants with advanced solid tumors. J. Immunother. Cancer 2022, 10, e003091. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.C.; Halabi, S.; Somarelli, J.A.; Humeniuk, M.; Wu, Y.; Oyekunle, T.; Howard, L.; Huang, J.; Anand, M.; Davies, C.; et al. A phase 2 trial of avelumab in men with aggressive-variant or neuroendocrine prostate cancer. Prostate Cancer Prostatic Dis. 2022, 25, 762–769. [Google Scholar] [CrossRef]
- Sinha, M.; Zhang, L.; Subudhi, S.; Chen, B.; Marquez, J.; Liu, E.V.; Allaire, K.; Cheung, A.; Ng, S.; Nguyen, C.; et al. Pre-existing immune status associated with response to combination of sipuleucel-T and ipilimumab in patients with metastatic castration-resistant prostate cancer. J. Immunother. Cancer 2021, 9, e002254. [Google Scholar] [CrossRef]
- Twardowski, P.; Wong, J.Y.C.; Pal, S.K.; Maughan, B.L.; Frankel, P.H.; Franklin, K.; Junqueira, M.; Prajapati, M.R.; Nachaegari, G.; Harwood, D.; et al. Randomized phase II trial of sipuleucel-T immunotherapy preceded by sensitizing radiation therapy and sipuleucel-T alone in patients with metastatic castrate resistant prostate cancer. Cancer Treat. Res. Commun. 2019, 19, 100116. [Google Scholar] [CrossRef]
- Pachynski, R.K.; Morishima, C.; Szmulewitz, R.; Harshman, L.; Appleman, L.; Monk, P.; Bitting, R.L.; Kucuk, O.; Millard, F.; Seigne, J.D.; et al. IL-7 expands lymphocyte populations and enhances immune responses to sipuleucel-T in patients with metastatic castration-resistant prostate cancer (mCRPC). J. Immunother. Cancer 2021, 9, e002903. [Google Scholar] [CrossRef]
- Cathomas, R.; Rothermundt, C.; Klingbiel, D.; Bubendorf, L.; Jaggi, R.; Betticher, D.C.; Brauchli, P.; Cotting, D.; Droege, C.; Winterhalder, R.; et al. Efficacy of Cetuximab in Metastatic Castration-Resistant Prostate Cancer Might Depend on EGFR and PTEN Expression: Results from a Phase II Trial (SAKK 08/07). Clin. Cancer Res. 2012, 18, 6049–6057. [Google Scholar] [CrossRef]
- Marra, G.; Dalmasso, E.; Agnello, M.; Munegato, S.; Bosio, A.; Sedigh, O.; Biancone, L.; Gontero, P. Prostate cancer treatment in renal transplant recipients: A systematic review. BJU Int. 2018, 121, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Hevia, V.; Boissier, R.; Rodríguez-Faba, Ó.; Fraser-Taylor, C.; Hassan-Zakri, R.; Lledo, E.; Regele, H.; Buddde, K.; Figueiredo, A.; Olsburgh, J.; et al. Management of Localised Prostate Cancer in Kidney Transplant Patients: A Systematic Review from the EAU Guidelines on Renal Transplantation Panel. Eur. Urol. Focus 2018, 4, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Yiou, R.; Salomon, L.; Colombel, M.; Patard, J.-J.; Chopin, D.; Abbou, C.-C. Perineal approach to radical prostatectomy in kidney transplant recipients with localized prostate cancer. Urology 1999, 53, 822–824. [Google Scholar] [CrossRef] [PubMed]
- Kleinclauss, F.M.; Neuzillet, Y.; Tillou, X.; Terrier, N.; Guichard, G.; Petit, J.; Lechevallier, E. Renal Transplantation Committee of French Urological Association. Morbidity of retropubic radical prostatectomy for prostate cancer in renal transplant recipients: Multicenter study from Renal Transplantation Committee of French Urological Association. Urology 2008, 72, 1366–1370. [Google Scholar] [CrossRef]
- Hafron, J.; Fogarty, J.D.; Wiesen, A.; Melman, A. Surgery for localized prostate cancer after renal transplantation. BJU Int. 2005, 95, 319–322. [Google Scholar] [CrossRef]
- Shah, K.K.; Ko, D.S.C.; Mercer, J.; Dahl, D.M. Laparoscopic radical prostatectomy in a renal allograft recipient. Urology 2006, 68, 672.e5–672.e7. [Google Scholar] [CrossRef]
- Thomas, A.A.; Nguyen, M.M.; Gill, I.S. Laparoscopic Transperitoneal Radical Prostatectomy in Renal Transplant Recipients: A Review of Three Cases. Urology 2008, 71, 205–208. [Google Scholar] [CrossRef]
- Maestro, M.Á.; Gómez, A.T.; Alonso, Y.; Gregorio, S.; Ledo, J.C.; De La Peña Barthel, J.; Martínez-Piñeiro, L. Laparoscopic transperitoneal radical prostatectomy in renal transplant recipients: A review of the literature. BJU Int. 2010, 105, 844–848. [Google Scholar] [CrossRef]
- Robert, G.; Elkentaoui, H.; Pasticier, G.; Couzi, L.; Merville, P.; Ravaud, A.; Ballanger, P.; Ferrière, J.-M.; Wallerand, H. Laparoscopic Radical Prostatectomy in Renal Transplant Recipients. Urology 2009, 74, 683–687. [Google Scholar] [CrossRef]
- Narváez, A.; Suarez, J.; Riera, L.; Castells-Esteve, M.; Cocera, R.; Vigués, F. Nuestra experiencia en el manejo del cáncer de próstata en pacientes trasplantados renales. Actas Urológicas Españolas 2018, 42, 249–255. [Google Scholar] [CrossRef]
- Marks, L.B.; Yorke, E.D.; Jackson, A.; Ten Haken, R.K.; Constine, L.S.; Eisbruch, A.; Bentzen, S.M.; Nam, J.; Deasy, J.O. Use of Normal Tissue Complication Probability Models in the Clinic. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S10–S19. [Google Scholar] [CrossRef] [PubMed]
- Beydoun, N.; Bucci, J.; Malouf, D. Iodine-125 prostate seed brachytherapy in renal transplant recipients: An analysis of oncological outcomes and toxicity profile. J. Contemp. Brachytherapy 2014, 1, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Coombs, C.C.; Hertzfeld, K.; Barrett, W. Outcomes in transplant patients undergoing brachytherapy for prostate cancer. Am. J. Clin. Oncol. 2012, 35, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Tasaki, M.; Kasahara, T.; Kaidu, M.; Kawaguchi, G.; Hara, N.; Yamana, K.; Maruyama, R.; Takizawa, I.; Ishizaki, F.; Saito, K.; et al. Low-Dose-Rate and High-Dose-Rate Brachytherapy for Localized Prostate Cancer in ABO-Incompatible Renal Transplant Recipients. Transplant. Proc. 2019, 51, 774–778. [Google Scholar] [CrossRef]
- Soeterik, T.F.W.; Van Den Bergh, R.C.N.; Van Melick, H.H.E.; Kelder, H.; Peretti, F.; Dariane, C.; Timsit, M.-O.; Branchereau, J.; Mesnard, B.; Tilki, D.; et al. Active surveillance in renal transplant patients with prostate cancer: A multicentre analysis. World J. Urol. 2023, 41, 725–732. [Google Scholar] [CrossRef]
- Liauw, S.L.; Ham, S.A.; Das, L.C.; Rudra, S.; Packiam, V.T.; Koshy, M.; Weichselbaum, R.R.; Becker, Y.T.; Bodzin, A.S.; Eggener, S.E. Prostate Cancer Outcomes Following Solid-Organ Transplantation: A SEER-Medicare Analysis. JNCI J. Natl. Cancer Inst. 2020, 112, 847–854. [Google Scholar] [CrossRef]
- Kälble, T.; Lucan, M.; Nicita, G.; Sells, R.; Revilla, F.J.B.; Wiesel, M. Eau Guidelines on Renal Transplantation. Eur. Urol. 2005, 47, 156–166. [Google Scholar] [CrossRef]
- EASL Clinical Practice Guidelines: Liver transplantation. J. Hepatol. 2016, 64, 433–485. [CrossRef]
- Bieri, U.; Hübel, K.; Seeger, H.; Kulkarni, G.S.; Sulser, T.; Hermanns, T.; Wettstein, M.S. Management of Active Surveillance-Eligible Prostate Cancer during Pretransplantation Workup of Patients with Kidney Failure: A Simulation Study. Clin. J. Am. Soc. Nephrol. 2020, 15, 822–829. [Google Scholar] [CrossRef]
- Gin, G.E.; Pereira, J.F.; Weinberg, A.D.; Mehrazin, R.; Lerner, S.M.; Sfakianos, J.P.; Phillips, C.K. Prostate-specific antigen screening and prostate cancer treatment in renal transplantation candidates: A survey of U.S. transplantation centers. Urol. Oncol. Semin. Orig. Investig. 2016, 34, 57.e9–57.e13. [Google Scholar] [CrossRef]
- Stöckle, M.; Junker, K.; Fornara, P. Low-risk Prostate Cancer Prior to or After Kidney Transplantation. Eur. Urol. Focus 2018, 4, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Craig-Schapiro, R.; Salinas, T.; Lubetzky, M.; Abel, B.T.; Sultan, S.; Lee, J.R.; Kapur, S.; Aull, M.J.; Dadhania, D.M. COVID-19 outcomes in patients waitlisted for kidney transplantation and kidney transplant recipients. Am. J. Transpl. 2021, 21, 16351. [Google Scholar] [CrossRef]
- Zapała, P.; Ślusarczyk, A.; Rajwa, P.; Przydacz, M.; Krajewski, W.; Dybowski, B.; Kubik, P.; Kuffel, B.; Przudzik, M.; Osiecki, R.; et al. Not as black as it is painted? The impact of the first wave of COVID-19 pandemic on surgical treatment of urological cancer patients in Poland-a cross-country experience. Arch. Med. Sci. 2023, 19, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.D.; Zhu, Z.; Lequio, M.; Powers, C.G.D.; Bai, Q.; Xiao, H.; Fajardo, E.; Wakefield, M.R.; Fang, Y. SARS-CoV-2 spike protein inhibits growth of prostate cancer: A potential role of the COVID-19 vaccine killing two birds with one stone. Med. Oncol. 2022, 39, 32. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, A.; Pfister, D.; Thissen, A.; Piper, C.; Porres, D. Radical retropubic and perineal prostatectomy for clinically localised prostate cancer in renal transplant recipients. Arab J. Urol. 2014, 12, 142–148. [Google Scholar] [CrossRef]
- Hoda, M.R.; Hamza, A.; Greco, F.; Wagner, S.; Reichelt, O.; Heynemann, H.; Fischer, K.; Fornara, P. Management of localized prostate cancer by retropubic radical prostatectomy in patients after renal transplantation. Nephrol. Dial. Transplant. 2010, 25, 3416–3420. [Google Scholar] [CrossRef]
- Iizuka, J.; Hashimoto, Y.; Kondo, T.; Takagi, T.; Inui, M.; Nozaki, T.; Omoto, K.; Shimizu, T.; Ishida, H.; Tanabe, K. Robot-Assisted Radical Prostatectomy for Localized Prostate Cancer in Asian Renal Transplant Recipients. Transplant. Proc. 2016, 48, 905–909. [Google Scholar] [CrossRef]
- Rahman, I.A.; Rasyid, N.; Birowo, P.; Atmoko, W. Effects of renal transplantation on erectile dysfunction: A systematic review and meta-analysis. Int. J. Impot. Res. 2022, 34, 456–466. [Google Scholar] [CrossRef]
- Marra, G.; Agnello, M.; Giordano, A.; Soria, F.; Oderda, M.; Dariane, C.; Timsit, M.-O.; Branchereau, J.; Hedli, O.; Mesnard, B.; et al. Robotic Radical Prostatectomy for Prostate Cancer in Renal Transplant Recipients: Results from a Multicenter Series. Eur. Urol. 2022, 82, 639–645. [Google Scholar] [CrossRef]
- Moreno Sierra, J.; Ciappara Paniagua, M.; Galante Romo, M.I.; Senovilla Pérez, J.L.; Redondo González, E.; Galindo Herrero, M.I.; Novo Gómez, N.; Blázquez Izquierdo, J. Robot Assisted Radical Prostatectomy in Kidney Transplant Recipients. Our Clin. Exp. A Syst. Rev. Urol. Int. 2016, 97, 440–444. [Google Scholar] [CrossRef]
- Felber, M.; Drouin, S.J.; Grande, P.; Vaessen, C.; Parra, J.; Barrou, B.; Matillon, X.; Crouzet, S.; Leclerc, Q.; Rigaud, J.; et al. Morbidity, perioperative outcomes and complications of robot-assisted radical prostatectomy in kidney transplant patients: A French multicentre study. Urol. Oncol. Semin. Orig. Investig. 2020, 38, 599.e15–599.e21. [Google Scholar] [CrossRef] [PubMed]
- Plagakis, S.; Foreman, D.; Sutherland, P.; Fuller, A. Transperitoneal Robot-Assisted Radical Prostatectomy Should Be Considered in Prostate Cancer Patients with Pelvic Kidneys. J. Endourol. Case Rep. 2016, 2, 38–40. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.L.; Jellison, F.C.; Heldt, J.P.; Tenggardjaja, C.; Bowman, R.J.; Jin, D.H.; Chamberlin, J.; Lui, P.D.; Baldwin, D.D. Robot-Assisted Radical Prostatectomy in Patients with Previous Renal Transplantation. J. Endourol. 2011, 25, 1643–1647. [Google Scholar] [CrossRef]
- Zeng, J.; Christiansen, A.; Pooli, A.; Qiu, F.; LaGrange, C.A. Safety and Clinical Outcomes of Robot-Assisted Radical Prostatectomy in Kidney Transplant Patients: A Systematic Review. J. Endourol. 2018, 32, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Tyritzis, S.I.; Wallerstedt, A.; Steineck, G.; Nyberg, T.; Hugosson, J.; Bjartell, A.; Wilderäng, U.; Thorsteinsdottir, T.; Carlsson, S.; Stranne, J.; et al. Thromboembolic Complications in 3,544 Patients Undergoing Radical Prostatectomy with or without Lymph Node Dissection. J. Urol. 2015, 193, 117–125. [Google Scholar] [CrossRef]
- Heidenreich, A. Still Unanswered: The Role of Extended Pelvic Lymphadenectomy in Improving Oncological Outcomes in Prostate Cancer. Eur. Urol. 2021, 79, 605–606. [Google Scholar] [CrossRef]
- Detti, B.; Scoccianti, S.; Franceschini, D.; Villari, D.; Greto, D.; Cipressi, S.; Sardaro, A.; Zanassi, M.; Cai, T.; Biti, G. Adjuvant Radiotherapy for a Prostate Cancer After Renal Transplantation and Review of the Literature. Jpn. J. Clin. Oncol. 2011, 41, 1282–1286. [Google Scholar] [CrossRef]
- Gojdic, M.; Zilinska, Z.; Krajcovicova, I.; Lukacko, P.; Grezdo, J.; Obsitnik, B.; Sr, J.B.; Trebaticky, B. Radiotherapy of prostate cancer in renal transplant recipients: Single-center experience. Neoplasma 2019, 66, 155–159. [Google Scholar] [CrossRef]
- Mouzin, M.; Bachaud, J.-M.; Kamar, N.; Gamé, X.; Vaessen, C.; Rischmann, P.; Rostaing, L.; Malavaud, B. Three-Dimensional Conformal Radiotherapy for Localized Prostate Cancer in Kidney Transplant Recipients. Transplantation 2004, 78, 1496–1500. [Google Scholar] [CrossRef]
- Ileana, P.Á.S.; Rubi, R.P.; Javier, L.R.F.; Sagrario, M.G.M.D.; Haydeé, F.B.C. Pelvic radiation therapy with volumetric modulated arc therapy and intensity-modulated radiotherapy after renal transplant: A report of 3 cases. Rep. Pract. Oncol. Radiother. 2020, 25, 548–555. [Google Scholar] [CrossRef]
- Kleinclauss, F.; Gigante, M.; Neuzillet, Y.; Mouzin, M.; Terrier, N.; Salomon, L.; Iborra, F.; Petit, J.; Cormier, L.; Lechevallier, E.; et al. Prostate cancer in renal transplant recipients. Nephrol. Dial. Transplant. 2008, 23, 2374–2380. [Google Scholar] [CrossRef] [PubMed]
- Breyer, B.N.; Whitson, J.M.; Freise, C.E.; Meng, M.V. Prostate Cancer Screening and Treatment in the Transplant Population: Current Status and Recommendations. J. Urol. 2009, 181, 2018–2026. [Google Scholar] [CrossRef] [PubMed]
- Konety, B.R.; Tewari, A.; Howard, R.J.; Barry, J.M.; Hodge, E.E.; Taylor, R.; Jordan, M.L. Prostate cancer in the post-transplant population. Urology 1998, 52, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Everly, J.J.; Gross, T.G.; Tevar, A.D.; First, M.R.; Alloway, R.R.; Woodle, E.S. De Novo Cancers Arising in Organ Transplant Recipients are Associated With Adverse Outcomes Compared With the General Population. Transplantation 2009, 87, 1347–1359. [Google Scholar] [CrossRef]
- Melchior, S.; Franzaring, L.; Shardan, A.; Schwenke, C.; Plümpe, A.; Schnell, R.; Dreikorn, K. Urological De Novo Malignancy After Kidney Transplantation: A Case for the Urologist. J. Urol. 2011, 185, 428–432. [Google Scholar] [CrossRef]
- Sherer, B.A.; Warrior, K.; Godlewski, K.; Hertl, M.; Olaitan, O.; Nehra, A.; Deane, L.A. Prostate cancer in renal transplant recipients. Int. Braz. J. Urol. 2017, 43, 1021–1032. [Google Scholar] [CrossRef]
- Lengwiler, E.; Stampf, S.; Zippelius, A.; Salati, E.; Zaman, K.; Schfer, N.; Schardt, J.; Siano, M.; Hofbauer, G. Solid cancer development in solid organ transplant recipients within the Swiss Transplant Cohort Study. Swiss Med. Wkly. 2019, 149, w20078. [Google Scholar] [CrossRef]
- Cormier, L.; Lechevallier, E.; Barrou, B.; Benoit, G.; Bensadoun, H.; Boudjema, K.; Descottes, J.-L.; Doré, B.; Guy, L.; Malavaud, B.; et al. Diagnosis and treatment of prostate cancers in renal-transplant recipients. Transplantation 2003, 75, 237–239. [Google Scholar] [CrossRef]
- From the Department of Urology and Transplant Surgery, Beaumont Hospital, Dublin, Ireland; Haroon, U.H.; Davis, N.F.; Mohan, P.; Little, D.M.; Smyth, G.; Forde, J.C.; Power, R.E. Incidence, Management, and Clinical Outcomes of Prostate Cancer in Kidney Transplant Recipients. Exp. Clin. Transplant. 2019, 17, 298–303. [Google Scholar] [CrossRef]
- Bratt, O.; Drevin, L.; Prütz, K.-G.; Carlsson, S.; Wennberg, L.; Stattin, P. Prostate cancer in kidney transplant recipients-a nationwide register study: Kidney transplants and prostate cancer. BJU Int. 2020, 125, 679–685. [Google Scholar] [CrossRef]
- Hall, E.C.; Pfeiffer, R.M.; Segev, D.L.; Engels, E.A. Cumulative incidence of cancer after solid organ transplantation: Cancer Incidence After Transplantation. Cancer 2013, 119, 2300–2308. [Google Scholar] [CrossRef] [PubMed]
- Aghdam, R.; Amoui, M.; Ghodsirad, M.; Khoshbakht, S.; Mofid, B.; Kaghazchi, F.; Tavakoli, M.; Pirayesh, E.; Ahmadzadehfar, H. Efficacy and safety of 177Lutetium-prostate-specific membrane antigen therapy in metastatic castration-resistant prostate cancer patients: First experience in West Asia–A prospective study. World J. Nucl. Med. 2019, 18, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, R.A.; Aggarwal, P.; Kumar, S.; Sood, A.; Paul, D.; Mittal, B.R. Excellent Response to Full-Dose 177 Lu-PSMA-617 RLT in Metastatic Castration-Resistant Prostate Cancer With Transplant Kidney: A Step Ahead. Clin. Nucl. Med. 2023, 48, e470–e471. [Google Scholar] [CrossRef] [PubMed]
- Norouzi, G.; Aghdam, R.A.; Hashemifard, H.; Pirayesh, E. Excellent Response to Lower Dose of 177Lu-PSMA-617 in a Metastatic Castration-Resistant Prostate Cancer Patient with a Transplanted Kidney. Clin. Nucl. Med. 2019, 44, 483–484. [Google Scholar] [CrossRef]
- Tapper, A.; Marin, M.; Samarapungavan, D.; Pam Jones, R.N.; Hafron, J. Management of metastatic castrate-resistant prostate cancer following renal transplantation. Case Rep. Images Surg. 2018, 1, 1–4. [Google Scholar] [CrossRef]
- Pettenati, C.; Jannot, A.-S.; Hurel, S.; Verkarre, V.; Kreis, H.; Housset, M.; Legendre, C.; Méjean, A.; Timsit, M.-O. Prostate cancer characteristics and outcome in renal transplant recipients: Results from a contemporary single center study. Clin. Transplant. 2016, 30, 964–971. [Google Scholar] [CrossRef]
- Hevia, V.; Gómez, V.; Díez Nicolás, V.; Álvarez, S.; Gómez Del Cañizo, C.; Galeano, C.; Gomis, A.; García-Sagredo, J.M.; Marcen, R.; Burgos, F.J. Development of Urologic de Novo Malignancies after Renal Transplantation. Transplant. Proc. 2014, 46, 170–175. [Google Scholar] [CrossRef]
- Haeuser, L.; Nguyen, D.-D.; Trinh, Q.-D. Prostate cancer and kidney transplantation-exclusion or co-existence? BJU Int. 2020, 125, 628–629. [Google Scholar] [CrossRef]
- D’Arcy, M.E.; Coghill, A.E.; Lynch, C.F.; Koch, L.A.; Li, J.; Pawlish, K.S.; Morris, C.R.; Rao, C.; Engels, E.A. Survival after a cancer diagnosis among solid organ transplant recipients in the United States. Cancer 2019, 125, 933–942. [Google Scholar] [CrossRef]
Author, Year | Accrual Period | RTR | Patients, n | Local T Stage, n (%) | Gleason Score, n (%) | Mean (Range) Age of the RTRs, Years | Mean PSA at PCa Presentation, ng/mL | Mean (Range) Follow-Up, Months | Time from KTx to PCa Detection, Months |
---|---|---|---|---|---|---|---|---|---|
Cormier et al., 2003 [109] | 1998 | YES | 28 | T1 n = 12 (43) T2 n = 10 (36) T3 n = 5 (18) T4 n = 1 (3) | <7 n = 18 (64.3) ≥7 n = 10 (35.7) | 63.0 (54–74) | 8.0 (1.9–318) | 18 (6–30) | 60 (1–156) |
Hafron et al., 2004 [66] | 1991–2004 | YES | 7 | T1 n = 5 (71.4) T2 n = 2 (28.6) | <7 n = 5 (71.4) ≥7 n = 2 (28.6) | 62.3 (2.5, 55–74) | 7.9 (5.6–10) | 22 (2–130) | 86.5 (25.25, 24–192) |
Kleinclauss et al., 2008 [102] | 1983–2005 | YES | 62 | T1 n = 19 (30.6) T2 n = 21 (33.9) T3 n = 21 (33.9) T4 n = 1 (1.6) | <7 n = 42 (67.7) ≥7 n = 20 (32.3) | 69.2 (50.8–75.1) | 7.6 (1.6–597) | 24.7 ±24 | 67 ±42 |
Hoda et al., 2010 [87] | 2001–2007 | YES | 16 | T2 n = 16 (100) | <7 n = 14 (87) ≥7 n = 2 (13) | 61.8 (51–66) | 4.7 ±1.4 | 25 | 81.2 ±19.1 |
NO | 294 | T2 n = 194 (66) T3 n = 100 (34) | <7 n = 248 (84.4) ≥7 n = 46 (15.6) | 64.4 ±9.3 | 6.32 ±1.7 | 34 | - | ||
Heidenreich et al., 2014 [86] | 2000–2011 | YES | 23 | T2 n = 16 (69.6) T3 n = 7 (30.4) | <7 n = 14 (60.9) ≥7 n = 9 (39.1) | 64 (59–67) | 4.5 (3–17.5) | 43.5 (10–141) | 95 (24–206) |
Hevia et al., 2014 [118] | 1977–2010 | YES | 9 | NA | NA | 59 (56–65.5) | NA | 31 (15.8–34.0) | 57 (39–76) |
Pettenati et al., 2016 [117] | 2000–2013 | YES | 24 | T1 n = 7 (29.2) T2 n = 14 (58.3) T3 n = 3 (12.5) | <7 n = 10 (41.7) ≥n = 14 (58.3) | 63.5 (51–78) | 7.5 (3.8–11.2) | 46 ±29 | 55 (1–402) |
NO | 64 | ≤T2c n = 55 (86) T3 n = 9 (14) | <7 n = 30 (46.9) ≥7 n = 34 (53.1) | 63.9 ±5.1 | 7.5 ±3.3 | 34.1 ±25 | - | ||
Bratt et al., 2020 [111] | 1998–2016 | YES | 133 | T1 n = 73 (55) T2 n = 39 (29) T3 n = 11 (8) T4 n = 3 (2) Missing n = 7 (5) | <7 n = 67 (50) ≥7 n = 63 (48) Missing n = 3 (2) | 56 (47–63) | NA | NA | 120 (72–216) |
NO | 665 | T1 n = 360 (54) T2 n = 182 (27) T3 n = 93 (14) T4 n = 18 (3) Missing n = 12 (2) | <7 n = 307 (46) ≥7 n = 350 (53) Missing n = 8 (1) | 66 (61–72) | NA | NA | - | ||
Marra et al., 2022 [90] | 2009–2019 | YES | 41 | T2 n = 29 (70.7) T3 n = 11 (26.8) Missing n = 1 (2.5) | <7 n = 9 (22) ≥7 n = 32 (78) | 60 (57–64) | 6.5 (5.2–10.2) | 42 (22–64) | 118 (57–184) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanusz, K.; Domański, P.; Strojec, K.; Zapała, P.; Zapała, Ł.; Radziszewski, P. Prostate Cancer in Transplant Receivers—A Narrative Review on Oncological Outcomes. Biomedicines 2023, 11, 2941. https://doi.org/10.3390/biomedicines11112941
Hanusz K, Domański P, Strojec K, Zapała P, Zapała Ł, Radziszewski P. Prostate Cancer in Transplant Receivers—A Narrative Review on Oncological Outcomes. Biomedicines. 2023; 11(11):2941. https://doi.org/10.3390/biomedicines11112941
Chicago/Turabian StyleHanusz, Karolina, Piotr Domański, Kacper Strojec, Piotr Zapała, Łukasz Zapała, and Piotr Radziszewski. 2023. "Prostate Cancer in Transplant Receivers—A Narrative Review on Oncological Outcomes" Biomedicines 11, no. 11: 2941. https://doi.org/10.3390/biomedicines11112941
APA StyleHanusz, K., Domański, P., Strojec, K., Zapała, P., Zapała, Ł., & Radziszewski, P. (2023). Prostate Cancer in Transplant Receivers—A Narrative Review on Oncological Outcomes. Biomedicines, 11(11), 2941. https://doi.org/10.3390/biomedicines11112941